
Analytical Timing Estimation for Temporally
Decoupled TLMs Considering Resource Conflicts

Kun Lu, Daniel Müller-Gritschneder and Ulf Schlichtmann
Institute for Electronic Design Automation

Technische Universität München, Munich, Germany

Abstract—Transaction level models (TLMs) can use temporal

decoupling to increase the simulation speed. However, there is

a lack of modeling support to time the temporally decoupled

TLMs. In this paper, we propose a timing estimation mechanism

for TLMs with temporal decoupling. This mechanism features

an analytical model and novel delay formulas. Concepts such

as resource usage and availability are used to derive the delay

formulas. Based on them, a fast scheduling algorithm resolves

resource conflicts and dynamically determines the timing of

concurrent transaction sequences. Experiments show that the

delay estimation formulas are capable of capturing the timing

effects of resource conflicts. At the same time, the overhead of

the scheduling algorithm is very low, hence the simulation speed

remains high.

I. INTRODUCTION

Virtual prototypes (VPs) based on SystemC have been
widely adopted to handle the growing design complexity of
today’s embedded systems. VPs are often used as effective
simulation platforms by designers. In VPs, the HW and SW
components of the designed system need to be modeled. To
reduce the modeling effort of VPs, transaction level models
(TLMs) have been introduced and standardized. In TLMs,
transactions are used to model data flows between HW mod-
ules. In a transaction, complex signal protocols are abstracted
away. Such abstraction greatly improves the simulation speed,
making TLMs suitable for fast and early SW development,
system verification and design space exploration. For timing
accurate TLMs, timed bus-word transactions are used. This
means that a transaction transfers data at the granularity of a
bus-word, e.g. a byte, a word or a burst of words, etc. Synchro-
nization is performed at each individual transaction by calling
the SystemC wait() statement. In multiprocessor simulation,
such fine-grained synchronization can capture access conflicts
at shared HW modules. The conflicts are arbitrated to ensure
the correct timing of the conflicting transactions, as illustrated
in Fig. 1(a). However, the problem is that calling wait() is
very expensive, because it causes time-consuming context
switches in the SystemC kernel. In SW simulation, the SW
may frequently initiate transactions due to cache misses or I/O
communication. The simulation speed can be severely slowed
down due to the synchronization overhead of transactions. As
a remedy, temporal decoupling (TD) is introduced in TLM
2.0 [1] to reduce the synchronization overhead.

40 45 50 55 60 65 70 75 time[ns]
(a) TLM without temporal decoupling

...

80

40 time[ns]
(b) TLM with temporal decoupling

...

80

TScpu1

TScpu2

TScpu1

TScpu2

TS = Transaction Sequence synchronization

con!icts invisible!

Fig. 1. Introduction of temporal decoupling and its timing problem

A. Temporal decoupling in TLM 2.0

Temporal decoupled TLMs do not synchronize at each bus-
word transaction. Instead, one initiator (e.g. a processor)
continues its simulation for a long time period. Only then a
synchronization request is issued to the SystemC kernel. As
shown in Fig. 1(b), only a single synchronization is performed
by CPU1 within 40 ns to 80 ns. The problem is that the
actual occurrence times of the transactions are lost, therefore
access conflicts at shared modules are invisible and the delays
due to access conflicts can not be simulated. Conventional
arbitration algorithms can not be used in this case, because
they work only for individual bus-word transactions. In the
TLM 2.0 library, timing accuracy is meant to be sacrificed if
temporal decoupling is used. However, this may lead to timing
inaccuracy in multiprocessor simulation, in which transactions
over the shared bus may be frequently called due to cache
misses or I/O communication.
B. Contribution
This paper proposes an analytical timing estimation mecha-
nism to address the timing problem in temporally decoupled
TLMs. First, an analytical timing model is introduced, in
which each HW module is regarded as a resource. Two
concepts, namely resource usage and resource availability, are
used to derive several delay formulas. These formulas model
the contention at shared resources. In order to derive realistic
delay formulas, we consider several design aspects, such
as the arbitration schemes, interrupt handling and advanced
bus protocols. Correspondingly, we adjust the calculation of978-3-9815370-0-0/DATE13/ c�2013 EDAA

