
Control-Quality Driven Design of Cyber-Physical Systems
with Robustness Guarantees

Amir Aminifar1, Petru Eles1, Zebo Peng1, Anton Cervin2

1Department of Computer and Information Science, Linköping University, Sweden
2Department of Automatic Control, Lund University, Sweden

Abstract—Many cyber-physical systems comprise sev-
eral control applications sharing communication and
computation resources. The design of such systems
requires special attention due to the complex timing
behavior that can lead to poor control quality or even
instability. The two main requirements of control appli-
cations are: (1) robustness and, in particular, stability
and (2) high control quality. Although it is essential
to guarantee stability and provide a certain degree of
robustness even in the worst-case scenario, a design
procedure which merely takes the worst-case scenario
into consideration can lead to a poor expected (average-
case) control quality, since the design is solely tuned
to a scenario that occurs very rarely. On the other
hand, considering only the expected quality of control
does not necessarily provide robustness and stability in
the worst-case. Therefore, both the robustness and the
expected control quality should be taken into account in
the design process. This paper presents an efficient and
integrated approach for designing high-quality cyber-
physical systems with robustness guarantees.

I. Introduction and Related Work

Cyber-physical systems are often implemented on dis-
tributed platforms consisting of several computation and
communication resources. Many such systems comprise
several control applications sharing the available resources.
Such resource sharing, if not properly taken into account
during the design process, can lead to poor control quality.
It is well-known that traditional approaches based on the
principle of separation of concerns can lead to either re-
source under-utilization or poor control performance and,
in the worst-case, may even lead to instability of control
applications [1], [2]. Therefore, in order to achieve high
control performance while guaranteeing stability even in the
worst case, it is essential to consider the timing behavior
extracted from the system schedule during control synthe-
sis, and to consider both control performance and stability
during system scheduling. The issue of control–scheduling
co-design [2] has become a notable research direction in
recent years, and there have been several solution attempts
aimed at this problem [3–13]. In spite of the fact that
considering both control performance and stability is of
great importance, previous work only focuses on one of
these two aspects.1 A design approach which only takes
the average control quality into consideration, does not
necessarily guarantee the stability of control applications
in the worst case. On the other hand, considering merely
the worst-case scenario often results in a system with poor
expected control performance. This is due to the fact that
the design is tuned to a specific scenario that occurs very
rarely.

In our previous work [14], we have proposed an efficient
solution to the above problem, which, however, is based
on a set of properties that only hold in the uniprocessor
case. A completely different approach is needed in the case

1Although [4], [12] can guarantee stability besides control perfor-
mance optimization, their approaches are restricted to static-cyclic
and time-triggered scheduling.

of distributed platforms, which are the typical infrastruc-
ture for cyber-physical systems. In this paper, we pro-
pose an integrated control–scheduling approach to design
high-quality cyber-physical systems with guarantees on the
worst-case performance. To this end, two kinds of metrics
are considered: (1) robustness (stability-related) metrics
and (2) stochastic control performance metrics. The former
are considered to be measures of the worst-case control
performance, whereas the latter capture the expected (as in
mathematical expectation) performance of an application.
Even though the overall control performance of a system
is determined by the expected control performance, taking
the stability requirements into consideration during design
space exploration is of huge importance [15]. Therefore,
the optimization is performed considering the expected
control performance as the objective function, subject to
the robustness requirements.

II. System Model

A. Plant Model

Let us consider a given set of plants P. Each plant Pi is
modeled by a continuous-time system of equations [16]

ẋi = Aixi +Biui + vi,

yi = Cixi + ei,
(1)

where xi and ui are the plant state and control signal,
respectively. The control signal is updated at some point in
each sampling period and is held constant between updates.
The additive plant disturbance vi is a continuous-time
white-noise process with zero mean and given covariance
matrix. The plant output, denoted by yi, is sampled at
some point in each sampling period—the measurement
noise ei is discrete-time Gaussian white-noise with zero
mean and given covariance.

B. Platform and Application Model

We consider a distributed execution platform that consists
of several computation nodes, Ni ∈ N, connected by
communication controllers to a bus.

