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Abstract—In 3D VLSI, through-silicon vias (TSVs) are relatively large, and
closely spaced. This results in a situation in which noise on one or more TSVs
may deteriorate the delay and signal integrity of neighboring TSVs. In this
paper, we first quantify the parasitics in contemporary TSVs, and then come
up with a classification of crosstalk sequences as 0C, 1C, ... 8C sequences.
Next, we present inductive approaches to quantify the exact overhead for 8C,
6C and 4C crosstalk avoidance codes (CACs) for a 3×n mesh arrangement of
TSVs. These overheads for different CACs for a 3× n mesh arrangement of
TSVs are used to calculate the lower bounds on the corresponding overheads
for an n× n mesh arrangements of TSVs. We also discuss an efficient way
to implement the coding and decoding (CODEC) circuitry for limiting the
maximum crosstalk to 6C. Our experimental results show that for a TSV
mesh arrangement driven by inverters implemented in a 22nm technology,
the coding based approaches yields improvements which are in line with the
theoretical predictions.

I. INTRODUCTION AND PREVIOUS WORK

Through Silicon Via (TSV) based 3D stacking technology has garnered

a lot of interest from academia and industry over the past few years. It is

expected to alleviate the problem of long interconnects in 2D VLSI ICs by

providing another dimension for logic to communicate along. It also allows

the possibility of stacking ICs implemented in different technologies, to

create heterogeneous 3D structures. As a result, much research is being

conducted in all aspects of the 3D IC technology. The works of [1] [2]

[3] [4] are targeted towards developing TSV manufacturing and die-to-

die as well as wafer-to-die bonding technologies. In the physical design

space, placement algorithms for TSV based 3D ICs are proposed in [5]

[6]. Several research efforts have been devoted to the 3D routing problem

as well [7][8]. Solutions for building 3D clock tress, and testing individual

die before bonding are proposed in [9], [10].

The use of TSVs results in a significant capacitive coupling between

adjacent TSVs owing to their large dimensions and tight spacing. This

causes significant pattern-dependent noise artefacts. This crosstalk noise

can affect chip timing by slowing down transitions on a switching signal

when a large number of its neighbors perform opposite transitions. It

can also cause functionality issues by causing large glitches on a static

signal when its aggressing neighbors transition. Analytical expressions

for parasitics, including TSV-to-TSV coupling capacitances for simple

arrangements of TSVs are presented in [11] [12]. However, very little

work has been done to provide systematic solutions for reducing crosstalk

among TSVs. The study done in [13] shows that crosstalk between TSVs

in a full 3D chip is significant, and the authors propose shielding and buffer

insertion based solutions to mitigate the problem. The shielding based

solution is employed in a post-placement step, to find the candidate TSVs

for shielding. Buffer insertion is performed in a post route environment,

when accurate timing information is available. They also show that spacing

TSVs apart is an inefficient solution for reducing coupling noise. The

solutions proposed in [13] are applied late in the design flow (post-

placement, post-routing), and work on a case by case basis to reduce

capacitive coupling. No theoretical bounds are provided in [13] for the

area overhead of shielding or the maximum capacitive coupling on any

TSV after applying these solutions. In contrast, in this paper, we discuss

correct-by-construction crosstalk canceling codes for a regular 2D mesh of

TSVs, to guarantee an upper bound on the amount of capacitive coupling

observed by any victim TSV. This is particularly relevant in the scenario

where a regular 2D mesh of TSVs connects one die to another die.

One example of such a scenario is when the core logic and caches of a

microprocessor are implemented on different dies, and a dense 2D mesh

of TSVs is used to interconnect them.

The main contributions of this work are:

• We classify crosstalk patterns into different classes based on the

maximum crosstalk they incur (8C, 7C, 6C, 5C ... 0C).

• We present exact overhead of codes to reduce inter-TSV crosstalk

for a 3×n mesh of TSVs, and derive lower bounds on the overheads

associated with codes for an n×n mesh of TSVs.

• We show that by extending the 1D crosstalk avoidance codes pro-

posed in [14][15], we can come up with an efficient 2D code which

reduces the maximum crosstalk by 25 percent, with an encoder and

decoder of quadratic complexity in circuit area and an asymptotic

overhead (in terms of number of additional bits) of ∼40%. We also

demonstrate the improvement in delay of our 6C, 4C and 2C codes

over an uncoded scenario, by performing HSPICE [16] simulations

using 22nm PTM [17] transistor models.

II. APPROACH

In this section, we start with a discussion of our TSV parasitic modeling

experiments. This is followed by a classification of data patterns on a 2D

mesh of TSVs into multiple classes, based on the maximum crosstalk that

is experienced by any TSV in the mesh. Then, we derive mathematical

bounds (exact values for a 3× n mesh, and lower bounds for an n× n

mesh) on the Crosstalk Avoidance Code (CAC) overhead for each class.

We end by presenting a technique to implement an efficient CODEC for

a 6C CAC.

A. Parasitic Modeling of TSVs

Several analytical models for resistance, capacitance and inductance of

TSVs have been proposed in the literature. For our work, we performed

our own parasitic extraction using the 3D parasitic extraction tool Raphael.