resource usage and resource availability. Then, we propose
a fast scheduling algorithm. This algorithm uses the delay
formulas to determine the actual durations of the concurrent
synchronization requests. With dynamic event cancellation,
only one wait statement is needed to schedule one syn-
chronization request. Thus the overhead of the scheduling
algorithm is very low. The advantages of our approach are
summarized as follows:
xx• Timing is estimated without arbitrating each transactions.
xx• The scheduling overhead is very low.
xx• No global quantum is needed. Each initiator updates its
local time variable and synchronizes as it needs.
xx• It is provided as a library. Existing TLM VPs can be easily
ported, by deriving the HW modules from the resource class.

Note that our approach does not require any transactions
to be stored or simulated. It only needs the timing parameters
for applying the formulas. This is advantageous in many cases.
For one example, the transactions can be abstracted away [2],
which makes transaction arbitration infeasible. For another
example, in host-compiled SW simulation, the transactions at
cache misses are non-functional. Thus, they do not have to be
simulated. Instead, their access time to the resources can be
accumulated and used later for timing estimation.

Experiments on a multiprocessor TLM with temporal de-
coupling show that the scheduling algorithm with the delay
formulas successfully estimate the delays due to resource
conflicts, while imposing a negligible simulation overhead.
C. Related work
Researchers have explored the idea of faster simulation beyond
the abstraction level of TLM [1]–[6]. TLM 2.0 [1] proposes
the temporal decoupling technique for TLMs, at the cost of re-
duced timing accuracy because of the absence of conflict han-
dling. Ecker et al. [2] abstract a long sequence of transactions
caused by the transfer of a large data block into a single block
transaction. To extract the timing for those highly abstracted
block transactions, Lu et al. [7] profile the corresponding driver
functions. But they do not consider timing estimation when
resource conflicts are present, such as in the multi-processor
simulation. Schirner et al. [3] propose a concept of result
oriented modeling. A conflict-free optimistic duration is firstly
used for a long transaction sequence. Then retroactive timing
correction is performed successively, until the actual duration
is reached. Similar to this concept, Stattelmann et al. [4] also
perform retroactive timing correction, together with quantum
allocation. The occurrence times of all transactions are stored
in lists. Then the lists are traversed to retroactively correct
the timing by arbitrating individual transactions. However, the
occurrence times of the bus-word transactions might not be
known, e.g. when block transactions are used [2]. Further, [3]
and [4] arbitrate each transaction, it may become complex
and expensive when the transaction lists are large due to
frequent cache misses or I/O accesses. Besides, since the
computation and communication models in TLMs often do
not provide cycle accuracy, one may argue that it is not
always advantageous to perform cycle accurate arbitration in a

time

... TScpu1

TScpu2 ...

resource

duration() delay
formula

TS1

TSn

.

.

.

. . .

... TScpu3

analytical model formulation

TS = Transaction Sequence delay due to access conflicts

S1

Sn

S1

duration() Sn

Fig. 2. Problem formulation and the analytical model.

timing inaccurate system. Sonntag et al. [5] propose SystemQ
as a SystemC library for performance estimation. SystemQ
is more abstract than TLM in terms of HW modeling and
beyond the functional view in terms of SW simulation. It
is initially supposed to be used at an early design phase to
aid the decision making of message passing architectures. To
simulate TLMs with SystemQ, adaptors are needed to collect
a group of transactions into a message, which is queued at a
server and sent as a whole. SystemQ may offer very rough
performance estimation due to its high abstraction of HW and
SW modeling. Bobrek et al. [6] train a statistical regression
model with samples of resource contention. They employ their
approach to simulate software with annotated performance
information of the target processor. The training effort may be
high to accurately model all the contention scenarios. Besides,
the modeling support for applying to TLMs is not investigated
in their approach. A more recent approach [8] also investigates
the concept for predictive timing estimation. It is used in the
scheduling of periodic real-time tasks in host-compiled OS
modeling. This approach needs to know the periods of the
tasks, so that the preemption time and the duration of the tasks
can be predicted. Our approach does not require the resource
accesses to be periodic, nor does it require the exact access
times of the resources. It extracts several timing parameters
and employs analytical delay formulas and a fast scheduler
for timing estimation.