For each plant Pi ∈ P there exists a corresponding
control application denoted by Λi ∈ Λ, where Λ indicates
the set of control applications. Each control application Λi
is modeled as a task chain. A task chain consists of a set
of tasks and a set of edges, identifying the dependencies
among tasks. Thus, an application is modeled as a graph
Λi = (Ti,Γi), where Ti denotes the set of tasks and
Γi =

{
(τij , τi(j+1))

∣∣τij , τi(j+1) ∈ Ti

}
denotes the depen-

dencies between tasks. We denote the jth task of the task
chain of application Λi by τij . The message between tasks
τij and τi(j+1) is indicated by the ordered pair γij(j+1) =
(τij , τi(j+1)) ∈ Γi. The execution-time, cij , of task τij is
modeled as a stochastic variable with probability function

978-3-9815370-0-0/DATE13/ c©2013 EDAA

ξij ,
2 bounded by the best-case execution-time cbij and the

worst-case execution-time cwij . The message transmission
time between tasks τij and τi(j+1) is constant and is denoted
by cij(j+1). Further, we consider the mapping of tasks
given by a mapping function map :

⋃
Λi∈Λ Ti → N. The

communication γij(j+1) is done on the bus if tasks τij and
τi(j+1) are mapped on different nodes (i.e., map(τij) 6=
map(τi(j+1))); otherwise, the communication is done locally
and the overhead is considered in the computation times of
tasks τij and τi(j+1).

Control applications typically provide a satisfactory per-
formance within a range of sampling periods [16]. Hence,
each application Λi can execute with a period hi ∈ Hi,
where Hi is the set of suggested periods that application
Λi can be executed with. However, the actual periods are
determined during the co-design procedure, considering the
relation between scheduling parameters and the controller
synthesis.

III. Control Performance and Synthesis

A. Expected Control Performance

In order to capture the expected performance of an appli-
cation Λi, we use a standard quadratic cost function [16]

Je
Λi

= lim
T→∞

1

T
E

{∫ T

0

[
xi
ui

]T
Qi

[
xi
ui

]
dt

}
. (2)

Here, E {·} denotes expected value, and the positive semi-
definite weight matrix Qi is given by the designer. To com-
pute the expected cost Je

Λi
for a given delay distribution,

the Jitterbug toolbox is employed [17].
While appropriate as a metric for the average quality

of control, the above cost function cannot provide a hard
guarantee of stability in the worst case. Using Jitterbug,
the stability of a plant can be analyzed in the mean-
square sense if all time-varying delays are assumed to be
independent stochastic variables. However, by their nature,
task and message delays do not behave as independent
stochastic variables and therefore, stability results based
on the above quadratic cost are not valid as worst-case
guarantees.

B. Worst-Case Control Performance

We quantify the worst-case control performance of a system
by computing an upper bound on the worst-case gain G
from the plant disturbance d to the plant output y. The
plant output is then guaranteed to be bounded by

‖y‖ ≤ G‖d‖.
If G = ∞, then stability of the system cannot be guar-
anteed. A smaller value of G implies a higher degree of
robustness.

To numerically compute the worst-case gain G, we use
the Jitter Margin toolbox [18]. As inputs, the toolbox
takes the plant model Pi, the control application Λi with
associated sampling period, the nominal sensor–actuator
(input–output) delay Li, the worst-case sensor (input) jitter
∆w
is, and the worst-case actuator (output) jitter ∆w

ia. The
worst-case performance is hence captured by a cost function

Jw
Λi

= G(Pi,Λi, Li,∆
w
is,∆

w
ia). (3)

The worst-case sensor and actuator jitters are computed
using response-time analysis (see Section IV, Figure 1).

2Note that the worst-case stability guarantees only depend on the
worst-case and best-case execution times. The probability function ξij
is only needed for system simulation which is used in computing the
expected sensor–actuator delay and the expected control performance.

a∆
w

s∆
w

kh+h

t

R
b
s R

w
R
b
a R

w
a

L

kh s

Fig. 1. Graphical interpretation of the nominal sensor–actuator delay
L, worst-case sensor jitter ∆w

s , and worst-case actuator jitter ∆w
a

C. Control Synthesis

For a given sampling period hi and a given, constant
sensor–actuator delay (i.e., the time between sampling the
output yi and updating the controlled input ui), it is
possible to find the control-law ui that minimizes the
cost Je

Λi
[16]. Since the overall performance of the system

is determined by the expected control performance, the
controllers are designed for the expected (average) behavior
of the system. The sensor–actuator delay distribution is
strongly dependent on scheduling parameters and the qual-
ity of the constructed controller is degraded if the actual
sensor–actuator delay distribution is different from the
one assumed during the control-law synthesis. This clearly
motivates the need for a control–scheduling co-design ap-
proach. Given the scheduling parameters, system simula-
tion can be performed to obtain the delay distribution and
the expected sensor–actuator delay. The Linear-Quadratic-
Gaussian (LQG) controller, which is optimal with respect
to the expected control performance (Equation 2), is then
synthesized to compensate for the expected sensor–actuator
delay using MATLAB and the Jitterbug toolbox [17]. In
reality, however, the sensor–actuator delay is not constant
and equal to this expected value, due to the interference by
other applications competing for the shared resources which
may degrade the quality of the synthesized controller. The
overall expected control quality of the controller for a given
delay distribution is obtained according to Section III-A.

