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Abstract—We present the novel concept of Pipelets:
self-organizing stages of software pipelines that monitor
their computational demands and communication pat-
terns and interact to optimize the performance of the
application they belong to. They enable dynamic task
remapping and exploit application-specific properties.
Our experiments show that they improve performance
by up to 31.2% compared to state-of-the-art when
resource demands of applications alter at runtime as
is the case for many complex applications.

I. Introduction and Novel Contributions
Current and future computing systems comprise a rapidly
increasing number of cores on a single chip to reap perfor-
mance benefits from parallel processing. This trend, however,
makes it difficult to efficiently employ all cores and the
communication infrastructure between them (from now on,
we refer to both as resources) as the performance is largely
affected by how tasks are mapped to cores [17], [21]: When
task mapping is decided upon at compile-time, it can hardly
efficiently cope with situations where the usage of resources is
hard to predict in the first place (as argued e.g. in [10], [11],
[19]). Thus, dynamic task mapping maps tasks at runtime
based on observed resource usage [6], [8]. Such approaches
may provide good performance when the resource demands
of tasks remain mainly unaltered at runtime. However, if
they do significantly alter and if that cannot be predicted,
performance penalties are most likely a consequence (Sec-
tion II discusses an example). To account for such scenarios,
remapping tasks, i.e. transferring the execution of a task
from one core to another (e.g. [15]), is a viable solution to
balance the resource demands at runtime [5], [19]. However,
the problem of finding (and adapting) task mappings is NP-
complete, which makes (potentially frequent) computations of
mappings at runtime challenging. Consequently, a centralized
controlling instance that decides about all task remappings
may suffer from high computational overhead. Additionally,
the communication overhead for monitoring the system state
(i.e. the usage of resources and the resource demands of tasks)
may become infeasible in systems with many cores.
A possible, scalable alternative are distributed approaches
that focus on local decisions rather than on the entire system.
However, it must be carefully chosen which observations are
used, and balancing computation might impair communica-
tion (and vice versa) in systems that run multiple complex
applications with potentially heavily-communicating tasks
(i.e. the time required for their communication is significant).

To adress this issue, we present Pipelets as self-organizing
stages of software pipelines. Software pipelines are a well-
established means to achieve parallelism for a large class of
applications (e.g. for stream-processing applications). They
comprise stages that repeatedly compute iterations, where the
output of one stage forms the input of its direct successor.
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Fig. 1. Relationship of Pipelets to Applications, Tasks and Stages

Each stage is a task that may be mapped to an individual
core. Pipelets interact in order to achieve self-organization,
which is a powerful paradigm for managing complex sys-
tems [12] for the following reasons: (1) it allows for distributed
decisions, (2) it shifts the responsibility of observing the rel-
evant system state to the involved Pipelets, allowing them to
exploit application knowledge, and (3) it therefore limits the
computational and communication overhead The concept of
self-organization is successfully employed in many instances,
[14] presents a comprehensive survey.
Definition of Pipelets: A Pipelet is a task forming one stage
of a software pipeline (see Figure 1) with the properties:

• It can remap between cores at runtime using existing
task remapping mechanisms (Section IV-C and IV-D).

• It interacts with other Pipelets (Section IV-E).
• Pipelets aim at optimizing their application’s perfor-

mance when an established task mapping becomes in-
efficient (Section IV-C).

Pipelets can be created manually or by compilers extracting
software pipelines from existing sequential programs, e.g. [7],
[20], [23]. For the rest of this paper, we assume that all cores
are connected via a Network-on-Chip.

Our novel contributions are:
1) We show how the new concept of Pipelets can adapt task

mappings at runtime.
2) We demonstrate how Pipelets exploit application knowl-

edge to estimate the impact of task remapping.
3) We show how Pipelets achieve scalability through self-

organization.