In the following, Sec. II presents our approach. Sec. III
shows experimental evaluation. Sec. IV concludes this paper.

II. ANALYTICAL TIMING ESTIMATION

In the following, we first introduce the analytical model.
Then, we present the delay formulas and the scheduling
algorithm which performs dynamic timing estimation.

A. Problem formulation

With temporal decoupling, an initiator simulates ahead and
updates its local time. After a long period of time, it issues a
synchronization request to the SystemC kernel. Unlike a Sys-
temC wait() call, such a synchronization request involves
not only a time period, but also many transactions during
this period for accessing the memory or other peripherals. In

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

10 5 5 5 10

90

5
time [ns]

pi = 80; am,i = 10× 2 + 5× 4 = 40; um,i = 40/80 = 0.5

Fig. 3. Example of calculating the resource usage.

some case, the transactions within this period are abstracted
away [2], thus their occurrence times are not available for
arbitration. Temporally overlapping synchronization requests
of multiple initiators can have conflicting accesses to shared
HW modules. Thus, their actual durations could be delayed.
Now, the problem to solve is how to determine those delays
without expensively arbitrating individual transactions or when
transaction-based arbitration is not feasible.

We propose an analytical model to tackle this problem, as
shown in Fig. 2. Each HW module is regarded as a resource,
denoted by R. We use S to denote the synchronization request
of a long time period including many transactions. For Si of
initiator i, its access time of resource Rm is written as am,i.
Thus each synchronization request has following composition:

Si = (pi, a1,i, a2,i, am,i, ...),

where pi is the requested period of Si, a1,i is the sum of Si’s
access time within pi at resource R1, etc. For example, assume
all the transactions of Si in Fig. 3 access resource Rm, then
pi = 80ns and am,i = 40ns.

Given a set of overlapping synchronization requests S, we
estimate the actual duration pi� of Si, as shown in

pi
� = pi +D(i,S).

Here D(i,S) is an estimation function that models the delay
due to resource conflicts. This function uses several novel
delay formulas, derived in the following.

B. Delay formulas
1) Resource usage and availability: We define two intuitive

terms before deriving the delay formulas: resource usage and
resource availability. Resource usage measures the degree
of an initiator’s access to a resource. Resource availability
measures how much a resource is available to an initiator.
Formally, for a synchronization request Si that uses a shared
resource Rm, we have:

• um,i ∈ [0, 1]: usage of Rm demanded by Si, given as:

um,i =
am,i

pi

• wm,i ∈ [0, 1]: availability of Rm for Si.
For example in Fig 3, for the given duration and access time
of Si at Rm, we have um,i = 0.5.

2) Deriving the delay formulas: Because the resource is
not fully available, Si’s access time am,i of Rm is prolonged
to 1

wm,i
· am,i. Thus its delay dm,i at Rm is given as:

dm,i =
1

wm,i
· am,i − am,i =

1− wm,i

wm,i
· am,i

=
1− wm,i

wm,i
· um,i · pi

(1)

The overall delay for Si is

di =
�r

m=1 dm,i,

with r being the number of shared resources. For exam-
ple, for a synchronization request Si at resource Rm, let
am,i = 0.3ms, pi = 1ms, and wm,i = 0.6, then it follows
dm,i = 0.4

0.6 · 0.3ms = 0.2ms. Assume Rm is the only
shared resource, then the duration of Si will be prolonged
to pi� = pi + di = 1ms + 0.2ms = 1.2ms. The interpreta-
tion of this delay formula complies with the observation in
practice: an initiator will experience more delay, if it has less
resource availability or it demands more resource usage. More
specifically, the delay of an initiator is linear to its resource
usage and hyperbolic to its resource availability. This delay
formula is simple and yet efficient in terms of complexity and
accuracy, as will be demonstrated in the experiments.