Figure 1 shows the dimensions of each TSV in a 3× 3 fragment of the

9× 9 TSV mesh we used for parasitic extraction. Based on the TSV

dimensions projected for the 2015-2018 timeframe in the 2011 edition of

the ITRS [18], TSV diameter, TSV height and TSV-to-TSV spacing are

taken as 1µm, 50µm and 1µm respectively. Also, each TSV has an Si02
insulating dielectric layer of width 0.1µm around it. TSVs are assumed to

be made of copper (Cu) with a resistivity of 1.6×10−8
Ω-m. The dielectric

constants of the silicon substrate in which TSVs are placed, and the Si02
insulating layers are taken as 3.9 and 12, respectively. We assume that the

3D IC comprises of three stacked dies, and only consider the coupling

between TSVs.

SiO2 thickness = 0.1µm

spacing = 1µm

diameter = 1µm

Fig. 1. TSV Mesh Structure used for Parasitic Extraction

Table I shows the coupling capacitances for a mesh of TSVs. The value

Ci j in any entry (i, j) in the table reports the coupling capacitance of a

TSV to another TSV which is i TSVs away horizontally, and j TSVs away

vertically. Thus, C10 and C01 are the coupling capacitances of a TSV

to its adjacent TSV to its east (or west) and north (or south) direction

respectively. The (0, 0) entry represents the capacitance to ground of

any TSV in the mesh. We note that Ci j=C ji. It can be also noted from

the table that coupling capacitance for a value of i or j greater than 1

is more than two orders of magnitude less than C10 and C01, and can

be neglected for crosstalk analysis. Also, C11 is around 1/5 of C10 and
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thus has a limited impact on crosstalk. We also extracted inductance, and

found that for frequencies up to 10GHz, the oscillation frequency 1√
LC

of the system was much greater than the operational frequency. Hence,

inductance values are not reported. However, inductance parasitics are

included in our HSPICE [16] simulations.

j = 0 j = 1 j = 2 j = 3 j = 4

i= 0 1.2×10−19 1.2×10−14 2.0×10−16 4.8×10−18 1.2×10−19

i= 1 1.2×10−14 3.0×10−15 1.0×10−16 2.8×10−18 7.4×10−20

i= 2 2.0×10−16 1.0×10−16 8.3×10−18 3.8×10−19 1.5×10−20

i= 3 4.8×10−18 2.8×10−18 3.8×10−19 2.8×10−20 2.2×10−21

i= 4 1.2×10−19 7.4×10−20 1.5×10−20 2.2×10−21 5.1×10−22

TABLE I

CAPACITANCES FOR A 9X9 MESH OF TSVS (IN FARADS)

B. Crosstalk Classification

In this section, we classify the data patterns in a 2D mesh of TSVs into

different crosstalk classes. For this classification, we ignore the coupling

capacitances Ci j (where i, j ≥ 2). The coupling capacitance C11 of a TSV

to any of its diagonally neighbouring TSV is roughly 1/5 of its coupling

capacitance (C01 or C10) to any of its adjacent TSVs. Clearly, the sum of

the coupling capacitances of a TSV to its four diagonally neighbouring

TSVs, though not negligible, is less than its coupling capacitance to

any of its adjacent TSVs. Thus, the overhead of including the four

diagonally neighbouring TSVs in any coding scheme is not justified

by the corresponding crosstalk improvement achieved. Hence, for our

classification, we do not consider the diagonal neighbours. For any TSV

in a data pattern, only its adjacent (East, West, North and South) TSVs

are considered. In our results, all the diagonally neighbouring TSVs are

assumed to be contributing the worst-case crosstalk by switching in a

direction opposite to that of the TSV under consideration.

Consider a n×n mesh consisting of signals b11, b12 · · · bn−1,n · · ·
bn,n.

Definition 1: A pattern P is an assignment of values vi j to bi j
such that vi j ∈ [0,1]
Let Pk and Pk+1 be two successive patterns (sequence) applied on the

TSV mesh. Let vki j and vk+1
i j be the values of signal bi j in Pk and Pk+1

respectively. We now define the eight type of crosstalk conditions below:

A sequence is an 8C sequence if ∃i, j,k such that

vki, j = vk+1
i−1, j = vk+1

i+1, j = vk+1
i, j−1 = vk+1

i, j+1 = v

and

vk+1
i, j = vki−1, j = vki+1, j = vki, j−1 = vki, j+1 = v̄

Intuitively, it means that from Pk to Pk+1, all four of the adjacent neighbors

of bi j switch in a direction opposite to its direction of switching, which

results in bi j charging a load of 8C during its transition, where C is C01,

the capacitance between a TSV and any one of its adjacent neighbours.

A sequence is a 7C sequence if it is not a 8C sequence and ∃i, j,k such
that from Pk to Pk+1, three of the four adjacent neighbors of bi j switch

in the direction opposite to its direction of switching and one of them

remains static.

A sequence is a 6C sequence if it is not an 8C or 7C sequence and

∃i, j,k such that from Pk to Pk+1, out of the four neighbors of bi j a)

three switch in the direction opposite to its direction of switching and one

switches in the same direction, or b) two switch in the direction opposite

to its direction of switching and two remain static

A sequence is a 5C sequence if it is not an 8C or 7C or 6C sequence

and ∃i, j,k such that from Pk to Pk+1, out of the four neighbors of bi j
a) two switch in the direction opposite to its direction of switching, one

switches in the same direction and one remains static, or b) one switches

in the direction opposite to its direction of switching and three remain

static.