II. Motivation
The following example of a pipelined visual object tracking
application (8 stages) shows how altering resource demands
caused by adding multiple tracked objects to the input scene
may degrade the performance of a system and how task

Task T0 T1 T2 

A 24.3 35.3 35.3 

B 11.7 54.3 54.3 

C 13.2 31.3 31.3 

D 22.9 20.8 20.8 

E 26.2 11.7 11.7 

F 23.8 13.2 13.2 

G 26.1 23.1 23.1 

H 49.3 21.2 21.2 

T0 T1 T2 

Core 0 99% 100% 96% 

Core 1 98% 27% 92% 

Core 2  100% 30% 85% 

Core 3 99% 18% 100% 

Avg. 99% 44% 93% 

(a) Iteration runtime [ms] (b) CPU utilization 

T0 T1 T2 

20.04 8.27 17.70 

(c) Application  

throughput [1/s] 

Ti=0,1,2: Point of time 

Table 1. Characteristics of an exemplary scenario
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Fig. 2. Altering resource demands and resulting performance

remapping can improve this: Figure 2 shows this in a 4-
core system. At T1, the altering resource demands lead to a
computational bottleneck on ’Core 0’ as the runtime stage B
increases largely. Table 1 contains their detailed requirements
and performance. The bottleneck arises because the initial
mapping (that a provided good load balance at T0) maps
stages A, B and C to this core, and cores 1, 2 and 3
are now under-utilized. Therefore, the established mapping
becomes inefficient. This problem may arise in turn for altered
communication demands that may lead to congestions in the
communication infrastructure. A possible solution is to remap
the stages as done at T2. This re-balances the computational
load and increases the throughput to 17.7 iterations/second
(which is slower than at T0 as the total resource demands
increased from 197 ms to 210 ms). In the following, we discuss
why the state of the art does not provide efficient means to
address these and similar scenarios.

III. Related Work
The related work can be grouped into dynamic task mapping
(finding mapping based on resource usage) and dynamic task
remapping (adapting them for altering resource demands).

Dynamic task mapping: contention-aware application map-
ping is proposed by [9] using offline profiling to find a
number of near-optimal static mappings to choose from
at runtime. The resource demands of tasks are assumed
to remain unaltered at runtime. [10] presents distributed
application mapping for Network-on-Chip architectures using
task remapping in order to serve mapping requests. It aims at
reducing the computational efforts to calculate task mapping
and of the communication overhead required for collecting
the system state. It does not aim at balancing the load when
resource demands of tasks alter at runtime.

Dynamic task remapping: AIAC [4] balances the load of
grid computing systems at runtime by exchanging workload
of tasks with their nearest neighbor until the load is balanced.
This can be applied to many-core systems with distributed
memories by exchanging workload through remapping tasks
between cores. However, AIAC does not target heavily com-

municating tasks and thus does not consider inter-task com-
munication, leading to inferior throughput when applied to
such applications. [17] and [21] present runtime load balancing
for shared-memory architectures and are thus not well-suited
for architectures with distributed memories. [11] remaps
workload to nearest neighbors, but targets at optimizing
thermal characteristics and not the system performance. [22]
uses load balancing coordinators to carry out task remapping,
but explicitly states that it cannot fully answer which tasks
should be remapped.

To summarize, the state of the art does not sufficiently
address the scenario in many-core systems when resource
demands alter significantly at runtime: in this scenario,
dynamic task mapping can hardly provide a balanced load,
and existing task remapping techniques do not take inter-
task communication into account or they assume shared
memories.

IV. Pipelets
This sections details how Pipelets adapt task mappings

using the concept of self-organization to avoid scalability
issues of centralized approaches. Figure 3 shows a schematic
view. The means of self-organization are:

• Bottleneck Relief (Section IV-C) to improve the through-
put when a bottleneck is detected, and

• Contraction (Section IV-D) to reduce the communica-
tion distance (i.e. number of hops) between them to
reduce the bandwidth requirements.

Pipelets interact (Section IV-E) as they do not dispose of
information about the (global) system state. In the following,
we detail how Pipelets achieve self-organization.

A. Overview and Problem Definition
Pipelets exploit properties of software pipelines to achieve

self-organization. To achieve self-organization, a Pipelet must
be able to (a) find out if it limits the throughput of the
application it belongs to, and to (b) remap in a way that
improves the throughput by balancing the load. Therefore, a
Pipelet must be able to estimate the impact of task remapping
so it can choose a remapping that improves the throughput
of its application without impairing the throughput of other
applications. Both (a) and (b) can be accomplished when
Pipelets exploit the following properties of software pipelines:
(1) Each stage repeats iterations that wait for and receive

input data, compute, and then pass the output to their
successor as soon as this is ready to receive it.