The delay estimation formula in (1) requires to know the
resource usage and availability. In the following, we show how
to calculate these two terms considering several aspects, such
as arbitration policy, interrupt handling and bus protocols.
B-1 Consider the arbitration policy
Arbitration policy with preemptive fixed priorities: Let S1

and S2 be two synchronization requests issued by initiator 1
and 2 respectively. Assume initiator 1 has higher priority than
initiator 2, then the resource availability at Rm for S1, S2 are
calculated as:

wm,1 = 1; wm,2 = 1− um,1. (2)

Substitute wm,2 in (1), we have

dm,2 = um,1

1−um,1
· um,2 · p2,

Thus if um,1 increases, delay dm,2 will also increase.
Now suppose a third initiator with lower priority issues a

synchronization request S3. To calculate its delay, we compute
the combined resource usage um,(1,2) of Rm demanded by
initiator 1 and 2: um,(1,2) = um,1

� + um,2
�, where um,1

�

remains as before and um,2
� = am,2

p2
� . Here we show that

um,(1,2) ∈ [0, 1]:

0 < um,(1,2) = um,1
� + um,2

� = um,1 +
am,2

p2�

= um,1 +
um,2 · p2
p2 + d2

= um,1 +
um,2 · p2

p2 +
um,1

1−um,1
· um,2 · p2

= um,1 +
1

1
um,2

+ um,1

1−um,1

≤ um,1 +
1

1 + um,1

1−um,1

= 1

(3)

Thus the resource availability for S3 is 1 − um,(1,2), which
can be then used in (1) to compute the delay of S3. Similar
calculation holds for additional initiator with even lower
priority.

Arbitration policy with round robin priority scheme:
Assume initiator 1 and 2 have the same priority, then the

resource availability at Rm for S1 and S2 can be expressed
symmetrically as:

wm,1 = (1− um,2) +
um,1

um,1 + um,2
· um,2;

wm,2 = (1− um,1) +
um,2

um,2 + um,1
· um,1.

(4)

So, assume um,1 = um,2 = 0.7, we have wm,1 = 1−0.7+0.5·
0.7 = 0.65. Correspondingly, the delays and actual durations
of S1 and S2 can be calculated. If a third initiator with the
same priority is added, wm,1 is computed similarly as above:

wm,1 = 1− um,(2,3) +
um,1

um,1+um,(2,3)
· um,(2,3),

where um,(2,3) = min(um,2 + um,3, 1) is the combined
resource usage of S2 and S3.

B-2 Consider interrupt service routines

Some interrupt service routines (ISR) use polling policy,
meaning that they keep invoking transactions to check the
status register of a HW module until the ready state is set. In
this case, the resource usage should be adjusted accordingly.
For example, assume the 2nd to 5th transactions in Fig. 3
are due to register polling. Also, assume the HW module
being polled will set its status register at 60ns. Then even
if these transactions are delayed by the transactions of other
higher priority initiators, the polling in the ISR will still end at
60ns. Correspondingly, when calculating the delay of a lower
priority initiator, the register polling related resource accesses
within its ISR do not count as its resource usage.

B-3 Consider the bus protocols

In most common cases, the system bus is a shared resource.
When advanced bus protocols are used, the calculation of
resource usage for delay estimation should also be adjusted.
For example, according to AMBA AHB bus protocols, slow
and split-capable slaves may split the transactions and free the
bus. Therefore, we do not consider the split slot when calcu-
lating the bus usage of higher priority initiators. This gives
better delay estimation for lower priority initiators. Further,
an initiator can lock the bus and thus can not be preempted
after it has been granted to use the bus. Also, address and
data phases are pipelined in AHB protocols. Preemption of
lower priority initiator happens when the data is ready for the
current beat of its burst transaction. To handle these cases,
the resource availability of higher priority initiator in (2) is
adjusted to wm,1 = 1−α, where α is the bus usage of the lower
priority’s bus-locking transactions plus the average percentage
of a beat in a burst transaction. Correspondingly, the resource
availability for the lower priority initiator is increased by α.