A sequence is a 4C sequence if it is not a 8C or 7C or 6C or 5C

sequence and ∃i, j,k such that from Pk to Pk+1, out of the four neighbors

of bi j a) two switch in the direction opposite to its direction of switching

and two switch in the same direction, or b) one switches in the direction

opposite to its direction of switching, one switches in the same direction

and two remain static, or c) all four remain static.

A sequence is a 3C sequence if it is not a 8C or 7C or 6C or 5C

or 4C sequence and ∃i, j,k such that from Pk to Pk+1, out of the four

neighbors of bi j a) one switches in the direction opposite to its direction

of switching, two switch in the same direction and one remains static, or

b) one switches in the same direction and three remain static.

A sequence is a 2C sequence if it is not a 8C or 7C or 6C or 5C or

4C or 3C sequence and ∃i, j,k such that from Pk to Pk+1, out of the four

neighbors of bi j a) one switches in the direction opposite to its direction

of switching and three switch in the same direction, or b) two switch in

the same direction and two remain static.

A sequence is a 1C sequence if it is not a 8C or 7C or 6C or 5C or 4C

or 3C or 2C sequence and ∃i, j,k such that from Pk to Pk+1, out of the

four neighbors of bi j , three switch in the same direction and one remains

static.

A sequence is a 0C sequence if it is not a 8C or 7C or 6C or 5C or

4C or 3C or 2C or 1C sequence.

Note that for bi j which lie on the the edges of the mesh and have less

than four adjacent neighbors, the absent neighbor can be assumed to be

switching in the same direction as that of bi j so that it does not contribute

any load, and the definitions stated above hold.

C. Crosstalk Avoidance Code (CAC)

A kC (k = 0,1..8) Crosstalk Avoidance Code (CAC) for a n×n mesh

is a set of patterns such that no crosstalk sequence of (k+1)C or above

occurs on any TSV for a transition between any two patterns in the set.

If T kC(n) is the number of valid patterns for a kC CAC, then, number of

bits m which can be actually transmitted using this CAC is given by:-

m= ⌊log2(T kC(n))⌋ (1)

The overhead (i.e. the number of additional bits used per useful bit) of

using this kC CAC is defined as:-

Ovh= (n2−m)/m (2)

Before discussing CACs for different k, we define the following types

of patterns:-

8C: A pattern P is a 8C pattern if ∃i, j such that all the four adjacent

neighbors of bi j have a value which is the complement of its value.

6C: A pattern P is a 6C pattern if ∃i, j such that exactly three out of

the four adjacent neighbors of bi j have a value which is the complement

of its value.

4C: A pattern P is a 4C pattern if ∃i, j such that exactly two out of the

four adjacent neighbors of bi j have a value which is the complement of

its value.

2C: A pattern P is a 2C pattern if ∃i, j such that exactly one out of the

four adjacent neighbors of bi j have a value which is the complement of

its value.

Lemma 2.1: If a CAC CC does not have any pattern of the type 8C,

then it is a 6C CAC.

Proof: By the definition of an 8C crosstalk sequence, both patterns

Pk and Pk+1 should be of the type 8C. Since CC has no 8C patterns,

it cannot have an 8C crosstalk sequence. Similarly, by definition, a 7C

crosstalk sequence must have one of the patterns Pk or Pk+1 of the type

8C. Hence, CC can not have a 7C crosstalk sequence either. Thus, CC is

a 6C CAC.

By arguing along these lines, it can be shown that:-

1. If a CAC does not have any pattern of the type 8C and 6C, it is a 4C

CAC.

2. If a CAC does not have any pattern of the type 8C, 6C and 4C, it is a

2C CAC.

Calculating the exact overhead of 6C, 4C and 2C CACs for a n×n

mesh requires enumerating all the patterns and counting the valid ones,

which is computationally infeasible. Hence, in the following subsections,

we derive the exact overheads of 6C, 4C and 2C CACs for a 3×n mesh,

and then extend these results to derive the lower bounds on the overheads

of 6C, 4C and 2C CACs for a n×n mesh. A 3×n mesh is used as the

building block because the inductive equations for counting the number

of valid patterns are of lower complexity as compared to that of a 4×n or



5×n mesh, while still allowing the calculation of a tighter lower bound

as compared to using a 2×n mesh.

