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Abstract— The developments in micro-nano-

electronics, biology and neuro-sciences make it possible to 
imagine a new world where vital signs can be monitored 
continuously, artificial organs can be implanted in human 
bodies and interfaces between the human brain and the 
environment can extend the capabilities of men thus 
making the dream of Dr. Frankenstein become true. This 
paper surveys some of the most innovative implantable 
devices and offers some perspectives on the ethical issues 
that come with the introduction of this technology. 

I. INTRODUCTION 
Advances in wireless sensors technology have had 

significant impact in improving, both from life-style and 
economics point of views, health care by allowing monitoring 
of and even administering drugs remotely to elder patients 
suffering of chronic diseases. Advanced signal processing 
algorithms and circuits allow monitoring of patients even when 
they are on-the-move. Ultra-low-power electronics enables a 
continued miniaturization of sensor systems, facilitating their 
integration in patch devices [1-6] that minimize the 
inconvenience of carrying sensors 24 hours a day. Wearable 
ECG patches monitor cardiac activity for over a week, 
allowing early detection of cardiovascular disorders. Wireless 
EEG headsets allow remote monitoring brain activity. A 
network of wearable sensors distributed over the body (body 
sensor network) measures physiological responses correlated to 
a particular mental or emotional state [6]. Recent research 
results on Brain-to-Machine Interfaces (BMI) go way beyond 
the state-of-the-art: the possibility of introducing electrodes 
inside the brain for monitoring single or for clusters of neurons 
on the cortex area are making possible to control a prosthetic 
device or to help patients who are affected by a stroke, 
Parkinson, Alzheimer and other degenerative syndromes. The 
possibility of investigating neuronal plasticity opens new vistas 
for curing drug and alcohol addictions and depressive 
syndromes.  

In this paper, we review some of the many relevant 
achievements in wireless implantable devices. The paper is 
organized as follows. In Section 2 multi-sensing patch (e.g., for 
cardiac beat monitoring and wireless EMG system) is 
described. In Section 3 an innovative solution for type-1 
diabetes, called artificial pancreas is presented. In Section 4, 
the brain machine interface system for prosthetic device control 
is discussed. In Section 5 a new trend in brain activity 
monitoring (optogenetics) is presented showing its possibilities 
and limitations. In Section 6 ethical issues surrounding the use 

of implantable devices are discussed and conclusions 
presented.  

II. SMART SKIN  

 
Fig. 1 EMG microelectrodes (Courtesy: Danilo De Marchi, IIT, 

Torino, Italy) 

An ultrathin 'electronic tattoo' that adheres to human skin to 
track muscle activity, heart rate and other vital signs has been 
recently proposed [4, 5]. The electrical patch, which bends, 
wrinkles and stretches with the mechanical properties of skin, 
has been demonstrated in [5]. The patch consists of an array of 
electronic components mounted on a thin, rubbery substrate 
that includes sensors, LED, transistors, radio frequency 
capacitors, wireless antennas and solar cells. The potential of 
this device in biomedical applications is large: the technology 
could one day help patients with muscular or neurological 
disorders communicate. It can even be used (as already shown 
in [5]) to control a video game. The next step will be to 
combine additional sensors on this substrate to use skin as an 
access to the body and to transmit data wirelessly to a 
transponder. Interesting examples of this trend are given by the 
wireless EMG (figure 1) proposed in [6] for exoskeleton 
control with space and medical applications and the heart beat 
monitoring patch proposed in [1-3]. 

III. ARTIFICIAL PANCREAS FOR TYPE-1 DIABETES 
In a patient with Type-1 diabetes, the body's immune 

system attacks and kills insulin, secreting beta cells and 
causing an increase in blood glucose. Over time, glucagon-
secreting alpha cells tend to fail causing people with Type 1 
diabetes to exhibit episodes of extremely low blood sugar [7-
9]. An artificial pancreas has been recently developed [10-12] 
that has the potential of 'closing the loop' on Type 1 diabetes. 
The artificial pancreas consists of an electrochemical sensor 
that monitors blood sugar levels continuously, an integrated 
circuit that mimics the unique electrical characteristics of alpha 
and beta cells in the human pancreas, and two small pumps 
worn on the body. The integrated circuit implements a control 