C. The scheduling algorithm
A scheduling algorithm in Alg. 1 is called each time an

initiator issues a new synchronization request. This algorithm
first updates all ongoing synchronization requests, then de-
termines their durations by employing the delay formulas.
Notably, the event cancellation dynamically re-schedules the
end of each synchronization request, based on the updated

Algorithm 1 The Scheduling Algorithm
Snew := the newly received synchronization request
// update ...
for Si ∈ S do

update remaining duration of Si

update remaining resource access time of Si

end for

// resolve timing ...
for Si ∈ S do

for Rx ∈ R do

A := A ∪ getAvailability(Rx, Si)
end for

p := remaining duration of Si

d := getDelay(Si,A) // Equ. 1
p := p + d
Si.endEvent.cancel() // dynamic re-scheduling
Si.endEvent.notify(p)

end for

wait(Snew.endEvent) // the single call to wait()

t1 t2 t4

@ t1
@ t2

t3 t5 time

S1

S2

requested duration

actual duration

high um,2 low um,2

Fig. 4. Dynamic scheduling example.

resource availability. Thus, only one wait statement is needed
per request, no matter how many re-scheduling is performed.
To illustrate the dynamics, consider the example in Fig. 4.
We assume the higher priority S2 has high resource usage
before t2 and low resource usage from t2 onward. At t1,
S1 of initiator 1 requests a duration until t3. The scheduling
algorithm is called and schedules S1 to finish at t5. At
t2, S2 finishes and resumes with the next synchronization
request. The scheduling algorithm is called again. It updates
the remaining duration and the resource access time of S1.
Then it calculates the new delay of S1. Since now S2 has lower
resource usage, S1 is delayed less and is re-scheduled earlier
to t4. Finally, S1 finishes at t4 and initiator 1 can resume.

D. Modeling support - integrating the resource model

The scheduling algorithm is implemented based on a central
resource model [2]. It is provided as a library and can be
viewed as an additional timing layer to the original VP. To use
it, each HW module needs to derive from a resource class:
class ModuleX: public sc_module, public rm_resource
...
void thread_1{

...
functionA();
//synchronize after functionA
rm_useResource(bus_id, sumBusAccessTime);
rm_useResource(mem_id, sumMemAccessTime);
...
rm_sync(requestedDuration);
...

CPU1

dmem1

ICUUART1

cameraimem1

bridge

$I $D

AES

cpu subsystem 1 2 3

UART2

Fig. 5. VP architecture modeled with TLM.

At instantiation, a resource registers itself, receives a re-
source id, and sets its priority if needed. An initiator executes
its thread and accumulates its local time and the access time
of the resources. Then it issues a synchronization request to
the resource model with a requested duration and the resource
access times. The scheduling algorithm is then called to deter-
mine the actual duration. When to issue the synchronization
request can be determined by the programmer (e.g. after a
function is called) or by checking whether the accumulated
local time exceeds a threshold.

III. EXPERIMENTAL RESULTS

In the experiments, we firstly perform RTL simulation as
the proof of concept. Then we apply the proposed approach to
application SW simulation on a multiprocessor TLM. Timing
accuracy and simulation speed-up are examined to evaluate
the proposed synchronization mechanism. The architecture of
the employed TLM VP is sketched in Fig. 5.

A. Proof of concept with RTL simulation
RTL models are clocked, thus temporal decoupling is usu-

ally not used. Nevertheless, here we use cycle accurate RTL
simulation to validate the proposed analytical formulas for
delay estimation. Two initiators are connected to an AMBA
AHB bus at a clock period of 10ns. They use a random
traffic generator to transfer data over the bus. Preemptive
arbitration is used, with initiator 1 having a lower priority.
With no resource conflicts, the number of transactions sent by
initiator 1 within 1ms is fixed for a given traffic density. We
measure the delay to finish those transactions for initiator 1
under various traffic scenarios.

As shown in Fig. 6(a), for a fixed bus usage of initiator 2,
the delay is approximately linear to the bus usage of initiator
1. As shown in Fig. 6(b), for a fixed bus usage of initiator
1, the delay is approximately hyperbolic to the bus usage of
initiator 2. The linear and hyperbolic curvatures conform to the
formula in (1) . These curvatures can be very well estimated
using (1) and (2) with adjustment discussed in Section II-B-3.