1) Number of 6C CAC Patterns for a 3×n Mesh (exact): In this

section, an exact formulation for the number of valid 6C bit patterns for

a 3×n mesh is derived. A 3×n mesh refers to a mesh with 3 rows and

n columns.The formulation is inductive, and derives expressions for valid

6C bit patterns for a 3×n mesh from the expressions for valid 6C bit

patterns for a 3×n−1 mesh. To simplify notation, when we say that a

bit in a pattern has 6C crosstalk, it implies that exactly three out of it’s

four West, North, East and South neighboring bits have a value which is

the complement of it’s bit value. The terminology for the expressions is

written below:-

n= number of columns in a 3×n mesh

corner = for a 3×n mesh, corner refers to the bits with the coordinates

(1, n) and (3, n)

T6(n) = total number of valid 6C patterns for a 3×n mesh

T 0C(n) = total number of valid 6C patterns in which bit (2, n) has a

crosstalk of 0C

T 2C(n) = total number of valid 6C patterns in which bit (2, n) has a

crosstalk of 2C

T 4C(n) = total number of valid 6C patterns in which bit (2, n) has a

crosstalk of 4C

T 6C(n) = total number of valid 6C patterns in which bit (2, n) has a

crosstalk of 6C

Based on the definitions, we know that:

T6(n) = T 0C(n)+T 2C(n)+T 4C(n)+T 6C(n) (3)

We now present the inductive step:

T 0C(n) = T 0C(n−1)+T 2C(n−1)+T 4C(n−1)+T 6C(n−1) (4)

T 2C(n) = 3T 0C(n−1)+3T 2C(n−1)+3T 4C(n−1)+2T 6C(n−1) (5)

T 4C(n) = 3T 0C(n−1)+3T 2C(n−1)+3T 4C(n−1)+T 6C(n−1) (6)

T 6C(n) = T 0C(n−1)+T 2C(n−1)+T 4C(n−1) (7)

Figure 2 illustrates the procedure for deriving the inductive equation for

T 6C(n). Figure 2(a) depicts how a T 0C(n−1) pattern is extended to create

a single T 6C(n) pattern. By definition of T 6C(n), bit (2, n) is 6C. Thus, if
the value of bit (2, n−1) is b, then the values of bits (1, n), (2, n) and (3,

n) should be b, b̄ and b respectively. Clearly, every T 0C(n−1) pattern can

be extended to create a single T 6C(n) pattern. A similar analysis can be

applied to create T 6C(n) patterns by extending T 2C(n−1) and T 4C(n−1)
patterns as well.

Figure 2(b) shows how a T 6C(n−1) pattern is extended to create a T 6C(n)
pattern. By definition of T 6C(n−1), bit (2, n−1) is 6C, and by definition

of T 6C(n), bit (2, n) is 6C as well. Clearly, this is an invalid condition,

since as a crosstalk of 6C on bit (2, n) will result in a crosstalk of 8C

on bit (2, n−1) as shown in Figure 2(b). Thus, no T 6C(n) pattern can be

created by extending a T 6C(n−1) pattern. A similar analysis can be done

to derive the inductive equations for T 0C(n), T 2C(n) and T 4C(n) as well.
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Fig. 2. Illustration of Inductive Derivation for T 6C(n) for a 6C CAC

2) Number of 4C CAC Patterns for a 3×n Mesh (exact): In this section,

we derive an exact formulation for the number of valid 4C bit patterns for

a 3×n mesh. The formulation is inductive, and derives expressions for

valid 4C bit patterns for a 3×n mesh from the expressions for valid 4C

bit patterns for a 3×n−1 mesh. To simplify notation, when we say that

a bit in a pattern has 4C crosstalk, it implies that exactly two out of it’s

four West, North, East and South neighboring bits have a value which is

the complement of it’s bit value. The terminology for the expressions is

written below:-

n= number of columns in a 3×n mesh

corner = for a 3×n mesh, corner refers to the bits with the coordinates

(1, n) and (3, n)

T4(n) = total number of valid 4C patterns for a 3×n mesh

T 0C(n) = total number of valid 4C patterns in which bit (2, n) has a

crosstalk of 0C

T 2C
v2,n 6=v2,n−1

(n) = total number of valid 4C patterns in which bit (2, n)

has a crosstalk of 2C and the value of bit (2, n) is the complement of the

value of bit (2, n−1)

T 2C
v2,n=v2,n−1,Ocorner

(n) = total number of valid 4C patterns in which bit

(2, n) has a crosstalk of 2C, the value of bit (2, n) is the same as that of

bit (2, n−1) and none of the corner bits has a crosstalk of 4C

T 2C
v2,n=v2,n−1,1corner

(n) = total number of valid 4C patterns in which bit

(2, n) has a crosstalk of 2C, the value of bit (2, n) is the same as that of

bit (2, n−1) and exactly one of the corner bits has a crosstalk of 4C

T 4C
v2,n=v2,n−1,Ocorner

(n) = total number of valid 4C patterns in which bit

(2, n) has a crosstalk of 4C, the value of bit (2, n) is the same as that of

bit (2, n−1) and none of the corner bits has a crosstalk of 4C

T 4C
v2,n=v2,n−1,1corner

(n) = total number of valid 4C patterns in which bit

(2, n) has a crosstalk of 4C, the value of bit (2, n) is the same as that of

bit (2, n−1) and exactly one of the corner bits has a crosstalk of 4C

T 4C
v2,n=v2,n−1,2corner

(n) = total number of valid 4C patterns in which bit

(2, n) has a crosstalk of 4C, the value of bit (2, n) is the same as that of

bit (2, n−1) and both of the corner bits have a crosstalk of 4C

T 4C
v2,n 6=v2,n−1,Ocorner

(n) = total number of valid 4C patterns in which bit

(2, n) has a crosstalk of 4C, the value of bit (2, n) is the complement of

the value of bit (2, n−1) and none of the corner bits has a crosstalk of

4C

T 4C
v2,n 6=v2,n−1,1corner

(n) = total number of valid 4C patterns in which bit

(2, n) has a crosstalk of 4C, the value of bit (2, n) is the complement of

the value of bit (2, n−1) and exactly one of the corner bits has a crosstalk

of 4C

Based on the definitions, we know that:

T4(n) = T 0C(n)+T 2C
v2,n 6=v2,n−1

(n)+T 2C
v2,n=v2,n−1,Ocorner

(n)

+T 2C
v2,n=v2,n−1,1corner

(n)+T 4C
v2,n=v2,n−1,Ocorner

(n)

+T 4C
v2,n=v2,n−1,1corner

(n)+T 4C
v2,n=v2,n−1,2corner

(n)

+T 4C
v2,n 6=v2,n−1,Ocorner

(n)+T 4C
v2,n 6=v2,n−1,1corner

(n) (8)

We now present the inductive step:

T 0C(n) = T 0C(n−1)+T 2C
v2,n−1 6=v2,n−2

(n−1)+T 2C
v2,n−1=v2,n−2,Ocorner

(n−1)

+T 4C
v2,n−1=v2,n−2,Ocorner

(n−1)+T 4C
v2,n−1 6=v2,n−2,Ocorner

(n−1) (9)

T 2C
v2,n 6=v2,n−1

(n) = T 0C(n−1)+T 2C
v2,n−1 6=v2,n−2

(n−1)

+T 2C
v2,n−1=v2,n−2,Ocorner

(n−1)+

T 2C
v2,n−1=v2,n−2,1corner

(n−1) (10)

T 2C
v2,n=v2,n−1,Ocorner

(n) = T 2C
v2,n−1=v2,n−2,Ocorner

(n−1)

+T 2C
v2,n−1=v2,n−2,1corner

(n−1)

+2T 4C
v2,n−1=v2,n−2,Ocorner

(n−1)

+T 4C
v2,n−1=v2,n−2,1corner

(n−1)

+T 4C
v2,n−1 6=v2,n−2,Ocorner

(n−1)

+T 4C
v2,n−1 6=v2,n−2,1corner

(n−1) (11)

T 2C
v2,n=v2,n−1,1corner

(n) = 2T 0C(n−1)+2T 2C
v2,n−1 6=v2,n−2

(n−1)

+T 2C
v2,n−1=v2,n−2,Ocorner

(n−1)

+T 4C
v2,n−1 6=v2,n−2,Ocorner

(n−1) (12)



T 4C
v2,n=v2,n−1,Ocorner

(n) = T 4C
v2,n−1=v2,n−2,Ocorner

(n−1)

+T 4C
v2,n−1 6=v2,n−2,1corner

(n−1)

+T 4C
v2,n−1=v2,n−2,2corner

(n−1) (13)

T 4C
v2,n=v2,n−1,1corner

(n) = T 2C
v2,n−1=v2,n−2,Ocorner

(n−1)

+T 2C
v2,n−1=v2,n−2,1corner

(n−1)

+T 4C
v2,n−1 6=v2,n−2,Ocorner

(n−1)

+T 4C
v2,n−1 6=v2,n−2,1corner

(n−1) (14)

T 4C
v2,n=v2,n−1,2corner

(n) = T 0C(n−1)+T 2C
v2,n−1 6=v2,n−2

(n−1) (15)

T 4C
v2,n=v2,n−1,Ocorner

(n) = 2T 0C(n−1)+2T 2C
v2,n−1 6=v2,n−2

(n−1)

+T 2C
v2,n−1=v2,n−2,Ocorner

(n−1)

+T 2C
v2,n−1=v2,n−2,1corner

(n−1) (16)

T 4C
v2,n=v2,n−1,1corner

(n) = T 2C
v2,n−1=v2,n−2,Ocorner

(n−1) (17)

We will now discuss the procedure for the inductive derivation of

T 0C(n). By definition, in a T 0C(n) pattern, the bit (2, n) is 0C. This

implies that all three of its neighboring bits (1, n), (3, n) and (2, n−1)

have the same value b. We go through each pattern for 3×n−1 mesh

one by one, and discuss how they can be extended to generate T 0C(n)
patterns for a 3×n mesh.

a) T 0C(n−1):- By definition, in a T 0C(n−1) pattern, all the bits in

the column n−1 have the same value. As illustrated in Figure 3(a), each

T 0C(n−1) pattern can be extended to generate a single T 0C(n) pattern.
b) T 2C

v2,n−1 6=v2,n−2
(n−1):- By definition, in a T 2C

v2,n−1 6=v2,n−2
(n−1) pattern,

bit (2, n−1) is 2C and the value of bit (2, n−2) (b̄) is the complement

of the value of bit (2, n−1) (b). This implies that bits (1, n−1) and

(3, n−1) have the value b. Hence, as illustrated in Figure 3(b), each

T 2C
v2,n−1 6=v2,n−2

(n−1) pattern can be extended to create a single T 0C(n)
pattern.