   

algorithm that has to mimic the very different behaviors of the 
two cell populations. An alpha cell tends to react to rapid 
electrical events (spikes), while the beta cell tends to react in 
bursts of voltage spikes, punctuated by low voltage silent 
periods that last for seconds or even minutes. When glucose 
concentrations rise, the beta cells remain in the high voltage 
burst state longer, secreting more insulin as a result [9, 10]. The 
“bionic pancreas” mimics this biological process by detecting 
the user's glucose level via a sensor every five minutes. If it 
reports a high level of glucose, the silicon beta cell generates a 
signal that drives a motor that pushes a syringe dispensing 
insulin into the tissue beneath the skin until the glucose reading 
at the sensor drops. If the sensor reports a low glucose value, 
the silicon alpha cell activates the second pump to administer 
glucagon instead.  

 
Fig. 2 Nanobiosensor macro assembly (courtesy Sandro Carrara, 

EPFL, Lausanne, CH) 
 

This approach differs from today's dominant method of 
delivering only insulin using a relatively simple control system. 
The artificial pancreas system eliminates the need for multiple 
insulin injections and administers the insulin in a more 
biologically faithful way. This approach reduces complications 
and alleviates the need for patients to worry about what they 
eat and drink. This system has been used in a wide range of 
implantable biosensor devices for monitoring and controlling 
drugs absorption [13-15] and delivering the drug right dose 
when needed. 

IV. MONITORING AND CONTROLLING THE BRAIN 
A challenging goal in neuroscience is reading out, or 

decoding, mental content from brain activity [16-19]. 
Functional magnetic resonance imaging (fMRI) studies have 
already decoded orientation [20] position [21] and object 
category [22] from activity in the visual cortex [23-26]. 
However, these studies typically used relatively simple stimuli 
(for example, gratings) or images drawn from fixed categories 
(for example, faces and houses), and decoding was based on 
previous measurements of brain activity evoked by the same 
stimuli.  

Today, brain mapping and interfaces with the external 
world are possible by reading the signals emitted by the cells in 
the brain. The target is to let the brain interact directly with 

prosthetic devices or with humanoid robots. The target of 
Brain-to-Machine Interfaces (BMI) is shown in Figure 3. The 
BMI for clinical applications should be implanted in the 
patient’s body as much as possible. Wireless telemetry offers a 
viable solution for this purpose. The prosthesis not only should 
have the functionality of the human arm in terms of power and 
accuracy of the actuators, but should also be equipped with the 
touch and position sensors from which signals can be 
transmitted back to the subject’s brain. BMIs are characterized 
according to whether they utilize invasive (i.e. intra-cranial) or 
non-invasive methods of electrophysiological recordings.  

 
 Fig. 3. Brain machine Interface possible applications  

A. Non-invasive monitoring system 
Non-invasive systems primarily exploit 

electroencephalograms (EEGs) to control computer cursors or 
other devices. This approach has proved useful for helping 
paralyzed or ‘locked in’ patients develop ways of 
communication with the external world [27]. However, despite 
having the great advantage of not exposing the patient to the 
risks of brain surgery, EEG-based techniques provide 
communication channels of limited capacity and spatial 
resolution. In fact brain electrical signal can be recorded from 
the scalp with a large number of electrodes - 16 to 256 -  with 
good temporal resolution, which can be composed with 
electromyographic (EMG) signals, even if this often requires 
extensive user training. Their typical transfer rate is currently 
5–25 bits [21, 22]. Although such a transfer rate might not be 
sufficient to control the movements of prosthetic arms or legs 
that have multiple degrees of freedom, from field data, it seems 
feasible to recognize EEG patterns related to particular 
voluntary intentions. Recently, adaptive algorithms that 
constantly update the classifier parameters during training have 
been implemented [26]. 

Several strategies have also been proposed to provide 
feedback to users of EEG-based BMIs. For instance, virtual-
reality systems can provide a realistic feedback that can be 
efficient for BMI training [28]. In a recent demonstration of 
this approach, subjects navigated through a virtual environment 
by imagining themselves walking [29]. 

In an effort to improve the resolution of brain potentials 
monitored by the BMIs, more invasive recording methods, 
such as electrocorticograms (ECoGs) recorded by subdural 
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electrodes, have been introduced. ECoGs sample neuronal 
activity from smaller cortical areas than conventional EEGs. In 
addition, they contain higher-frequency gamma rhythms (>30 
Hz). Consequently, ECoG-based BMIs are expected to have 
better accuracy and shorter training times than BMIs based on 
EEGs [30]. 