B. Application SW simulation
Now we apply the proposed approach to SW performance

simulation with annotated source code [9], [10]. The source
code is annotated with performance information with respect
to the target processor, such as estimated execution cycles and
cache accesses. Without temporal decoupling, the simulation
proceeds in a way as introduced in Fig. 1. The expensive wait
statement is called to synchronize the estimated cycles before
cache line refilling or accesses to non-cachable peripheral
registers. Then transactions are evoked for data transfer over
the bus. In this way, the occurrence times of the transactions

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
el

ay
 (n

s)

Bus usage of initiator 1

ubus,2=0.1
ubus,2=0.2
ubus,2=0.3
ubus,2=0.4
ubus,2=0.5
ubus,2=0.6
ubus,2=0.7
ubus,2=0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Bus usage of initiator 2

ubus,1=0.1
ubus,1=0.2
ubus,1=0.3
ubus,1=0.4
ubus,1=0.5
ubus,1=0.6
ubus,1=0.7
ubus,1=0.8

Fig. 6. Delay of the synchronization request of cpu 1 with respect to different
resource usage scenarios

 read_camera() is in execution
rgb2yuv() is in execution

refill a cache line access a register of UART

1 2 3 4 5 6 7 8

Fig. 7. Traced functions and HW accesses in TLM simulation.

 700000

 720000

 740000

 760000

 780000

 800000

 820000

 1 2 3 4 5 6 7 8 9 10

D
ur

at
io

n
(n

s)

Index of function call

Durations of the function call to write_uart().

delay

TLM
TLM+TD

TLM+TD+DM

Fig. 8. Timing comparison for write uart().

are correctly simulated. However, the simulation speed may
be severely reduced in the case of frequent cache misses
or peripheral accesses. In the following we show that it is
necessary to use temporal decoupling to keep high simulation
speed and that our approach ensures high timing accuracy
when temporal decoupling is used.

The experiment is set up as such: cpu 1 filters a new
buffer with the fir algorithm, and then writes the results to
the UART module, so on and so forth. Concurrently, cpu 2
reads a frame from the camera, performs color conversion
rgb2yuv on each pixel, and then continues with the next
frame. A fixed priority scheme is used, with cpu 2 having
higher priority than cpu 1. The simulation is performed in 3
modes. In TLM simulation, temporal decoupling is not used.
In TLM+TD simulation, temporal decoupling is used. But
there is no consideration of the delay due to the conflicts
at shared resources. In TLM+TD+DM simulation, temporal
decoupling is used. The proposed delay model (DM) and

scheduling algorithm are applied for timing estimation. In the
following, we first give the overall results and then the in-depth
analysis.

The overall simulation results are in Tab. I. In TLM+TD
simulation, we can see that the simulation is 19 times faster if
temporal decoupling is used. However, the timing is underes-
timated by 7%, because the transactions of lower priority cpus
are not delayed by the resource conflicts. In TLM+TD+DM
simulation, the low timing error (-0.8%) indicates that the
proposed delay formulas and scheduling algorithm effectively
resolve resource conflicts and provide good timing estimation.
At the same time, the simulation time is close to that of
TLM+TD simulation. This implies that a very small overhead
is caused by the scheduling algorithm.

TABLE I
MULTIPROCESSOR SIMULATION RESULTS.

Sim. mode TLM TLM+TD TLM+TD+DM

Cycles 306M 288M 303M
Err(%) - -7 -0.8
Exe. time (s) 8.81 0.47 0.48
Speed-up. - 19 18.4

For in-depth analysis, the concurrent bus accesses of cpu
2 and cpu 1 in TLM simulation are given in Fig. 7. We
can see that when executing read camera, cpu 2 evokes
transactions more often than executing rgb2yuv. Therefore,
transactions of cpu 1 are delayed more when cpu 2 is executing
read camera. This can be seen by the measured durations of
cpu1’s 2nd, 4th and 7th calls to write uart in Fig. 8. Further
we can also see that the estimated delays in TLM+TD+DM
simulation match very well with those in TLM simulation.
This means the proposed delay formulas and the scheduling
algorithm have successfully modeled the timing related to
resource conflicts and determined the dynamic timing of the
temporally decoupled synchronization requests.