(2) The slowest stage of a pipeline limits its throughput (i.e.
it causes a bottleneck).

(3) Preceding and succeeding stages of a software pipeline
communicate once per iteration, passing the output data
from the predecessor as the input data of its direct
successor. There is no further communication.

(4) The peak memory requirement of pipeline stages is often
during computation because many buffers are freed after
passing the output to the successor.

Pipelets exploit these properties in the following way: The
strict temporal execution pattern of (1) enables Pipelets to
measure the different time phases (by repeatedly querying the
system time) that comprise their iteration: Figure 3 illustrates
how we denote TW R and TRecv as the time required for
waiting for and receiving the input data, while TC denotes
the time consumed by computation. Likewise, TW S and TSend

denote the times for waiting for the successor and sending
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Fig. 3. Overview of Pipelet self-organization

data to it. Algorithm 1 illustrates the main loop (including
measurements of its time phases) of a Pipelet.

As the slowest stage of an application limits its throughput
(2), other stages need to wait. Consequently, for an applica-
tion A where PA denotes the set of its Pipelets, we define λA

as the time spent for each iteration:

∀p, q ∈ PA : T p
W R + T p

Recv + T p
C + T p

W S + T p
Send =

T q
W R + T q

Recv + T q
C + T q

W S + T q
Send = λA (1)

The one-to-one communication restriction of (3) reduces the
potential impact of the remapping a Pipelet can have on the
throughput of others. Only its predecessor, successor, and
Pipelets that are mapped to the target core may be impacted.

Additionally, we define the slack of a Pipelet p as the time
it needs to wait for its predecessor and successor:

slackp = T p
W R + T p

W S (2)

The Pipelet that causes a bottleneck has a slack of 0. The
throughput FA of an application A is defined as:

FA = 1
λA

(3)

To increase FA, the Pipelet bA causing the bottleneck of A
tries to reduce T b

Recv, T b
C , or T b

Send to decrease λA. The rest
of this paper discusses in which way this can be achieved.
(4) implies that the task context (program code, stack,
registers and heap) of a Pipelet is smallest directly after
finishing an iteration (as it may deallocate temporary buffers
required for computation). To obtain low remapping latencies,
Pipelets remap after a completed iteration.

Figure 3 shows how Pipelets perform their main loop, i.e.
an iteration and the steps required for self-organization: After
the output data has been sent to the successor, a Pipelet
evaluates its slack to see if it causes a bottleneck. If so, it
tries to resolve it as detailed in Section IV-C.

B. Components
We employ two distinct components: Pipelets and core

guards. On each core, a core guard task is responsible
to (a) virtualize communication between Pipelets, (b) pro-
vide CPU type and load, bandwidth usage, and a list of
mapped Pipelets, and for (c) helping Pipelets remap to
its core.Virtualized communication between Pipelets enables
Pipelet-to-Pipelet communication in an MPI-like manner
even when multiple Pipelets are mapped to the same (receiv-
ing) core and without knowing a recipient’s physical location.

Figure 4 shows how Pipelets communicate via core guards,
implemented within the user-level and kernel-level on Intel’s
Single-Chip Cloud Computer (SCC) that runs a single-core

Algorithm 1 Pipelet main loop with time measurements
1: while application running do
2: // the first Pipelet as no predecessor
3: if Has Predecessor then
4: t0 = GetTime()
5: WaitForData( P redecessor )
6: t1 = GetTime()
7: TW R = t1 - t0
8: inputData = ReceiveData( P redecessor )
9: t2 = GetTime()

10: TRecv = t2 - t1
11: end if
12: t2 = GetTime()
13: // Compute performs the computation of the Pipelet
14: outputData = Compute( inputData )
15: t3 = GetTime()
16: TC = t3 - t2
17: // the last Pipelet has no successor
18: if Has Successor then
19: WaitForRecipient( Successor )
20: t4 = GetTime()
21: TW S = t4 - t3
22: SendData( Successor, outputData )
23: t5 = GetTime()
24: TSend = t5 - t4
25: end if
26: Interact with other Pipelets (Section IV-E)
27: end while

Linux (Ubuntu 10.4 LTS) on each individual core. Core
guards (and Pipelets) can be implemented on most architec-
tures, operating systems, and are not tied to the SCC.

