
ARTM: A Lightweight Fork-Join Framework for
Many-core Embedded Systems

Maroun Ojail, Raphael David, Yves Lhuillier, Alexandre Guerre
CEA, LIST, Embedded Computing Laboratory, F-91191 Gif-sur-Yvette, France.

Email: name.surname@cea.fr

Abstract—Embedded architectures are moving to multi-core
and many-core concepts in order to sustain ever growing
computing requirements within complexity and power budgets.
Programming many-core architectures not only needs parallel
programming skills, but also efficient exploitation of fine grain
parallelism at both architecture and runtime levels. Scheduler
reactivity is however increasingly important as tasks granularity
is reduced, in order to keep the overhead of the scheduling to a
minimum. This paper presents a lightweight fork-join framework
for scheduling fine grain parallel tasks on embedded many-core
systems. The asynchronous nature of the fork-join model used in
this framework permits to dramatically decrease its scheduling
overhead. Experimentation conducted in this paper show that
the overhead induced by this framework is of 33 cycles per
scheduled task. Also, we show that near-ideal speedup can be
obtained by the ARTM framework for data parallel applications
and that ARTM achieves better results than other state of the
art parallelization techniques.

I. INTRODUCTION

In order to address the constant demand for increasing per-
formance within the complexity and power budgets of embed-
ded systems, current computing architectures are composed of
multiple cores. Many-core architectures intend to move away
from the trend of increasing performance through complex
micro-architectures that support instruction-level parallelism
(ILP), and embracing designs with multiple, simple cores on a
chip to exploit task-level parallelism (TLP) and data-level par-
allelism (DLP). This change in computer architectures enables
processors to be clocked at a lower frequency and to consume
less power, while still getting better overall performance.

Fine grain parallelism is required for certain applications
since it eases the work of the developer being a form of
parallelism which is naturally present in applications and
does not require heavy algorithm rewriting. Since coarse
grain threads can limit opportunities for exploiting parallelism
for those applications, an efficient way to use the resources
of multi-core platforms, is by exploiting the inherent fine
grain parallelism. Scheduler reactivity is however increasingly
important as tasks granularity is reduced, in order to keep the
overhead of the scheduling to a minimum. Thus, solutions
based on the creation of new threads for more parallelism are
not feasible since they induce too large time overheads in case
of fine-grain tasks.

However, the fork-join model of parallelism, already used
for coarse grain threads, remains among the simplest and
most effective design techniques for obtaining good parallel

performance [1]. We thus propose in this paper a lightweight,
Asynchronous Reactive Tasks Management (ARTM) frame-
work, based on the fork-join model to exploit fine grain
parallelism at the lowest possible cost.

The remaining of the paper is organized as follows. Sec-
tion II first presents related work to parallel programming
models for multi-core architectures. It also describes basics
of the fork-join programming model as well as the authors
previous work in this domain. Details of the ARTM framework
are then presented in section III. Section IV then details the
experimentations conducted to validate the ARTM framework
and to compare it with state of the art parallelism extraction
techniques. Finally, the key advantages of this proposition and
our future work are summarized in section V.

II. RELATED WORK

For the applications that are intuitively divided into coarse-
grained parallel sections, popular multithreaded programming
interfaces, such as Pthreads [2] or OpenMP [3], are sufficient.
An OpenMP program begins execution as a single process,
called the master thread of execution which then creates mul-
tiple threads to be executed in parallel [4]. However, thread-
based scheduling is heavyweight and operations of creating,
destroying and yielding threads incur significant overheads,
and thus must be used sparingly. Therefore, these approaches
are not effective for fine-grain parallel applications.