IV. Jitter and Delay Analyses

In order to apply the worst-case control performance anal-
ysis, we shall compute the three parameters mentioned in
Section III-B (Equation 3), namely, the nominal sensor–
actuator delay Li, worst-case sensor jitter ∆w

is, and worst-
case actuator jitter ∆w

ia for each control application Λi.
Figure 1 illustrates the graphical interpretation of these
three parameters. These parameters can be obtained by
applying response-time analysis as follows,

∆w
is = Rw

is −Rb
is,

∆w
ia = Rw

ia −Rb
ia,

Li =

(
Rb
ia +

∆w
ia

2

)
−
(
Rb
is +

∆w
is

2

)
,

(4)

where Rw
is and Rb

is denote the worst-case and best-case
response times for the sensor task τis of the application Λi,
respectively. Analogously, Rw

ia and Rb
ia are the worst-case

and best-case response times for the actuator task τia.
We consider that tasks are executed based on a pre-

emptive fixed-priority policy. Furthermore, we consider the
computation nodes are connected via a CAN (Controller
Area Network) bus (non-preemptive fixed-priority arbitra-
tion policy). Computation of the end-to-end worst-case and
best-case response times is done using the holistic response-
time analysis [19], [20] based on the BWCRT algorithm
in [21]. The BWCRT algorithm calculates the best-case
and worst-case response times iteratively and updates the
static and dynamic offsets until convergence. For more
general system models, e.g., heterogeneous architectures,

and complex task dependencies, the SymTA/S [22] tool can
be used.

The worst-case response time of task τij can be computed
using the offset-based analysis [23] as follows,

Rw
ij =

max
∀τik∈hp(τij)∪{τij}

{
max
∀p
{wijk(p)− ϕijk − (p− 1)hi + Φij}

}
,

where hp (τij) is the set of higher priority tasks which are
mapped on the same computation node and wijk(p) is the
worst-case busy period of the pth job of τij in the busy
period, numbered from the critical instant initiated by τik.
The value of wijk(p) is determined as follows,

wijk(p) = Bij + (p− p0,ijk + 1)cwij +Wik(τij ,wijk(p))

+
∑
∀a6=i

W ∗a (τij ,wijk(p)),

where Wik(τij , t) and W ∗a (τij , t) are the worst-case inter-
ference by the higher priority tasks in the same task chain
and the maximum of all possible interferences that could
be caused by task chain Λa, on τij , for a busy period of
duration t, respectively. Bij is the maximum interval during
which τij can be blocked by the lower priority tasks.

The CAN network is modeled as a unit arbitrated ac-
cording to a non-preemptive priority driven policy and the
delays induced by message passing are considered inside the
above analysis [24], [23], [20].

Under fixed-priority scheduling, the best-case response
time of task τij is given by the following equation [21]

wij = cbij +
∑

∀τab∈hp(τij)

⌈
wij − (ha +Rw

pre(ab) −R
b
ab)

ha

⌉
0

cbab,

Rb
ij = wij +Rb

pre(ij),

where Rw
pre(ab) captures the worst-case response time of the

direct predecessor of task τab in the task chain.
For the best-case response time for message γij(j+1) on

a CAN bus, we consider the following,

Rb
ij(j+1) = cij(j+1) +Rb

ij .

V. Motivational Example

We consider three plants P = {P1, P2, P3}. For each
plant Pi, a discrete-time LQG controller Λi is synthesized
for a given period and constant expected sensor–actuator
delay using the Jitterbug toolbox [17] and MATLAB.
The expected sensor–actuator delay is obtained using our
system simulation environment for distributed real-time
systems. Each controller Λi is modeled as a task chain
consisting of two tasks, sensor task τis, and computation
and actuator task τica. The task chains and the mapping
of the tasks on the distributed platform (two processing
nodes N = {N1, N2} connected via a bus) are depicted
in Figure 2. The numbers in parentheses are execution
times of tasks or communication times of messages. All
time quantities are given in milliseconds throughout this
section. The total expected control cost, for a set of plants
P, is Je

total =
∑
Pi∈P J

e
Λi

, whereas the total worst-case
control cost is defined to be Jw

total =
∑
Pi∈P J

w
Λi

. Further,
we consider the fixed-priority scheduling policy and assume
that application Λi has higher priority than application Λj
iff i > j. Having assigned the priorities,3 a design solution is
captured by a tuple DSi = (h1, h2, h3) which identifies the

3For simplicity of this example, we consider the priorities given. As
shown later, priority assignment is also part of our co-design approach.