C. Bottleneck Relief
If a Pipelet p of application A causes a bottleneck, it may

increase the throughput FA by decreasing TRecv, TC or TSend,
thus decreasing λA for all Pipelets p ∈ PA. Therefore, it asks
other Pipelets that are mapped to its core to remap in order
to free resources. These Pipelets are in turn responsible to
find possible target cores. If remapping other Pipelets would
decrease (any of) their application’s throughputs beyond the
gain for A, this option is discarded and b itself tries to remap
to a different core in its neighborhood, which is a set of cores
User-Level: Pipelets commu-
nicate via core guards and are 
agnostic to the actual physical 
location of their successor. 
Kernel-Level: Core guards 
maintain mapping informat-
ion and establish connections 
if required or deliver data 
locally for Pipelets mapped to 
the same core. Comm. from Pipelet 1 to 2 Comm. from Pipelet 2 to 3 

Pipelet 3 

Core Guard 

Communication Library 

Core Guard 

Pipelet 1 

Core A Core B 

Communication Library 

Pipelet 2 

Fig. 4. Pipelets communicate via so-called core guards
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Fig. 5. Interaction between Pipelets in several scenarios

physically closest to it (the size of the neighborhood is a
design parameter). Small neighborhood sizes might increase
the number of remappings (as it limits the search space),
while large neighborhoods increase the overhead. In our
experiments, we find a neighborhood size of 12 cores provides
best results. If a Pipelet is not responsible for a bottleneck,
it tries to contract as explained below in Section IV-D.

D. Contraction
Pipelets that do not cause a bottleneck contract, i.e.

they remap to the spatial proximity (neighborhood) of their
predecessor to reduce communication volumes if this does not
impair throughput. This is is desirable because it may poten-
tially increase the performance of other Pipelets that require
higher bandwidths. Contraction is performed as follows: every
iteration, each Pipelet pi evaluates Dpi = Dpi,pi−1 +Dpi,pi+1 ,
which denotes the sum of the distance (e.g. the hop count,
i.e. the number of hops between two cores.) to its prede-
cessor and to its successor. It receives Ip∗ that denotes the
improvement (reduction) in D for one of its predecessors p∗
(the first stage does not receive a value), and estimates the
impact on its throughput for every possible remapping to
a core in its neighborhood that would decrease Dp without
impacting any application’s throughput. If it finds that its
decrease in Dp exceeds Ip∗, it updates this value and sets
p∗ to p. Next, it forwards Ip∗ to its successor. The Pipelet
without a successor informs the Pipelet p∗ with the largest
positive improvement Ip∗ > 0 to perform the corresponding
remapping. No contraction is carried out in this iteration if a
Pipelet remaps to relieve a bottleneck.

E. Interactions
Pipelets interact to achieve self-organization. Figure 5

shows a sequence diagram of the interactions for a Pipelet
pi (pi+1 is its successor, while o, r, and s are other Pipelets
that may but need not belong to the same application).

Pipelets interact in three cases: 1) pi interacts with pi+1 to
send the output data. Secondly, if pi is not causing a bottle-
neck, it interacts with other Pipelets in its neighborhood (in
this example o, r and s) to perform contraction. Therefore,

Algorithm 2 Runtime estimation
Input:

Dir : boolean Direction: to or away from core
R = {CP U, Resource change tuple

BWin, BWout}
Definitions:

Hp
t Heterogeneity factor for Pipelet p on core type t

tnew Type of new (evaluated) core
told Type of old (current) core

Output:
Ip Performance improvement for p (can be negative)
1: if dir == away from core then
2: R = −1 ∗ R // Invert requirements (free resources)
3: end if
4: T̃C = TC ∗ (1 + RCP U ) ∗Hp

tnew
/Hp

told

5: T̃Recv = TRecv ∗ (1 + RBWin
)