In order to solve this high overhead problem, software-based
lightweight multithreaded environments have been proposed.
These environments include Split-C [5], Cilk [6] and Intel’s
Threading Building Blocks (TBB) [7]. These environments
rely on coarse grain standard threading libraries, such as
Pthreads, where fine grain parallel jobs (called procedures
in Cilk and tasks in TBB) become work units in the work
queues of the Pthreads. When the work queues of the Pthreads
become unbalanced, these environments use work stealing to
distribute the workload. Another software-based programming
model, is Apple’s Grand Central Dispatch (GCD) [8]. GCD
is an asynchronous way to manage parallelism on platforms
consisting of multiple cores. It implements multiple serial
and parallel queues. When dispatching tasks to a parallel
queue, the function does not wait to join and continues its
execution normally, hence the asynchronous model. This type
of model has the advantage of capturing complex task graphs.
However, to our knowledge, none of these schedulers have
been validated on very fine grain tasks (A couple of thousands978-3-9815370-0-0/DATE13/ c©2013 EDAA

or even hundreds of cycles per task). More recently, Marongiu
et al. [9] proposed a software-based lightweight support for
fine grain parallelism that shows great potential with respect
to state of the art techniques. However, tasks are statically
assigned to processing cores which directly creates a limit in
load balancing as we show in section IV.

A common feature for state of the art parallelization tech-
niques like OpenMP and Cilk is the use of the fork-join model
to express the parallelism in applications. The program starts
on a single core, the master core. This master core forks a
certain number of tasks that can be then scheduled by the other
processors of the platform called slave processors. A slave core
can, at its turn, declare itself as a master core to fork more
tasks, creating by that nested levels of parallelism [4]. Fork and
join operations can be either synchronous or asynchronous.
In [10], we have presented a framework taking advantage of
the synchronous fork-join programming model while being
compatible with fine grain parallelism. Forked jobs are desig-
nated by the term task instead of thread in order to indicate that
they are relatively lightweight jobs. In the synchronous model,
the master core can only schedule the tasks that it has forked.
When there are no more ready tasks to be scheduled, the
master core waits until all tasks have finished their execution
in order to join the tasks. Hence, it is the same processor
that executes the fork and join operations. This model has the
advantage of simplifying the programming and providing high
reactivity. However, on top of the wasted time by the master
processor while waiting to join the tasks, the synchronous fork-
join model prevents conditional execution where some tasks
can be separately joined and other tasks can be executed or
not depending on a certain condition.

In this paper, the ARTM framework is based on the asyn-
chronous fork-join programming model in order to eliminate
these limitations and provide better load balancing among the
multi-core resources. Asynchronous programming, as it will
be shown in this paper, can provide better overall reactivity
as well as programming flexibility. The description of ARTM
framework is presented in the next section.

III. THE ARTM FRAMEWORK

Asynchronous programming based on the fork-join model
of parallelism consists in dissociating the fork and join oper-
ations. Hence, it is not mandatory to execute these two opera-
tions on the same processor. Therefore, the ARTM framework,
based on the asynchronous model, presents, by construction,
better load balancing than a synchronous one. This is achieved
by not restricting the master processor to scheduling only tasks
forked by itself. After forking tasks, the master processor can
declare itself as a slave processor and schedule any ready task.

Moreover, this framework presents two additional func-
tionalities: condition management and iteration management.
Condition management allows for each of the forked tasks
to be selectively activated depending on its condition of
execution. Iteration management allows for the forked tasks to
be executed a certain number of times before joining them. The
conditions and the number of iterations can be dynamically set

Fork

T0 T1 T2 T3 T3

T6

Repeat
N times

Repeat
M times

Execute only
every other time

T4 T5

Dup

T7

Fig. 1. Task graph example based on the ARTM framework

during the execution of an application in order to support data-
dependent processing. Fig. 1 shows an example of a task graph
based on the ARTM framework. In this figure, the master core
forks 3 tasks T0 to T2, then duplicates 2 times the task T3
before going into slave mode. Tasks T3 will execute M times
before joining, while tasks T0, T1 and T2 will execute N times
before joining. Task T0 will only execute every other time and
forks tasks T4 and T5 each time it is executed.

Programming with the ARTM framework is simple and its
API mainly consists of two functions:

void fork(count, iter, cond, joiner,
entrypoints, arg);

void dup(count, iter, cond, joiner,
entrypoints, arg);

Both of the functions above take six arguments: the number
of tasks to fork, the number of iterations to loop before joining,
a pointer to the conditions of execution of the forked tasks, the
joining task, a pointer to the tasks to fork and the argument
to pass to these tasks. The only difference between these two
functions is that the first forks tasks with different program
codes thus extracting TLP from applications, whereas the
second duplicates the same code a certain number of times
taking advantage of the inherent DLP in target applications.