(2)

(1)

(2)

3ca
τ(3)

3s
τ(2)

2ca
τ(3)

2s
τ(5)

1ca
τ(3)

1s
τ(1)

1
N

2
N

CC CC
Bus

Fig. 2. Motivational example

assigned periods of the applications. 4 It should be noted
that for this particular example, the values of the nominal
sensor–actuator delay, worst-case sensor jitter, and worst-
case actuator jitter are the same for all explored design
solutions.

Let us consider DS1 = (50, 40, 50) to be the initial period
assignment. The total expected control cost, calculated by
the Jitterbug toolbox, for this design solution is equal to
Je

total = 11.5. However, using the Jitter Margin toolbox, we
realize that the stability of control application Λ1 cannot
be guaranteed (Jw

Λ1
=∞).

In order to decrease the interference by higher priority
applications for application Λ1, the designer might increase
the period of application Λ3 to 60. In addition, since smaller
period often leads to a better control performance, the de-
signer might decide to decrease the period of application Λ1

to 40, leading to the design solution DS2 = (40, 40, 60). The
total worst-case control cost is Jw

total = 31.7 which, since
finite, represents a guarantee of stability for all applications.
The total expected control cost, however, is increased to
Je

total = 26.0.
Another solution would be DS3 = (40, 40, 50). This leads

to the expected and worst-case control costs Je
total = 11.9

and Jw
total = 75.1. Both DS2 and DS3 guarantee the stability

of all applications since the worst-case control costs are fi-
nite. However, although the former solution (DS2) provides
better worst-case control performance, the latter (DS3) is
desirable since the total expected performance is better. It
is also easy to observe that with DS3 it has been possible
to guarantee stability with a very small deterioration of the
expected control cost, compared to DS1.

It should be noted that although control application Λ1

is assigned a smaller period in DS3, the total expected
control performance of DS1 is slightly better. While this
change leads to a better expected control performance
for control application Λ1 in DS3, the expected control
performance of the high priority control application Λ3 is
worse in DS3. This is due to the non-preemptability of the
communication infrastructure, which, in turn, has led to
variation in the delay (i.e., delay distribution) experienced
by control application Λ3.

We conclude that, optimizing the expected control qual-
ity without taking the worst-case control performance into
account can lead to design solutions which are unsafe in
the worst-case (e.g. DS1). Nonetheless, focusing only on
stability, potentially, leads to poor overall control quality,
since the system is optimized towards cases that might
appear with only a low probability (e.g. DS2). Therefore, it
is essential and possible to achieve both safety (worst-case
stability) and high level of expected control quality (e.g.
DS3).

4Note that for each design solution DSi, the controllers are synthe-
sized for the given periods and the expected sensor–actuator delays
which are obtained using system simulation.

VI. Problem Formulation

The inputs for our co-design problem are
• a set of plants P to be controlled,

• a set of control applications Λ,

• a set of suggested sampling periods Hi for each Λi,

• execution-time probability functions ξij of the tasks
with their best-case and worst-case execution times cbij
and cwij ; transmission times γij(j+1) of messages,

• a distributed platform,

• a mapping function map for tasks to computation
nodes.

The outputs are the period hi for each control applica-
tion Λi, unique priority ρi for each application Λi, and the
control law ui for each plant Pi ∈ P.

The final control quality is captured by the weighted
sum of the individual control costs Je

Λi
(Equation 2) of

all applications Λi ∈ Λ. To guarantee stability, the worst-
case control cost Jw

Λi
(Equation 3) must have a finite value.