C. Simulate a hard case
To stress the proposed approach, the data cache is disabled

and polling is used in the ISR of I/O driver functions, in
order to create heavy traffic and thus access conflicts at the
shared bus. The experiment is set up as such: cpu 1 keeps
writing new buffers of various lengths to the UART1 module;
cpu 2 keeps reading a buffer from the AES module; cpu 3
keeps writing new buffers of variant lengths to the UART2
module. A round robin arbitration scheme is used. For cpu 3,
we measure the duration of its call to the write uart() function.
The results are given in Fig. 9. As can be seen, timing in
TLM+TD simulation is quite underestimated, with the errors
around 14%. In contrast, timing in TLM+TD+DM simulation
is very well estimated, with the errors fluctuating around 0%.
The average absolute error for each call is around 2%. Further
it needs to be pointed out that a relatively large fluctuation
of timing errors may occur for synchronization requests of
relatively short periods, within which the delays are sensitive
to the actual occurrence times of the transactions. But the
overall timing is well estimated over a long time period. In
Fig. 9, the overall timing error for the accumulated duration
of those calls is below 1%.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 105

Index of function call.

D
ur

at
io

n
[n

s]

Comparing the duration of write_uart()

0 5 10 15 20 25 30
−30

−20

−10

0

10

Index of function call

Er
ro

r [
%

]

Timing error of each call to write_uart()

TLM
TLM+TD
TLM+TD+DM

TLM+TD
TLM+TD+DM

Fig. 9. Durations of cpu 3’s calls to write uart() under round robin arbitration
scheme.

IV. CONCLUSIONS AND FUTURE WORK

We have shown an approach that analytically determines the
timing for temporally decoupled TLMs. The proposed delay
estimation formulas together with a scheduling algorithm
achieve high timing accuracy in the experiments while causing
little simulation overhead. In the future, we will investigate
other communication patterns and interconnect models, such
as AMBA AXI or network on chip models. If necessary, we
can derive new formulas, for which parameter fitting might be
performed.

ACKNOWLEDGEMENTS
This work is party sponsored by the German Federal Ministry

of Science and Education (BMBF) in the project SANITAS (16
M 3088). Additionally, the authors thank Michael Velten, Volkan
Esen, and Wolfgang Ecker for providing a preliminary version of
the resource model.

REFERENCES

[1] OSCI, OSCI TLM-2.0 Language Reference Manual, 2009.
[2] W. Ecker, V. Esen, and M. Velten, “TLM+ modeling of embedded

HW/SW systems,” in Design, Automation and Test in Europe (DATE),
2010.

[3] G. Schirner and R. Doemer, “Fast and Accurate Transaction Level Models
using Result Oriented Modeling,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2006.

[4] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and Accurate
Resource Conflict Simulation for Performance Analysis of Multi-Core
Systems,” in Design, Automation and Test in Europe (DATE), 2011.

[5] S. Sonntag, M. Gries, and C. Sauer, “SystemQ: A Queuing-Based
Approach to Architecture Performance Evaluation with SystemC,” in
International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), 2005.

[6] A. Bobrek, J. M. Paul, and D. E. Thomas, “Shared resource access
attributes for high-level contention models,” in ACM/IEEE Design Au-
tomation Conference (DAC), 2007.

[7] K. Lu, D. Mueller-Gritschneder, and U. Schlichtmann, “Accurately Timed
Transaction Level Models for Virtual Prototyping at High Abstraction
Level,” in Design, Automation and Test in Europe (DATE), Mar. 2012.

[8] P. Razaghi and A. Gerstlauer, “Predictive OS Modeling for Host-
Compiled Simulation of Periodic Real-Time Task Sets,” IEEE Embedded
System Letters (ESL), 2012.

[9] P. Gerin, M. M. Hamayun, and F. Petrot, “Native MPSoC co-simulation
environment for software performance estimation,” in International con-
ference on Hardware/Software codesign and system synthesis, 2009.

[10] K. Lu, D. Mueller-Gritschneder, and U. Schlichtmann, “Memory Access
Reconstruction Based on Memory Allocation Mechanism for Source-
Level Simulation of Embedded Software,” in Asia and South Pacific
Design Automation Conference (ASP-DACA) , 2013.