In the rest of this section we first detail the infrastructure of
the ARTM framework and then we explain the fork and join
operations via an example.

A. Implementation infrastructure

At boot time, each core is allocated a stack which will be
used to process all the fine-grain tasks of the application. A
main table of 32 elements is created, each element corresponds
to a different fork/dup operation, and this, independently of the
number of forked or duplicated tasks. Only one 32-bit variable
is used to keep track of empty slots in this main table in order
to keep the scheduling overhead to a minimum. An element
structure contains ten fields:

• entrypoint: Pointer to the table of functions to fork
or duplicate.

• cond: Pointer to the table of execute conditions for each
task (TRUE or FALSE).

• parent_id: Parent ID in the table of the tasks
structure.

entrypoint cond parent_id type arg joiner task_count ready_sync done_sync iter_sync

‐1 FORK NULL T6 3 2 0 N

&T3 TRUE ‐1 DUP NULL T7 2 2 0 M

0 FORK NULL NO_OP 2 2 0 1

T2T0 T1 TRUETRUE TRUE

T4 T5 TRUE TRUE

Fig. 2. Snapshot of the main ARTM table for the task graph in Fig. 1

• type: Type of operation (FORK or DUP).
• arg: Argument to pass to the forked or duplicated tasks.
• joiner: Task to execute after the all forked or dupli-

cated tasks have finished their execution.
• task_count: Number of forked tasks or the number of

times to duplicate the task.
• ready_sync: Synchronization variable which points to

the next ready task to execute.
• done_sync: Synchronization variable which keeps

track of the number of unfinished tasks.
• iter_sync: Synchronization variable which counts the

number of remaining iterations before joining the tasks.

B. Forking and joining tasks

In Fig. 2, forking and joining tasks with the ARTM frame-
work is schematically explained via an example. It shows
a snapshot of the main table for the task graph depicted in
Fig. 1 where only T0 has begun execution. Three concurrent
fork/dup operations are in the system. Since only one element
of the main table is needed per fork/dup operation, scheduling
weight is independent of the number of forked or duplicated
tasks. The parent ID of the first 2 element is -1 indicating that
these operations correspond to the first level of parallelism.
Conditions can be changed at each iteration allowing by that
the execution of T0 only every other time.

The ready_sync variable of the first element is set to 2
instead of 3 because task T0 has already begun execution and
only 2 tasks remain ready. When T0 begun execution, it called
the fork function to fork tasks T4 and T5. This implicated
the creation of the third element in the main table. Forking
time is independent of the number of the forked tasks since
the entrypoint field is only a pointer to a table with the
functions of tasks T4 and T5. The joiner task of the third
element is set to NO_OP as no operations are needed to be
done when T4 and T5 join.

When the done_sync variable of an element is equal to
the number of forked/duplicated tasks, and the iteration counts
drops to 0, the ARTM framework is called to join the tasks by
deleting the corresponding element from the main table and
executing the joiner task.

IV. EXPERIMENTATIONS ON THE ARTM FRAMEWORK

This section presents the ARTM framework testing and
validation on real applications, as well as comparisons to other
parallelism extraction techniques.

TABLE I
ARTM FRAMEWORK OVERHEAD ON A SINGLE CORE AND COMPARISON

WITH THE SYNCHRONOUS VERSION

Operation Asynchronous Synchronous
Same level schedule 26 23
Diff. levels sched. 29 26

Fork/Dup 43 31
Join 40 22

As a first experiment, performance estimation of the code is
done on a cycle accurate ISS of one STxP70-V4 processor of
STMicroelectronics. We test the scheduling loop in two cases:
scheduling tasks corresponding to the same fork/dup operation
and scheduling tasks corresponding to different forks. In the
first case, the overhead of the scheduling loop is 26 cycles
while in the second case, this overhead increases to 29 cycles.

Concerning the fork/dup operations, the overhead is 35
cycles for the top operations (with a parent ID of -1) and
43 for the other operations. This difference of 8 cycles is due
to an extra atomic post-increment operation at the parent level.
As for the tasks joining, the simulations on the ISS show an
overhead of 40 cycles per join operation.