However, in addition to worst-case stability, the designer
may require an application to satisfy a certain degree of
robustness. Hence, the optimization problem is formulated
as:

min
h,u,ρ

∑
Pi∈P

wΛi
Je

Λi

s.t. Jw
Λi
< J̄w

Λi
, ∀Pi ∈ P,

(5)

where the weights wΛi
are determined by the designer. The

application Λi is the synthesized controller corresponding
to the plant Pi. Further, J̄w

Λi
captures the limit on tolerable

worst-case cost for Λi and is decided by the designer. There-
fore, the constraints in the formulation ensure satisfaction
of the robustness requirements. If the requirement for an
application Λi is only to be stable in the worst-case, the
constraint on the worst-case control cost Jw

Λi
is to be finite.

VII. Co-design Approach

The overall flow of our approach is illustrated in Figure 3. In
each iteration, each control application is assigned a period
using our period optimization algorithm (Section VII-A).
For a certain period assignment, we proceed with priority
optimization and control synthesis (Section VII-B). The
assigned priorities should provide high quality of control
and meet the worst-case performance requirements. Having
assigned the periods and priorities and synthesized the
controllers, we perform system simulation to extract delay
distributions and compute the expected control cost. The
algorithm terminates once the search method cannot find
a better solution.

A. Period Optimization

The period optimization is performed using the coordi-
nate search method [25] combined with the direct search
method [26]. Both belong to the class of derivative-free
optimization [25]. Derivative-free optimization is often used
when the objective function is not available explicitly (in
our case the objective function is calculated as result of
the sequence inside the loop in Figure 3) and it is time
consuming to obtain the derivatives using finite differences.
The optimization is performed in two steps. In the first
step, the coordinate search method, guided by the expected
control performance, while considering the worst-case per-
formance requirements, identifies a promising region in the
search space. In other words, since shorter period often
leads to better control performance, the coordinate search
method, iteratively, assigns shorter periods to controllers
which violate their worst-case robustness requirements or

System Model

Period Specification

Execution−Time Specification

& Control Synthesis

Priority Optimization

& Controllers

Priorities

System Simulation

Delay Distributions

Compute Control Cost

Stop?

Periods

Yes

No

Periods

Choose Controller

Controllers

Schedule Specification

(Periods & Control−Laws)

P
er

io
d

 O
p

ti
m

iz
a

ti
o

n
 L

o
o

p

Fig. 3. Overall flow of our approach

provide poor expected control performance. In the second
step, the direct search method performs the search in the
promising region identified in the first step. The direct
search method iteratively performs a set of exploratory
moves to acquire knowledge concerning the behavior of the
objective function, identifies a promising search direction,
and moves along the identified direction.

Thus far, the period optimization approach correspond-
ing to the loop in Figure 3 is discussed. Inside the loop,
priority assignment and control synthesis is performed such
that the design goals are achieved. The next subsection
describes the optimization procedure performed inside the
loop.

B. Priority Optimization and Control Synthesis

The priority optimization is done in two steps. The first
step is performed exclusively based on the expected control
performance. The second step assigns the priorities to
increase the expected performance and meet the worst-
case control performance requirements while preserving the
already established priority assignment from the first step,
as far as possible.

In the first step, initial priorities are assigned based on
the bandwidths of the closed-loop control applications, as
computed by MATLAB. The bandwidth of a closed-loop
control system indicates the speed of system response—the
larger the bandwidth, the faster the response. Further, a
higher bandwidth implies that the system is more sensi-
tive to a given amount of delay. Analogous to the rate-
monotonic priority assignment principle, we hence assign
higher priorities to control applications with larger band-
width, leading to smaller induced delays due to interference
from other applications. The priority order found in this
step is passed, via the sequence S, as an input to the
optimization process in the next step. The sequence S
contains the control applications in an ascending order of
closed-loop bandwidth. It should be noted that in the first
step we only consider the expected control performance.

In the second step, the optimization is performed using
a backtracking algorithm outlined in Algorithm 1. The
algorithm traverses the design solutions in such a way that

Algorithm 1 Priority Optimization
% S: sequence of remaining applications;
% MAX NUM: the max number of nodes the algorithm can visit;
% counter: the number of nodes visited so far;

1: function Backtrack(S, priority)
2: if S == ∅ then
3: • Response-time analysis for sensors and actuators;
4: • Jitter and delay analyses ∆w

s , ∆w
a , L for all Λi ∈ Λ;

5: • Simulation to find the expected sensor–actuator delays
and to find the sensors and actuators delay distributions;

6: • Control-law synthesis and delay compensation;
7: • Compute the worst-case control costs Jw

Λi
for all Λi ∈ Λ;

8: if Jw
Λi
< J̄w

Λi
,∀Λi ∈ Λ then

9: • Compute the overall expected control cost Je
total;