 
Fig. 4. ECoG array recordings of neuronal signals at frequencies up to ~300 

Hz from the cortical surface of the brain 
 

EEG-based BMIs have been implemented as solutions for 
patients suffering from various degrees of paralysis. These 
BMIs (in the case of patients with advanced amyotrophic 
lateral sclerosis) enable control of computer cursors, which the 
patients use to communicate with the external world or to 
indicate their intentions. The first successful and most well-
received application of this approach was based on the 
utilization of slow cortical potentials to control a computer-
aided spelling system [30, 31]. BMIs based on mu and beta 
rhythms have also been tested in severely paralyzed people 
[32]. One study reported that a tetraplegic patient, aided by a 
BMI that detected beta waves in his sensorimotor cortex and 
activated a functional electrical stimulation device, learned to 
grasp objects using his paralyzed hand [33]. 

In addition to using EEGs, imaging techniques such as 
fMRI, have been explored as a new source of brain-derived 
signals to drive BMIs [34]. Although fMRI-based BMIs are not 
suitable for everyday use and suffer from temporal delays of 
several seconds, they have good spatial resolution and, most 
importantly, can sample the activity of deep brain structures. 
Recently, fMRI was used to measure brain activation during 
the operation of a BCI based on slow cortical potentials [35]. 
Myoelectric systems that make use of voluntary activations of 
unaffected muscles, in partially paralyzed and amputees 
subjects [36–39], and use these signals to control limb 
prostheses and exoskeletons, offer an alternative to the existing 
non-invasive BMIs. Currently, these systems are more practical 
for everyday situations than EEG based BMIs [36].  

In summary, paralyzed patients can re-acquire basic forms 
of communication and motor control using EEG-based 
systems. Yet motor recovery, obtained using these systems, has 
been limited. No clear breakthrough that could significantly 
enhance the power of EEG-based BMIs has been reported in 
the literature [36]. This by no means reduces the clinical utility 
of these systems. Some of them have improved the quality of 
life of patients, such as the BCI for spelling [37]. But if the 
goal of a BMI is to restore movements with multiple degrees of 
freedom through the control of an artificial prosthesis, the 
message from published evidence is clear: this task will require 

recording of high resolution signals from the brain, and this can 
be done using invasive approaches [38-40]. 

B. Invasive monitoring system 
Invasive BMI approaches are based on recordings from 

ensembles of single brain cells (also known as single units) or 
on the activity of multiple neurons (also known as multi-units) 
[41-46]. These approaches have their roots in the pioneering 
studies conducted by Fetz and colleagues in the 1960s and 
1970s [47, 48]. In these experiments, monkeys learned to 
control the activity of their cortical neurons voluntarily, aided 
by biofeedback indicating the firing rate of single neurons. A 
few years after these experiments, Schmidt raised the 
possibility that voluntary motor commands could be extracted 
from raw cortical neural activity and used to control a 
prosthetic device designed to restore motor functions in 
severely paralyzed patients [49]. Largely owing to technical 
difficulties associated with obtaining the needed cortical 
signals and implementing real-time interfaces quickly enough, 
thorough experimental testing of Schmidt’s proposition took 
almost two decades. These bottlenecks were overcome because 
of a series of experimental and technological breakthroughs 
that led to a new electrophysiological methodology for chronic, 
multi-site, multi-electrode recordings [50–52]. A BMI 
approach that relies on long-term recordings from large 
populations of neurons (100–400 units) evolved from 
experiments carried out in 1995 [52]. After the introduction of 
this approach, a series of studies demonstrated that neuronal 
readout of tactile stimuli could be accomplished using pattern-
recognition algorithms [51,52]. 