Table I summarizes these results and presents a comparison
with the synchronous version of the framework presented
in [10]. This table shows that, according to simulations on a
single core, the synchronous version of the framework presents
better reactivity for all types of operations. However, as it will
be shown next, the global scheduling overhead is reduced with
the use of the ARTM framework.

The rest of this section is structured as follows. First, we
present the target hardware platform on which the ARTM test
and validation experiments are conducted. Then we perform
experimentations on three different applications. Since in [10]
we use the VC-1 decoder based on the SMPTE ST 421M
standard [11] to evaluate the synchronous reactive tasks man-
agement technique, we reimplement the same application with
the ARTM framework in order to compare to its synchronous
predecessor [10]. Then, we use the Viola-Jones classification
cascade [12], which inherently presents high DLP and a
dynamic task graph, in order to evaluate the ARTM framework
on highly dynamic applications and to compare its perfor-
mances to OpenMP and Pthreads. Finally, the Strassen matrix
multiplication algorithm is parallelized and implemented with
ARTM. We use this algorithm to evaluate the effect of tasks
granularity on the framework and to compare it to another state
of the art lightweight parallelization extraction technique.

A. Target platform

ARTM targets cluster-based many-core architectures, where
scaling to large systems is made possible by duplicating
clusters of processors. We choose the STMicroelectronics
heterogeneous low power many-core architecture (STHORM)
formerly known as Platform 2012 or P2012 [13] as the
architecture on which we conduct our tests. STHORM is
a many-core computing fabric that is highly modular, as it
is based on multiple clusters implemented with independent

TABLE II
ARCHITECTURAL PARAMETERS USED FOR ARTM TESTS

STxP70-V4 cores 1 to 16 L1 banks 32
I$i size 16 kB L1 size 256 kB
I$i line 4 words L3 latency 200 cycles
thit 1 cycle L3 size 256 MB

AC number 128 AC size 32 bits

power and clock domains. The STxP70-V4 cores in a cluster
are connected through a low-latency, multi-banked, high band-
width logarithmic interconnect [14]. Communications between
the cluster cores is ensured by a tightly coupled L1 data
memory. Accesses to this memory are done with a two cycles
latency. Concurrent accesses to different banks of the L1
memory is possible because the number of ports is equal to
the number of banks. An L3 memory, shared by all clusters
can also be accessed by all cores. Moreover, STHORM
includes synchronization resources, called Atomic Counters
(AC), which are memory-mapped registers that provide hard-
ware semaphores [15]. For the tests presented in this paper,
we use these AC for the ARTM synchronization variables
presented in section III. In this paper, the ARTM framework is
tested on a single STHORM cluster. Scheduling applications
on multiple clusters can be achieved by coupling the ARTM-
based intra-cluster scheduling, with coarse grain scheduling
in order to dispatch work to the different clusters. Table II
summarizes the architectural parameters of the STHORM
instantiation on which the ARTM tests are conducted.

B. VC-1 decoding application

In this section, we use the VC-1 decoder in order to compare
the ARTM framework to its synchronous version presented
in [10]. This application was designed to take advantage of fine
grain parallelism. The program structure of this application
is as follows: The main program forks two tasks. First, the
VLD PIPE which forks 3 tasks. Second, the DECODER PIPE
which forks 9 tasks. Also, IBR, IDCT and MCF are each
duplicated a certain number of times. Each frame of the input
stream is divided into macro-blocks. The two functional pipes
are executed for all macro-blocks and all these operations
are repeated for all the frames composing the video stream.
Fig. 3 shows the task graph of this application with the ARTM
framework. The ability of this framework to manage loop
iterations and conditional execution is exploited to minimize
the scheduling overhead by avoiding to invoke the fork and
join operations for each iteration.

The forked tasks durations vary from a couple of tens of
cycles for the smallest ones to 2148 cycles for the largest one
with an average of 660 cycles per task. A video stream of
150 frames is chosen as input. On this stream, the average
time spent in the ARTM framework per scheduled task is
measured to 33 cycles. The synchronous version, tested in
the same conditions, shows an average overhead of 58 cycles
per scheduled task [10]. The ARTM version thus reduces the
global scheduling overhead by 43%. This overhead reduction
is mainly due to the fact that the ARTM framework allows the

DMA
IN

VLD
DMA
OUT

DMA
IN

IBR
(2)

IDCT
(6)

MCI
MCF
(9)

OVL DBK

FORK

FORK FORK

DBK
CHRO

DMA
OUT

JOIN JOIN

JOIN

VLD PIPE DECODER PIPE

Loop on frames, n = n+1

Frame #n+1 Frame #n

Loop on macro-blocks Loop on macro-blocks

Iterate? Iterate?