c) T 2C
v2,n−1=v2,n−2,Ocorner

(n−1):- By definition, in a

T 2C
v2,n−1=v2,n−2,Ocorner

(n−1) pattern, bit (2, n−1) is 2C, the value of

bit (2, n−2) (b) is same as that of bit (2, n−1) (b) and none of the bits

(1, n−1) and (3, n−1) is 4C. Clearly, as illustrated in Figure 3(c), each

T 2C
v2,n−1=v2,n−2,Ocorner

(n−1) pattern results in a single T 0C(n) pattern.

d) T 2C
v2,n−1=v2,n−2,1corner

(n−1):- The difference among

T 2C
v2,n−1=v2,n−2,1corner

(n−1) and T 2C
v2,n−1=v2,n−2,Ocorner

(n−1) patterns

discussed in c) is as follows. In T 2C
v2,n−1=v2,n−2,1corner

(n−1), one of

the bits (1, n−1) and (3, n−1) is 4C. This implies that no T 0C(n)
patterns can be generated from any of the T 2C

v2,n−1=v2,n−2,1corner
(n−1)

patterns, as illustrated in Figure 3(d), since this would result in 6C

crosstalk on (1, n−1) or (3, n−1). Hence, this term does not appear in

Equation 9.

e) T 4C
v2,n−1=v2,n−2,Ocorner

(n−1):- By definition, in a

T 4C
v2,n−1=v2,n−2,Ocorner

(n−1) pattern, bit (2, n−1) is 4C, the value of

bit (2, n−2) (b) is same as that of bit (2, n−1) (b), and none of the bits

(1, n−1) and (3, n−1) is 4C. Thus, similar to the T 2C
v2,n−1 6=v2,n−2

(n−1)

case, each T 4C
v2,n−1=v2,n−2,Ocorner

(n−1) pattern results in a single T 0C(n)
pattern, as shown in Figure 3(e) .

f) T 4C
v2,n−1=v2,n−2,1corner

(n−1):- A T 4C
v2,n−1=v2,n−2,1corner

(n−1) pattern is

same as a T 4C
v2,n−1=v2,n−2,Ocorner

(n−1) pattern except for the fact that one of

the bits (1, n−1) and (3, n−1) in a T 4C
v2,n−1=v2,n−2,1corner

(n−1) pattern is

4C. Clearly, this results in an invalid pattern, as illustrated in Figure 3(f),

since (1, n−1) or (3, n−1) becomes 6C. Hence, this term does not appear

in Equation 9.

g) T 4C
v2,n−1=v2,n−2,2corner

(n−1):- A T 4C
v2,n−1=v2,n−2,2corner

(n−1) pattern is

same as a T 4C
v2,n−1=v2,n−2,Ocorner

(n−1) pattern except that both of the bits (1,

n−1) and (3, n−1) in a T 4C
v2,n−1=v2,n−2,2corner

(n−1) pattern are 4C. Thus,

no T 0C(n) pattern can be generated from it, as shown in Figure 3(g).
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Fig. 3. Illustration of Inductive Derivation for T 2C
v2,n=v2,n−1,1corner

for a 4C CAC

h) T 4C
v2,n−1 6=v2,n−2,Ocorner

(n−1):- By definition, in a

T 4C
v2,n−1 6=v2,n−2,Ocorner

(n−1) pattern, bit(2, n−1) is 4C, the value of

bit(2, n−2) (b̄) is the complement of the value of bit (2, n−1) (b)

and none of the bits (1, n−1) and (3, n−1) is 4C. Clearly, each

T 4C
v2,n−1 6=v2,n−2,Ocorner

(n−1) pattern can be extended to generate a single

T 0C(n) pattern, as illustrated in Figure 3(h).

i) T 4C
v2,n−1 6=v2,n−2,1corner

(n−1):- In a T 4C
v2,n−1 6=v2,n−2,1corner

(n−1) pattern,

one of the bits (1, n−1) and (3, n−1) is 4C. This implies that no T 0C(n)
patterns can be generated from it, since one corner would become 6C after

the induction step. This is shown in Figure 3(i).

Based on the discussions in paragraph a) through i) above, Equation 9

is derived by adding the terms in paragraphs a), b), c), e) and h). The

same approach as discussed for T 0C(n) patterns can be used to derive

expressions for Equations 10 through 17.



3) Number of 2C CAC Patterns for a 3×n Mesh (exact): In this section,

we present an exact formulation for the number of valid 2C patterns for a

3×n mesh. The formulation is inductive, and derives expressions for valid

2C patterns for a 3×n mesh from the expressions for valid 2C patterns

for a 3×n−1 mesh. A bit in a bit pattern has 2C crosstalk, if exactly

one of it’s four West, North, East and South neighboring bits has a value

which is the complement of it’s bit value. The terminology we use is given

below:

n= number of columns in a 3×n mesh

corner = for a 3×n mesh, corner refers to the bits with the coordinates

(1, n) and (3, n)

T2(n) = total number of valid 2C patterns for a 3×n mesh

T 0C
0corner(n) = total number of valid 2C patterns in which bit (2, n) has

a crosstalk of 0C and none of the corner bits has a crosstalk of 2C

T 0C
1corner(n) = total number of valid 2C patterns in which bit (2, n) has

a crosstalk of 0C and only one of the two corner bits has a crosstalk of

2C

T 0C
2corner(n) = total number of valid 2C patterns in which bit (2, n) has

a crosstalk of 0C and both of the two corner bits have a crosstalk of 2C

T 2C
v2,n 6=v2,n−1

(n) = total number of valid 2C patterns in which bit (2, n)

has a crosstalk of 2C and the value of bit (2, n) is the complement of the

value of bit (2, n−1)