10: • Update the best solution if the expected control cost
of the current solution is the best one found so far;

11: end if
12: end if

% The following loop iterates through the remaining applications
% S, while considering the order in sequence S;

13: for all Λi ∈ S if counter < MAX NUM do
14: • counter = counter + 1;
15: • Consider ρi = priority and hp (Λi) = S \ {Λi};
16: • Response-time analysis for sensor and actuator;
17: • Jitter and delay analyses ∆w

is, ∆w
ia, Li;

18: • Simulation to find the expected sensor–actuator delay
for Λi;

19: • Control-law synthesis and delay compensation;
20: • Compute the worst-case control cost Jw

Λi
for Λi;

21: if Jw
Λi
< J̄w

Λi
then

22: Backtrack(S \ Λi, priority + 1);
23: end if
24: end for
25: end function

it preserves, as far as possible, the priority order estab-
lished in the first step. In other words, the backtracking
algorithm applies the priority order established in the first
step whenever there are multiple options available. The
idea is to find the set of applications which can meet
their worst-case performance requirements even if they are
assigned the lowest priority. In order to investigate whether
a control application meets its robustness requirement, we
shall synthesize an LQG controller compensating for the
expected sensor–actuator delay using the Jitterbug toolbox
and MATLAB (Line 19). To obtain the expected sensor–
actuator delay, we use our system simulation environment
for distributed real-time systems (Line 18). In addition
to controller synthesis, we need to obtain the nominal
sensor–actuator delay, worst-case sensor jitter, and worst-
case actuator jitter (Equation 4) (Line 17). To this end,
we perform the best-case and worst-case response-time
analyses as discussed in Section IV (Line 16). Having
synthesized the controllers and found the values of the
nominal sensor–actuator delay, worst-case sensor jitter, and
worst-case actuator jitter, we use the Jitter Margin toolbox
to check the robustness requirements (Lines 20–21). Then,
we assign the lowest priority to the application (among the
applications which can meet their robustness requirements)
which has the lowest priority according to the priority order
produced in the first step. We remove this application from
the sequence of all applications and continue this process for
the remaining applications (Line 22). Once all applications
are assigned a unique priority, we shall perform a final
check to make sure that the robustness requirements are
satisfied (Lines 2–8). This is needed due to the fact that
the response times, and consequently the nominal delay
and jitters, are not only dependent on the set of higher
priority applications, but also their actual priority order. If
the robustness requirements are satisfied, we compute the
overall expected control cost and update the final solution
if it is better than the best found so far (Lines 9–10).

= 2
3

ρ= 2
2

ρ

Λ 2, Λ< 3>

< Λ 3 >

< Λ 1 >

= 1
2

ρ= 1
1

ρ

= 2
1

ρ

= 3
3

ρ

< Λ 4 >

Λ 1, Λ< 2>

< Λ 4 >

< Λ 3 >

= 3
3

ρ

< >

Fig. 4. An example of backtracking algorithm

The backtracking algorithm stops searching once a certain
number of nodes, specified by the designer, in the search
tree is visited (Line 13). Such a stopping condition provides
the designer with the possibility of trading time for quality.

Figure 4 illustrates the backtracking algorithm using
a small example. Let us consider four control applica-
tions Λ = {Λ1,Λ2,Λ3,Λ4}. Furthermore, let us assume
the first step priority assignment results in priority order
〈Λ1,Λ2,Λ3,Λ4〉, i.e., application Λi has higher priority than
application Λj iff i > j. The search tree is shown in Figure
4. The nodes are labeled with the sequence of applications,
among the remaining applications, which meet their ro-
bustness requirements even if they are assigned the next
lowest priority level. For instance, the root of the tree is
labeled 〈Λ1,Λ2〉, meaning that among all applications, only
applications Λ1 and Λ2 can be assigned the lowest priority
level (priority level 1). The edge labels depict priority
assignment progress, e.g., ρ2 = 1 indicates that application
Λ2 is assigned priority level 1. The dashed line depicts the
order in which our backtracking algorithm traverses the
search tree. Considering node 〈Λ2,Λ3〉, either application
Λ2 or application Λ3 can be assigned priority level 2.
However, according to the first step priority optimization, it
is beneficial, in terms of the expected control performance,
to assign application Λ2 priority level 2. If application Λ3

is assigned priority level 2, in the next step, it turns out
that this priority assignment cannot lead to a valid solution,
considering the robustness requirements and, therefore, this
branch is pruned. It is worth noting that the complete
search tree for this example has 65 nodes.