Iterate?

Fig. 3. VC-1 decoder structure with ARTM framework

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
u

p

Number of used cores

Measured

Ideal

Fig. 4. Speedup of the VC-1 decoding application with respect to the number
of used cores

internal management of the loop iterations. For example, in the
VLD pipeline in Fig. 3, only one fork and one join operations
are invoked per frame. The synchronous version lacks such
management and fork and join operations are necessary for
each processed macro-block. Moreover, due to the support of
conditional execution, the functions in the pipe are activated
only when they are needed, avoiding by that unnecessary
function calls.

Fig. 4 shows simulation results of the VC-1 decoding
application on STHORM with 1 to 16 STxP70 cores. It can be
seen that, for a small number of cores, good speedups can be
obtained (for example 3.2× for 4 cores). However, data-level
parallelism is very limited in this application because of high
data-dependency in the processing pipelines. Thus, the tests on
a higher number of processing cores can not be conclusive.

C. Viola-Jones classification cascade

In this section, we use a dynamic application, depicting high
DLP to evaluate the effectiveness of the ARTM framework for
scheduling data-dependant tasks. The implementation of the
Viola-Jones classification cascade used in this work is part of
a pedestrian detection application. The classification takes as
input 10 integral images calculated beforehand from a VGA
image (640×480 pixels). It also takes as input multiple boxes
or Regions Of Interest (ROIs). For each one of the boxes, a
10 stages loop is executed in order to determine if this ROI
contains a pedestrian or not. A positive box (one that actually

Stage
process

Stage
process

DUP

Stage
process

… …

JOIN

Iterate?

Mark negative
ROIs

Stage
process

Stage
process

DUP

Stage
process

… …

JOIN

Iterate?

Mark negative
ROIs

DUP DUP … … …

Fig. 5. Classification cascade structure with the ARTM framework

contains a pedestrian) has to pass all 10 stages in order to
be identified as such. Whereas a negative box can be rejected
at any of the 10 stages. And since the processing complexity
highly augments from one stage to the next, the classification
part is hence dynamic in a sense that the processing power
needed for each box is different and depends on the input data.
The processing complexity for each box, although varying,
remains low with an average of 2000 cycles per box. But the
overall computational power needed for the classification part
is very high since 1 million and 600 thousands boxes have to
be tested for each image.

Fig. 5 presents the structure of the parallelized classification
using the ARTM framework. The resulting task graph is highly
dynamic since the processing time for each ROI is not the
same and depends on the input image. The core function
that has to be applied to all ROIs is the stage processing
function. Due to the asynchronous property of the ARTM
framework, the duplication functions are non-blocking. Hence,
at the beginning of the application, one core performs a parallel
duplication of the stage processing function and each one
duplicates the processing on 16 different boxes. This results in
data-parallel fine grain tasks, each targeting a different ROI.
The ARTM internal conditional management is used to mark
negative ROIs, preventing further processing on them.

Multiple simulations were conducted on a VGA image with
up to 16 STxP70 cores. Fig. 6 shows the speedup due to the
parallelization with respect to the mono-processor version. The
application runs nearly 15 times faster on 16 cores. This near-
ideal (only 6.25% decrease) speedup is due to the excellent
load balancing that the ARTM framework provides since is
does ensure that no core is idle when there is tasks to execute,
even for a dynamic task graph like in this case.