6: T̃Send = TSend ∗ (1 + RBWout
)

7: return Ip = TRecv − T̃Recv + TC − T̃C + TSend − T̃Send

it requests runtime estimates for possible contraction remap-
pings. Thirdly, if pi causes a bottleneck, it interacts with the
other Pipelets in its neighborhood to estimate which of the
possible remappings to relieve the bottleneck (as described in
Section IV-C) offers the best improvement. Pipelets interact
with core guards, a helper task detailed below, to receive core
information (such as CPU load and bandwidth availability
and a list of mapped Pipelets).

To summarize: interactions take place between Pipelets
in spatial (i.e. neighborhood) and temporal (i.e. predeces-
sor/successor relationship) proximity. This limitation induces
local, sub-optimal decisions, which trades scalability for a
loss of optimality. While Pipelets cannot provide globally
optimal mapping at runtime, the experimental results show
that Pipelets achieve a near-optimal remapping.

F. Runtime Estimation
Algorithm 2 shows how each Pipelet estimates the impact

of a potential remapping on TC , TRecv, and TSend: The
input parameters are the measured resource demands of the
Pipelet and the direction of the mapping (i.e. either mapping
to or away from the a core, i.e. requiring or giving up
resources). Timing estimations are defined as the product of
the measured timings (TC , TRecv and TSend) and the relative
changes in resource availability (as required or given up by
the Pipelet that is potentially remapped). When TRecv or TC

increase, the slack decreases until it reaches 0.

G. Handling Heterogeneity of Cores
Heterogeneity (e.g. different extensions, performance,
voltage/frequency levels, etc.) can increase performance and
efficiency over homogeneous architectures [16]. Pipelets can
take advantage of this by introducing a heterogeneity factor
Ht

p that denotes how TC of a Pipelet p depends on the core
type t (based on offline profiling). A value of ∞ prohibits a
remapping of the Pipelet to a core type. For homogeneous
systems, Ht

p is equal for all p, t.

As a summary, the new concept of Pipelets exploits prop-
erties of software pipelines to derive remapping decisions
that resolve performance bottlenecks or reduce communication
distances by contraction. They interact based on spatial or
temporal proximity to limit their overhead.
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V. Experimental Results

In this section, we examine the following experiments to
show the effectiveness and scalability of Pipelets:

• We compare the throughput of Pipelets to a state-of-the-
art load balancing scheme, AIAC [4].

• Similarly, we compare their bandwidth requirements.
• We measure the overhead of Pipelets on 24, 48 cores.
Target Architecture: We target many-core systems

where each core has private memory, is multi-threaded, and
is connected via a high-bandwidth, low-latency Network-on-
Chip. For our experiments, we evaluate Pipelets on Intel’s
Single-Chip Cloud Computer (SCC) that integrates 48 x86
(P54C) cores (45nm technology [13]) at 800 MHz each, shown
in Figure 6. 24 tiles contain 2 cores, 2 private L2 caches (256
KB each), a network interface (router) for the 2GHz NoC
interconnect (bisection bandwidth: 256 GB/s) and a 16 KB
message-passing buffer (MPB) each. Four memory controllers
access off-chip DRAM. The SCC is well-suited for Pipelets
because it provides many (multithreaded) cores and a fast
Network-on-Chip for Pipelet communication.
Application scenario: We analyze a system that simul-
taneously runs two instances (each) of three complex real-
world software-pipelined applications written in C++ in
order to generate a highly complex scenario: Machine-vision-
based ’Assisted Drive’ (17 stages) visually detects objects
(e.g. cars, humans, and traffic signs) from video sequences
(similar to [18]) and displays an augmented reality image.
The deployed algorithms stem from the Integrated Vision
Toolkit (IVT [1]) and include, among others, FFT, Har-
ris Corner Detection and Scale-Invariant Feature Transform
(SIFT). ’Speech Recognition’ (20 stages) is based on the
CMU Sphinx3 [2] toolset, while ’Video Telephony’ (10 stages)
includes H.264, MP3 encoding, and 3DES encryption. The
applications have been pipelined manually and use OpenMPI
1.6.1 [3] for communication. Figure 7 shows how the compu-
tational demands of the stages of ’Assisted Drive’ depend
on the input sequences of high, medium and low traffic.
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Likewise, the computational demands of ’Video Telephony’
alter depending on slow or fast motion in its input video or
changing speakers (requiring audio de- or encoding, or both).
’Speech Recognition’ is computationally expensive when the
user directs commands to it and idles otherwise.