T 2C
v2,n=v2,n−1

(n) = total number of valid 2C patterns in which bit (2, n)

has a crosstalk of 2C and the value of bit (2, n) is same as that of bit (2,

n−1)

Based on the definitions, we know that:

T2(n)=T 0C
0corner(n)+T 0C

1corner(n)+T 0C
2corner(n)+T 2C

v2,n 6=v2,n−1
(n)+T 2C

v2,n=v2,n−1
(n)

(18)

We now present the inductive step:

T 0C
0corner(n) = T 0C

0corner(n−1)+T 2C
v2,n−1 6=v2,n−2

(n−1)+T 2C
v2,n−1=v2,n−2

(n−1)
(19)

T 0C
1corner(n) = 0 (20)

T 0C
2corner(n) = 0 (21)

T 2C
v2,n!=v2,n−1

(n) = T 0C
0corner(n−1) (22)

T 2C
v2,n=v2,n−1

(n) = T 2C
v2,n−1=v2,n−2

(n−1) (23)

Due to the space limitations, we do not discuss the derivation of

inductive Equations 19 through 23. A procedure similar to that used in

Sections II-C.1 and II-C.2 for deriving the inductive equations is used in

this case as well.

Having presented exact induction based formulae for 6C, 4C and 2C

crosstalk for a 3×n mesh of TSVs, we now present bounds for a n×n

mesh of TSVs, for 6C, 4C and 2C CACs.

4) Lower Bound on Overhead of a 6C CAC for a n×n Mesh: A lower

bound on the overhead of a 6C CAC for an n×n mesh can be calculated

from an upper bound on the number of 6C CAC patterns for the same

mesh, by using Equation 2. To calculate an upper bound on the number

of 6C CAC patterns for an n×n mesh, we note that an n×n mesh can be

generated by arranging (n/3) 3×n meshes one of the top of other. Clearly,

(n/3) times the number of 6C CAC patterns for a 3×n mesh upper bounds

the number of 6C CAC patterns for an n×n mesh as some patterns will

become invalid at the boundaries between any two adjacent 3×n meshes.

Thus, the exact overhead for a 3×n mesh is a lower bound the overhead

for an n×n mesh.

5) Lower Bound on Overhead of a 4C and 2C CAC for a n×n Mesh:

The argument presented above can applied in the case of 4C and 2C CAC

patterns for an n×n mesh, to deduce that the overhead of 4C and 2C

CAC patterns for a 3×n mesh are lower bounds on the overhead of 4C

and 2C CAC patterns for an n×n mesh respectively.

D. A Simple 6C CAC Coding Scheme for an n×n Mesh

The implementation of a CAC for an n×n mesh requires an encoder

at the transmitting end and a decoder at the receiving end. A simple-

minded way to build an encoder and decoder would be to enumerate all

the valid 6C patterns for an n×n mesh, and map every valid 6C pattern to

an input binary word. The mappings can be chosen in a manner so as to

minimize the circuit size. However, in general, the size of such an encoder

and decoder circuitry increases exponentially with increasing n [15]. Also,

enumerating all valid 6C patterns is feasible only for small values of n. To

the best of the author’s knowledge, there is no encoding/decoding scheme

for a 4C or 2C CAC for an n×n mesh, which results in an encoder/decoder

circuit size complexity that grows polynomially with n. This remains

an open problem. However, a polynomial complexity encoding/decoding

scheme for a 6C code can be implemented by observing that if every

column in an n×n mesh is encoded using a one dimensional 2C CAC,

then the resulting CAC for the n×n mesh is a 6C CAC. A coding scheme

for a 2C CAC for a one dimensional bus, based on the Fibonacci Number

System (FNS), was proposed in [15]. It results in an encoder and decoder

with a circuit size complexity which grows as n2. Figure 4 shows an

example of how the FNS can be used to encode a one dimensional bus to

ensure a maximum crosstalk of 2C. In the FNS based representation, the

weight of any bit is equal to the sum of the weights of two preceeding

bits. The binary represenation of 27 results in the bit with the weight of

4 experiencing a crosstalk of 4C, whereas the FNS based representation

results in a maximum crosstalk of 2C on any bit. Figure 4 presents the

binary (top) and FNS based representation (middle and bottom) of the

number 26. In the binary representation, the bit with weight 2 experiences

a crosstalk of 4C. The FNS based representation (Figure 4-middle) has a

crosstalk of 4C occuring on the bit with the weight of 5. However, this

FNS based representation can be transformed (Figure 4-bottom) into an

equivalent representation, which has a maximum crosstalk of 2C occurring

on any bit, by setting the two highlighted bits to 0 and the next higher bit

to 1.