 
Fig. 5. Rhesus monkey brain and neuronal cortical electrodes  

 
These developments paved the way to the first experiment 

in which neuronal population activity recorded in rats enacted 
movements of a robotic device that had a single degree of 
freedom. A similar BMI approach was shown to work on 
rhesus monkeys [53–54] (Figure 5). As a result of these 
experimental efforts, in less than six years several laboratories 
reported BMIs that reproduced primate arm reaching [54] and 
the combination of reaching and grasping movements, using 
either computer cursors or robotic manipulators as actuators. 
There are several important differences that distinguish these 
BMIs. These include: the number of cortical implants (e.g. uni-
site or multi-site recordings); the cortical location of implants 
(e.g. frontal or parietal cortex, or both); the type of neural 
signal recorded (local field potentials versus single-unit or 
multi-unit signals); and the size of the neural sample. With the 
exception of the ones described in [55], all BMIs tested in 
monkeys have relied on single cortical site recordings either of 
local field potentials or of small samples (<30) of neurons or 



   

multi-units. Most of these small-sample, single-area BMIs 
utilized neural signals recorded in the primary motor cortex, 
although one group has focused on BMIs that processed neural 
signals recorded in the posterior parietal cortex [64]. In [56] a 
BMI strategy was recently implemented based on single-unit 
recordings made during intra-operative placement of deep-
brain stimulators in Parkinson patients [56]. 

 
  

Fig. 6 Experimental setup and stability of ensemble recordings. (A) 
Schematics for manual control (MC) and brain control (BC). (B) Stability of 
putative single units across multiple days.C) Stability of firing properties 
across time. (courtesy: Josè Carmena UC Berkeley US) 

 
Extracting motor control signals from the firing patterns of 

populations of neurons and using these control signals to 
reproduce motor behaviors in artificial actuators are the two 
key operations that a clinically viable BMI should perform 
flawlessly [53, 54]. To be accepted by patients, BMI devices 
will also have to act in the same way and feel the same as the 
subjects’ own limbs. Recent findings suggest that this task 
might be accomplished by creating conditions under which the 
brain undergoes experience-dependent plasticity and 
assimilates the prosthetic limb as if it were part of the subject’s 
own body. Until recently, such plasticity was achieved using 
visual feedback (Figure 6 [53]). However, a more efficient way 
to assimilate the prosthetic limb in the brain representation 
could be to use multiple artificial feedback signals, derived 
from pressure and position sensors placed on the prosthetic 
limb. These feedback signals would effectively train the brain 
to incorporate the properties of the artificial limb into the 
tuning characteristic of neurons located in cortical and 
subcortical areas that maintain representations of the subject’s 
body. Such plasticity will result in sensory and motor areas of 
the brain representing the prosthetic device. 

V. OPTOGENETICS 
To improve understanding of psychiatric and neurological 

disorders, it is important to identify which neural circuits may 
be responsible, to pinpoint the precise nature of the causally 
important aberrations in these circuits and to modulate circuit 
and behavioral dysfunction with precise and specific 
interventions. However, such a deep, circuit-level 
understanding of neuropsychiatric disorders, or indeed even of 
normal neural circuit function, has been challenging for 
traditional methods. The complexity of neural circuitry has 

historically precluded the use of genetically and temporally 
precise manipulations to probe detailed mechanisms of 
function and dysfunction.  

Optogenetics [57-59] involves the use of microbial opsins, 
or related tools, that can be activated by illumination to 
manipulate cells with high specificity and temporal precision 
even within intact tissue or live animals. Optogenetic 
approaches have been used to dissect neural circuits in animals 
to identify symptoms that are relevant to fear, anxiety, 
depression, schizophrenia, addiction, social dysfunction, 
Parkinson disease and epilepsy. Successful probing of complex 
diseases in this way depends on the validity of using animals 
used to identify the crucial circuit elements and activity 
patterns that are involved in each cluster of symptoms, and the 
precision and efficiency of interventions designed to selectively 
target these elements or patterns. However, several limitations, 
caveats and considerations are in order. A very important 
limitation of optogenetics is the production of heat with 
illumination. Heated neurons may not only alter their activity 
in a nonspecific manner but may also be detrimental to cell 
health. Appropriate controls, as well as assessment of light 
source stability and performance, must be carefully and 
frequently examined to ensure precise and reliable light output 
and interpretation of light effects [59].  

Another limitation of optogenetics is the potential for 
toxicity at very high expression levels or long-term expression. 
With so many variables, it is important to carefully validate 
with imaging, physiology, or c-FOS (protein encoded for by 
the FOS gene) staining that neurons are being manipulated 
with the strength and specificity intended before interpreting 
any experimental results. 