Also, and in order to compare the ARTM framework to
other parallelization techniques, the classification cascade is
parallelized and implemented using the OpenMP API and stan-
dard Pthreads. Because OpenMP is not available on STHORM,
this implementation was done on a AMD Opteron(TM) Pro-
cessor 6276 [16] which contains 16 processing cores. For
each implementation, the speedup is calculated with respect

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
u

p

Number of used cores

Ideal acceleration

ARTM Framework

OpenMP

Pthreads

Fig. 6. Classification cascade speedup with ARTM, OpenMP and Pthreads

© CEA. All rights reserved

 Réunion Technique LCE| Novembre 2011 | 8

DUP

S0 S9

FORK

…

JOIN
FORK

P0 P6 …

JOIN
FORK

C11 C22 …

JOIN

S0 S9

FORK

…

JOIN
FORK

P0 P6 …

JOIN
FORK

C11 C22 …

JOIN

…

𝐴11 𝐴12
𝐴21 𝐴22

×
𝐵11 𝐵12
𝐵21 𝐵22

=
𝐶11 𝐶12
𝐶21 𝐶22

𝑆0 = 𝐴11 + 𝐴22
𝑆1 = 𝐵11 + 𝐵22
𝑆2 = 𝐴21 + 𝐴22
𝑆3 = 𝐵12 − 𝐵22
𝑆4 = 𝐵21 − 𝐵11
𝑆5 = 𝐴11 + 𝐴12
𝑆6 = 𝐴21 − 𝐴11
𝑆7 = 𝐵11 + 𝐵12
𝑆8 = 𝐴12 − 𝐴22
𝑆9 = 𝐵21 + 𝐵22

𝑃0 = 𝑆0 × 𝑆1
𝑃1 = 𝑆2 × 𝐵11
𝑃2 = 𝐴11 × 𝑆3
𝑃3 = 𝐴22 × 𝑆4
𝑃4 = 𝑆5 × 𝑆22
𝑃5 = 𝑆6 × 𝑆7
𝑃6 = 𝑆8 × 𝑆9

𝐶11 = 𝑃0 + 𝑃3 − 𝑃4 + 𝑃6
𝐶12 = 𝑃2 + 𝑃4
𝐶21 = 𝑃1 + 𝑃3
𝐶22 = 𝑃0 + 𝑃2 − 𝑃1 + 𝑃5

Fig. 7. Strassen algorithm as depicted in [9] and its task graph with ARTM
framework

to the mono-processor implementation on the corresponding
platform. Fig. 6 shows the speedup for the different implemen-
tations. The ARTM framework presents the highest speedup.
OpenMP and Pthreads based implementations achieve lesser
speedup due to, first the high overhead they present compared
to the ARTM framework, and second the limited load balanc-
ing they can achieve in the case of a dynamic application.

D. Strassen matrix multiplication

In this section, we test the effect of tasks granularity on the
scheduling performance of the ARTM framework and compare
it to the lightweight scheduling approach presented in [9]. The
Strassen algorithm was used in [9] on an architecture with the
same properties as STHORM. We thus implemented the same
algorithm for our tests.

Fig. 7 shows this algorithm with its task graph using
the ARTM framework. The input matrices A and B are
decomposed in four sub-matrices, which can be processed in
parallel. Sub-matrices undergo a number of sums/substractions
and multiplications. All these operations are fully data-parallel.
Tasks are duplicated in order to take advantage of DLP. Further
details on the Strassen algorithm can be found in [9].

0

2

4

6

8

10

12

14

16

16 x 16 32 x 32 64 x 64

Sp
ee
du

p

16 PEs 8 PEs 4 PEs

Ideal (16 PEs) Ideal (8 Pes) Ideal (4 Pes)

Fig. 8. Strassen algorithm speedup with ARTM framework

0
2
4
6
8

10
12
14
16

ARTM Marongiu et al. OpenMP

Sp
ee

d
u

p

Fig. 9. Strassen algorithm speedup comparison for 64×64 matrices on 16
cores (ARTM vs. prior art in [9])

Experimentations are done for 16×16 (average of 225
cycles per task), 32×32 (average of 1585 cycles per task)
and 64×64 (average of 11800 cycles per task) matrices. For
each matrix size, 4, 8 and 16 cores are used to process
the algorithm. Fig. 8 summarizes the speedups obtained with
respect to a sequential execution on a single core. The effect
of task granularity is clear where the overhead of the ARTM
framework gets bigger for very fine-grain tasks.