By using the FNS based one dimensional 2C encoding along each of

the n columns of an n× n mesh, a coding scheme with the circuit size

complexity of n3 can be implemented. The asymptotic overhead for such

a coding scheme is 0.44 [15], but for n up to 20, the maximum overhead

for any n was found to be around 0.35 [15]. The encoder/decoder logic

area overhead for such a coding scheme, extrapolated to 22nm technology

from the 90nm technology area numbers published in [15], is 386µm2 for

a 10×10 mesh.
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1

1
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21
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Fig. 4. Fibonacci Number System Based Coding for a 2C CAC on a one
Dimensional Bus

III. EXPERIMENTAL RESULTS

We implemented the inductive equations for the number of 6C, 4C and

2C CAC patterns for a 3×n mesh, using n=2 as the base case. The base

case is derived by enumerating the patterns. Figure 5 a), b) and c) show

the plots of overhead versus n for 6C, 4C and 2C CAC for a 3×n mesh

respectively. The asymptotic overheads for 6C, 4C and 2C CAC are 3%,

33% and 335% respectively. It should be noted that these overheads are

lower bounds on the overhead of corresponding CACs on an n×n mesh.

The extremely high overhead of 335% for 2C CAC makes them unsuitable

for any practical use.

To validate our theoretical predictions that the worst delay through an

inverter (buffer) driving a TSV is proportional to the maximum coupling

capacitance, we extracted the parasitics for a 9× 9 mesh of TSVs by

using Raphael [19], and simulated the 8C, 6C, 4C, 2C and 0C crosstalk

sequences for the center TSV (victim) in the mesh by applying different

logic transitions to its adjacent East, West, North and South TSVs. All the

other TSVs are made to cause worst crosstalk on the victim by always

making them switch in a direction opposite to that of the victim. All

circuit simulations are done using HSPICE [16]. The coupling capacitance

values used are as reported in Table I. Each TSV is driven by a chain of

3 cascaded inverters. The input slew used is 10ps, and sizes of the first,

second and third inverter are 3×, 10× and 30× of the minimum size

respectively. These sizes are selected so as to get a maximum slewrate of
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Fig. 5. Overhead for 6C, 4C and 2C CACs for a 3×n mesh

100ps at the output of third inverter which drives the TSV. This allows us

to operate the 3D stack at ∼2GHz. 22nm Predictive Technology Model

(PTM) [17] is used for simulations. Table II presents the delay from the

input of third inverter to the far end of the TSV for different crosstalk

sequences. The 0C sequence corresponds to the case of no capacitive

coupling between the center TSV and its four adjacent neighbors. The

incremental delay (dxtalk) from the 0C to the 8C crosstalk sequence is

42.1ps. dxtalk represents the maximum increase in delay due to crosstalk

from the adjacent TSVs. Table III shows the incremental delays from 0C

to 2C, 2C to 4C, 4C to 6C and 6C to 8C crosstalk sequences, and their

contribution to dxtalk. Clearly, the results show that the increase in delay

due to crosstalk is proportional to the increase in coupling capacitance.

2C CAC patterns achieve the highest improvement in delay (the 0C CAC

is a degenerate code), albeit at a much higher overhead.

Crosstalk Delay (ps)

Sequence

8C 61.8

6C 51.9

4C 41.6

2C 30.2

0C 19.7

TABLE II

DELAYS FOR DIFFERENT CROSSTALK SEQUENCES

Transition Incremental % of dxtalk
Delay (ps)

6C CAC→8C CAC 13.0 23.4

4C CAC→6C CAC 14.5 24.4

2C CAC→4C CAC 15.8 27.0

0C CAC→2C CAC 9.5 24.8

TABLE III

INCREMENTAL DELAYS BETWEEN CACS

In practice, the complex design of today are heavily pipelined. In

case of such systems, the maximum TSV mesh data transfer rate is

significantly improved by using coding. In such pipelined systems, the

encoding/decoding delays are hidden in the additional pipelined stages,

provided the delays are smaller than the clock period.

Owing to the small resistance of a TSV and the fact that it mainly has

a capacitive nature, the inverters can be sized up further to reduce dxtalk at

the cost of power. However, this will require a longer, more power-hungry

chain of inverters, which may offset the delay improvement achieved.

Also, with decreasing TSV diameter and TSV-to-TSV spacing in future

technologies, the TSV resistance and coupling capacitance will increase,

resulting in a more distributed RC parasitic behavior of a TSV, making it

even more important to use coding on the 2D mesh of TSVs.

IV. CONCLUSIONS

In this paper, we present techniques to alleviate crosstalk in 3D VLSI.

The through-silicon vias (TSVs) used in 3D VLSI are significantly

capacitive, and therefore the switching of neighboring TSVs can degrade

the speed as well as signal integrity of a victim TSV. After quantifying

3D parasitics in this context, we classify crosstalk patterns as 8C, 7C, 6C,

... 0C patterns. We present inductive approaches to quantify the exact

overhead for 6C, 4C and 2C crosstalk avoidance codes (CAC) for a

3× n mesh arrangement of TSVs. We also provide lower bounds of the

overheads for an n× n mesh arrangement of TSVs. An efficient method

to realize the 6C CODECs is presented as well. Our results show that the

asymptotic overheads for 6C, 4C and 2C codes for a 3× n bus are 3%,

33% and 335% respectively. By means of HSPICE experiments conducted

on the 22nm technology node, we demonstrate that our coding based

improvements match with simulation results.
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