Results: For high system load, we run 2 (independent)
instances of each application (total: 94 Pipelets) on the SCC.
We randomly change the input data of ’Assisted Drive’,
’Video Telephony’ and ’Speech Recognition’. Figure 8 com-
pares the average system throughput across all applications
achieved by Pipelets and AIAC [4]: the throughput achieved
by Pipelets exceeds AIAC by a minimum of 10.3%, a max-
imum improvement of 31.2%, and an average improvement
of 21.7%. The CPU utilization drops from an initial 96% to
54% when the input data changes. By re-balancing the load,
Pipelets achieve an average CPU utilization of 94%, while
AIAC achieves 82%.

Figure 9 depicts the throughput of each application before
and after the input data changes. The throughput of ’As-
sisted Drive’ drops by 45.6% when switching from the low-
complexity to the medium-complexity video scenes. Then,
Pipelets carry out 4 remappings until they cannot improve
the throughput further, which yields an improvement of 1.27x
until the Pipelet responsible for a bottleneck neither shares
CPU resources nor communication links to its predecessor
and successor with other Pipelets.
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When changing from a video scene with low to fast motion,
the throughput of ’Video Telephony’ drops by 87.9% from ap-
prox. 24 1

s to 2.89 1
s . After 20 remappings in 17.4 seconds (due

to the low throughput of 2.89 1
s ), Pipelets restore a throughput

of around 17.5 1
s , which corresponds to a speedup of 7.21x.

By activating ’Speech Recognition’, its throughput drops from
220 1

s (idle) to 9 1
s (active). We choose this example to investi-

gate an application where Pipelets cannot adapt mappings to
improve the throughput: Even though load balancing cannot
improve it’s throughput, this has no negative effects on the
overall system and other applications. Figure 10 compares
the bandwidth requirement of the applications when using
Pipelets and AIAC [4]. After remapping, Pipelets require
more bandwidth as they achieve a higher throughputs, thus
the Pipelets communicate more often. Per iteration, however,
Pipelets significantly reduce the bandwidth requirements.
Therefore, Pipelets base remappings both on communication
and on computational demands.
Figure 11 shows the communication overhead of Pipelets as
measured for 24 and 48 cores. When Pipelets do not remap,
the total (summed) communication overhead of 8.9 KB/s
(24 cores) or 13.2 KB/s (48 cores) can be considered as
negligible. The communication overhead does not increase
significantly with a growing number of cores because Pipelets
limit interactions on spacial and temporal proximity, and
thus achieve runtime load balancing in a scalable manner.
The communication overhead grows with a growing frequency
of changes in the input data that cause Pipelets to remap,
which is dominated by the overhead for transferring the (task)
context of the Pipelets.
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Fig. 11. Communication overhead (incl. transfer of task contexts)

VI. Conclusion
We have introduced the new concept of Pipelets that

exploits properties of the paradigm of software pipelines and
enhances it to increase the performance of many-core systems
by up to 31.2% compared to state-of-the-art when their
resource demands alter unpredictably. The latter is the case
for many complex applications.

We have shown that the concept of Pipelets offers a promis-
ing potential for an application to adapt during runtime

and therefore to resolve computational and communication
bottlenecks that would otherwise result in lower throughput
when state-of-the-art is used [4]. The main contributing prop-
erty of Pipelets is their ability to self-organize i.e. to adapt
mappings during execution when inefficiencies are detected
and performance improvement appears to be achievable. The
use of Pipelets and their exploitation is not limited to an
application’s property. Instead, Pipelets can be deployed in
all cases where regular software pipelines are deployed.
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