In order to compare the ARTM framework with the schedul-
ing technique presented in [9], we consider the case of 64×64
matrices on 16 cores because this is the only result shown in
their work for the whole application. As seen in Fig. 9, the
ARTM framework achieves better speedup than the scheduler
in [9] as well as the OpenMP based implementation presented
in the same paper. In fact, not only the ARTM scheduler
is 13% faster than the solution of [9], it also present high
dynamicity. The authors in [9] statically assign the tasks to the
processing cores and thus they get a theoretical limitation of
nearly 14× on 16 cores. The ARTM framework dynamically
assigns the tasks to free cores achieving by that the best
possible load balancing and thus a better speedup (15.8×)
while also providing simplified programming.

V. CONCLUSION AND FUTURE WORK

This paper presented a lightweight reactive fine grain tasks
management framework for homogeneous multi-core architec-
tures. It incorporates important functionality like conditional
execution and loop management which allows it to support
a wide range of task graphs and to lower its scheduling
overhead. This overhead is measured to 26 cycles per task,

and to 83 cycles per a couple of fork and join operations.
Simulations showed only a 6.25% decrease of the speedup
with respect to the ideal one. Moreover, near-ideal speedup
was achieved on a dynamic application, the Viola-Jones clas-
sification cascade. Comparison with state of the art paral-
lelism extraction techniques showed a significant advantage
of the ARTM framework in obtaining the best possible load
balancing and speedup. Coupling the ARTM framework with
coarse grain parallelization techniques will be investigated as
future work in order to extend the tests on multiple clusters.
Coarse grain jobs will be dispatched to clusters and the ARTM
framework can schedule tasks on the cores inside the clusters.

ACKNOWLEDGMENT

This work is partly supported by the European cooperative
CATRENE project CA104 COBRA.

REFERENCES

[1] D. Lea, “A java fork/join framework,” in Proceedings of the ACM 2000
conference on Java Grande, ser. JAVA ’00. New York, NY, USA:
ACM, 2000, pp. 36–43.

[2] D. Butenhof, Programming with POSIX Threads. Addison-Wesley,
1997.

[3] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for
Shared-Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, pp.
46–55, January 1998.

[4] M. Sato, “OpenMP: parallel programming API for shared memory
multiprocessors and on-chip multiprocessors,” in Proceedings of the 15th
international symposium on System Synthesis, ser. ISSS ’02. New York,
NY, USA: ACM, 2002, pp. 109–111.

[5] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,
T. von Eicken, and K. Yelick, “Parallel programming in split-c,” in
Proceedings of the 1993 ACM/IEEE conference on Supercomputing, ser.
Supercomputing ’93. New York, NY, USA: ACM, 1993, pp. 262–273.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of
the cilk-5 multithreaded language,” SIGPLAN Not., vol. 33, pp. 212–223,
May 1998.

[7] C. Pheatt, “Intel R© threading building blocks,” J. Comput. Small Coll.,
vol. 23, pp. 298–298, April 2008.

[8] Apple Inc. (2010, May) Grand Central Dispatch (GCD) Reference.
[9] A. Marongiu, P. Burgio, and L. Benini, “Fast and lightweight support for

nested parallelism on cluster-based embedded many-cores,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, march
2012, pp. 105 –110.

[10] M. Ojail, R. David, K. Ben Chehida, Y. Lhuillier, and L. Benini,
“Synchronous reactive fine grain tasks management for homogeneous
many-core architectures,” ARCS 2011, 2011.

[11] SMPTE, “SMPTE ST 421M: VC-1 Compressed Video Bitstream Format
and Decoding Process,” www.smpte.org, March 2011.

[12] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1, 2001, pp. I–511 – I–518 vol.1.

[13] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building an
ecosystem for a scalable, modular and high-efficiency embedded com-
puting accelerator,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, march 2012, pp. 983 –987.

[14] A. Rahimi, I. Loi, M. Kakoee, and L. Benini, “A fully-synthesizable
single-cycle interconnection network for shared-l1 processor clusters,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2011, march 2011, pp. 1 –6.

[15] F. Thabet, Y. Lhuillier, C. Andriamisaina, J.-M. Philippe, and R. David,
“An Efficient and Flexible Hardware Support for Accelerating Syn-
chronization Operations on the STHORM Many-Core Architecture,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2013,
march 2013.

[16] AMD, “The new AMD Opteron(TM) 6200 Series processor,”
http://server.amd.com/LP=237, 2012.