VIII. Experimental Results

To investigate the efficiency of our proposed approach,
several experiments have been conducted. Our proposed
approach (EXP–WST) is compared against a baseline
approach that only considers the expected performance
(EXP) for a set of 100 benchmarks. The plants considered
in each benchmark are chosen randomly from a database
consisting of inverted pendulums, ball and beam processes,
DC servos, and harmonic oscillators [16]. These plants are
considered to be representatives of realistic control applica-
tions and are extensively used for experimental evaluation.
In our benchmarks, the number of control applications
varies from 2 to 11. The tasks of the task chain models
of control applications are mapped randomly on platforms
consisting of 2 to 6 computation nodes connected via a
bus. Without loss of generality, our goal here is to find
high-quality stable design solutions (the constraints on the
worst-case control costs are to have finite values).

The evaluation of the proposed EXP–WST approach is
performed against an optimization approach, called EXP,
which only takes the expected control performance into con-
sideration. While the period assignment in this approach is

TABLE I
Experimental Results

Number of Comparison with EXP approach
control Difference Percentage of

applications
(
Je
EXP–WST−J

e
EXP

Je
EXP–WST

)
× 100 invalid solutions

2–3 0% 20%
4–5 1% 85%
6–7 6% 90%
8–9 10% 90%

10–11 11% 95%
Average 6% 76%

similar to our proposed approach, of course without consid-
ering the worst-case robustness requirements, the priority
assignment is done using a genetic algorithm similar to
[10]. In principle, the EXP approach should outperform
our proposed approach in terms of expected control cost
since the search is not constrained by worst-case stability
requirements. The comparison has been made considering
the relative expected control cost difference

Je
EXP–WST−J

e
EXP

Je
EXP–WST

,

where Je
EXP and Je

EXP–WST are the expected control costs
of the final solutions found by the EXP and the EXP–
WST approaches, respectively. The results are shown in
the second column of Table I. Our optimization approach,
while guaranteeing stability, is on average only 6% away
from the EXP approach, in terms of the expected control
performance. However, since the EXP approach does not
take the worst-case stability into consideration, it is possible
that the stability of the final solution cannot be guaranteed.
The percentage of the benchmarks for which stability is
not guaranteed (invalid solutions) is shown in the third
column of Table I. It can be seen that, on average, the EXP
approach leads to potentially unstable design solutions for
76% of benchmarks.

We have measured the runtime of our proposed approach
on a PC with a quad-core CPU running at frequency 2.83
GHz, 8 GB of RAM, and Linux operating system. The
runtime of our algorithm is shown in Figure 5 as a function
of the number of control applications. It can be seen that for
systems with 11 control applications our proposed approach
can find high-quality stable design solutions in less than one
hour. The runtime of the optimization procedure with the
EXP approach is also shown in Figure 5.

To sum up, we have shown the efficiency of our design
approach which guarantees the worst-case stability of the
system while providing high expected control performance.

IX. Conclusions

Sharing of the available computation and communication
resources by control applications is commonplace in cyber-
physical systems. Such resource sharing might lead to poor
control performance or may even jeopardize the stability of
applications if not properly taken into account during de-
sign. Therefore, not only the robustness and stability should
be taken into account during the design process, but also
the quality of control. In this paper, we have proposed an
integrated approach for designing high performance cyber-
physical systems with robustness guarantees and validated
the efficiency of our proposed approach.

References
[1] Björn Wittenmark et al. “Timing Problems in Real-Time Control

Systems”. In: Proceedings of the American Control Conference.
1995, pp. 2000–2004.

[2] K. E. Årzén et al. “An Introduction to Control and Scheduling Co-
Design”. In: Proceedings of the 39th IEEE Conference on Decision
and Control. 2000, pp. 4865–4870.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10

R
u

n
ti
m

e
 [

S
e

c
]

Number of Control Applications

Our approach (EXP-WST)
Relaxed approach (EXP)

Fig. 5. Runtime of proposed approach

[3] D. Seto et al. “On Task Schedulability in Real-Time Control Sys-
tems”. In: Proceedings of the 17th IEEE Real-Time Systems Sym-
posium. 1996, pp. 13–21.

[4] H. Rehbinder and M. Sanfridson. “Integration of Off-Line Schedul-
ing and Optimal Control”. In: Proceedings of the 12th Euromicro
Conference on Real-Time Systems. 2000, pp. 137–143.