VI. CONCLUSIONS AND ETHICAL CONSIDERATIONS 
The field of micro-devices and algorithms for monitoring 

and controlling body functions is exciting and wonderfully rich 
of challenging scientific and engineering problems. Results can 
only be achieved by leveraging multiple disciplines ranging 
from medicine, to biology, from chemistry to material science, 
from computer science to electronics and mechanical 
engineering. We do believe that this field will grow to become 
a major scientific and economic sector in the years to come.  

However, there are deep ethical issues that need to be 
addressed. The question will certainly loom that if functions 
can be restored for those in need, is it right to use these 
technologies to enhance the abilities of healthy individuals as 
well? It is essential that devices are safe to use and pose few, if 
any, risks to the individual counter-balanced with benefit. But 
the ethical problems that these technologies pose are not vastly 
different from those presented by existing therapies such as 
antidepressants. In brain-controlled prosthetic devices, signals 
from the brain are decoded by a computer that sits in the 
device. These signals are then used to predict what a user 
intends to do. Invariably, predictions will sometimes fail. Who 
is responsible for involuntary acts? This question was already 
considered years ago, when the automatic pilot was introduced 
in airplanes but today becomes more pressing as the host is the 
human brain. In [60] other possible questions are underlined: is 
it the fault of the computer or the user? Will a user need some 
kind of “license” and “obligatory insurance” to operate 



   

prosthesis? What if machines change the brain?  To the 
philosophical question: "What is a man?" Aristotle answered: 
"Man is a rational animal." If our brain is driven by a decoder 
that takes for us decisions on the base of an optimal searching 
algorithm, are we still men or are we robots then? The classic 
approach of biomedical ethics is to weigh the benefits for the 
patient against the risk of the intervention and to respect the 
patient's autonomous decisions [61]. This should also hold for 
the proposed expansion of deep brain stimulation [DBS] to 
treat patients with psychiatric disorders [62].  

What is enhancement and what is treatment depends on 
defining “normality” and “disease”, and this is notoriously 
difficult. In [60] several opinions on this issue are considered. 
Christopher Boorse, a philosopher at the University of 
Delaware, defines disease as a statistical deviation from 
"species-typical functioning" [63]. As deafness is measurably 
different from the norm, it is thus considered a disease. This 
definition has been influential and has been used as a criterion 
for allocation of medical resources [64]. From this perspective, 
for instance, the intended medical application of cochlear 
implants seems ethically unproblematic. Nevertheless, Anita 
Silvers, a philosopher at San Francisco State University and a 
disability scholar and activist, has described such treatments as 
a "tyranny of the normal" [65], designed to adjust people who 
are deaf to a world designed by the hearing, ultimately 
implying the inferiority of deafness [65]. Although many have 
expressed excitement at the expanded development and testing 
of brain–machine interface devices to enhance otherwise 
deficient abilities, Silvers suspects that prostheses could be 
used for a "policy of normalizing". These serious concerns 
should not prevent further research on brain–machine 
interfaces. Still, whether brain-technology applications are a 
proper option remains dependent on technological 
developments and on addressing important safety issues. One 
issue that is perhaps more pressing is how to ensure that risks 
are minimized during research. Animal experimentation, where 
allowed (i.e. in Europe is not allowed if not under conditions 
established by EU regulation), will probably not address the 
full extent of psychological and neurological effects that 
implantable brain–machine interfaces could have [66-70]. 
Research on human subjects will be needed, but testing 
neuronal motor prostheses in healthy people is ethically 
unjustifiable because of the risk of bleeding, swelling, 
inflammation and other, unknown, long-term effects. People 
with paralysis, who might benefit most from this research, are 
also not the most appropriate research subjects. Because of the 
very limited medical possibilities and often severe disabilities, 
such individuals may be vulnerable to taking on undue risk 
[60]. Brain–machine interfaces promise therapeutic benefit and 
should be pursued. The technologies pose ethical challenges, 
but these are conceptually similar to those that bioethicists have 
addressed for other therapies. The limit is the respect of the 
human dignity as already underlined, by Immanuel Kant in 
[71]: “Act in such a way that you use the humanity in your own 
person and in the person of any third party at all times as an 
end in itself and never simply as a means to an end”. In this 
common objective, ethics and neuroscience research can 
cooperate for the treatment of chronic disease. 
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