[5] Anton Cervin et al. “The Jitter Margin and Its Application in the
Design of Real-Time Control Systems”. In: Proceedings of the 10th

International Conference on Real-Time and Embedded Computing
Systems and Applications. 2004.

[6] Truong Nghiem et al. “Time-triggered implementations of dynamic
controllers”. In: Proceedings of the 6th ACM & IEEE International
conference on Embedded software. 2006, pp. 2–11.

[7] E. Bini and A. Cervin. “Delay-Aware Period Assignment in Control
Systems”. In: Proceedings of the 29th IEEE Real-Time Systems
Symposium. 2008, pp. 291–300.

[8] Fumin Zhang et al. “Task Scheduling for Control Oriented Require-
ments for Cyber-Physical Systems”. In: Proceedings of the 29th IEEE
Real-Time Systems Symposium. 2008, pp. 47–56.

[9] Payam Naghshtabrizi and João Pedro Hespanha. “Analysis of Dis-
tributed Control Systems with Shared Communication and Compu-
tation Resources”. In: Proceedings of the 2009 American Control
Conferance (ACC). 2009.

[10] S. Samii et al. “Integrated Scheduling and Synthesis of Control
Applications on Distributed Embedded Systems”. In: Proceedings
of the Design, Automation and Test in Europe Conference. 2009,
pp. 57–62.

[11] Rupak Majumdar et al. “Performance-aware scheduler synthesis for
control systems”. In: Proceedings of the 9th ACM international
conference on Embedded software. 2011, pp. 299–308.

[12] Dip Goswami et al. “Time-Triggered Implementations of Mixed-
Criticality Automotive Software”. In: Proceedings of the 15th Con-
ference for Design, Automation and Test in Europe. 2012.

[13] Pratyush Kumar et al. “A Hybrid Approach to Cyber-Physical Sys-
tems Verification”. In: Proceedings of the 49th Design Automation
Conference. 2012.

[14] Amir Aminifar et al. “Desiging High-Quality Embedded Control
Systems with Guaranteed Stability”. In: Proceedings of the 33th

IEEE Real-Time Systems Symposium. 2012, pp. 283–292.
[15] Payam Naghshtabrizi and João Pedro Hespanha. “Distributed Con-

trol Systems with Shared Communication and Computation Re-
sources”. Position paper for the National Workshop on High Con-
fidence Automotive Cyber-Physical Systems. 2008.

[16] K. J. Åström and B. Wittenmark. Computer-Controlled Systems.
3rd ed. Prentice Hall, 1997.

[17] B. Lincoln and A. Cervin. “Jitterbug: A Tool for Analysis of Real-
Time Control Performance”. In: Proceedings of the 41st IEEE Con-
ference on Decision and Control. 2002, pp. 1319–1324.

[18] A. Cervin. “Stability and Worst-Case Performance Analysis of
Sampled-Data Control Systems with Input and Output Jitter”. In:
Proceedings of the 2012 American Control Conference (ACC).
2012.

[19] Ken Tindell and John Clark.“Holistic schedulability analysis for dis-
tributed hard real-time systems”. In: Microprocess. Microprogram.
40.2-3 (1994), pp. 117–134.

[20] J.C. Palencia Gutierrez et al. “On the schedulability analysis for
distributed hard real-time systems”. In: Proceedings of the 9th Eu-
romicro Workshop on Real-Time Systems. 1997, pp. 136–143.

[21] J.C. Palencia Gutierrez et al. “Best-case analysis for improving the
worst-case schedulability test for distributed hard real-time sys-
tems”. In: Proceedings of the 10th Euromicro Workshop on Real-
Time Systems. 1998, pp. 35–44.

[22] R. Henia et al. “System level performance analysis - the SymTA/S
approach”. In: IEE Proceedings Computers and Digital Techniques
152.2 (2005), pp. 148–166.

[23] J.C. Palencia and M. Gonzalez Harbour. “Schedulability analysis for
tasks with static and dynamic offsets”. In: Proceedings of the 19th

IEEE Real-Time Systems Symposium. 1998, pp. 26–37.
[24] Robert Davis et al. “Controller Area Network (CAN) schedulability

analysis: Refuted, revisited and revised”. In: Real-Time Systems 35
(3 2007), pp. 239–272.

[25] J. Nocedal and S.J. Wright. Numerical Optimization. 2nd ed.
Springer, 1999.

[26] Robert Hooke and T. A. Jeeves. ““Direct Search”Solution of Numer-
ical and Statistical Problems”. In: J. ACM 8.2 (1961), pp. 212–229.

