
A Fast and Accurate Methodology for Power Estimation and
Reduction of Programmable Architectures

Erwan Piriou, Raphaël David
CEA, LIST, Embedded Computing Lab, F-91171 Gif sur Yvette, FRANCE.

erwan.piriou@cea.fr – raphael.david@cea.fr

Fahim Rahim, Solaiman Rahim
Atrenta - Minatec Office

7 Parvis Louis Neel, 38040 Grenoble France

Abstract - We present a power optimization method-
ology that provides a fast and accurate power model
for programmable architectures. The approach is based
on a new tool that estimates power consumption from a
register transfer level (RTL) module description, activity
files and technology library. It efficiently provides an
instruction-level accurate power model and allows design
space exploration for the register file. We demonstrate a
19% improvement for a standard RISC processor.

I. INTRODUCTION

An early power estimation and exploration tool is a strong
asset for optimizing an architecture. Taking into account the
emergence of specialized and/or general purpose microproces-
sor resources in recent system-on-chip (SoC) designs, the need
for fast power estimation becomes crucial. In particular, con-
sidering embedded processors, the opportunity to characterize
an instruction set architecture (ISA) allows the feedback of
important power figures to the compiler designer. Additionally,
from a hardware point of view, the capability to highlight
the cost/impact of architectural choices (e.g., the register file
architecture) enables analysis of the architecture in terms of
power consumption.

Tiwari et al. [1] have proposed a framework (Wattch)
to analyze power consumption and optimize the design at
the architectural level. This framework enables the associ-
ation/correlation of a gate-level power model with a more
abstract model for the design of the CPU. The Simplescalar
tool [2] enables a dynamic power analysis taking into account
real execution on a processor. The Xeemu simulator[3] uses the
same approach and introduces more detailed microarchitectural
parameters. The estimator achieves an accuracy of better than
5%. In fact, this accuracy is the result of a precise cycle
accurate simulator. Such methodologies are based on gate-
level power characterization, i.e., the power estimations are
performed on the netlist file. Despite the accuracy of the
estimation at this level, the large data set handled (and the
processing time required) prevents a fast approach and an
estimation on a complete application otherwise than by an
average power characterization. It also prevents the designer
from exploring the design space and considering different
technology corner-cases.

The proposed approach considers the instruction set archi-
tecture and the RTL description as entry points. It allows the
acquisition of a power scorecard for the programmable core at
the instruction level while considering the architecture descrip-
tion at the RT level. In fact, several power scorecards could be

generated depending on the chosen technology and frequency.
This approach proposes to drastically reduce the computing
time to rapidly obtain a power model and architectural hints
for the programmable core design while remaining accurate.

II. POWER ESTIMATION FLOW

The proposed power characterization starts from:

• The complete instruction set list (plus their format)
and compilation toolchain

• Verilog, VHDL or SystemVerilog RTL description of
the considered architecture

• Technology library

Figure 1 illustrates a four-step power estimation flow.

Fig. 1. Power estimation flow for programmable architectures

First, testbenches for all possible legal instruction pairs
are generated in C code using asm volatile pragma features.
Then, using the compilation toolchain, the program is compiled
and the executable memory footprints are generated for RTL
simulation. Next, simulations are performed for the hardware
architecture using an RTL simulator. The activity files (.vcd,
.fsdb or .saif format) are generated to feed the Atrenta R©

SpyGlass Power Estimate tool. Finally, all RTL and activity
files are processed by the Atrenta SpyGlass RTL Power
Estimation and Reduction tools. Concurrently, the technology
library is linked and a functional frequency is initialized. The
tool outputs the power figures for all testbenches. They are
gathered to build a power scorecard. From a power analysis,
the microarchitecture power budget is analyzed. The register
file constitutes the greediest module.

III. REGISTER FILE DESIGN SPACE EXPLORATION

The register file (RF) is a good candidate because it
consumes from 35 to 60% of the total power budget. In
fact, this module optimization represents the best opportunity
to save power. Our interest mainly focuses on the design
space exploration of the register file while considering pro-
gram execution. Nalluri et al. [4] have presented a way to978-3-9815370-0-0/DATE13/ c©2013 EDAA



customize the register file depending on software access to
the processor RF. It claims to reduce up to 55% of energy
consumption by splitting a monolithic banked entity into a
multi-banked configuration. Another study [5] has proposed
a power reduction strategy by limiting accesses to the RF. A
reuse of registers in the RF is enabled by comparing source
and destinations operands of instructions. The RF accesses are
reduced by 39% compared to a conventional implementation.
Beyond a dedicated power improvement on the register file,
we propose a structural approach by modifying both the RTL
architecture of the RF module and the compiling options,
especially the number of available registers. A reduction in the
number of RF registers is achieved concurrently through the
use of compiler options and the hardware description. Thus,
different RF implementations are considered regarding effects
on power consumption.

IV. A CASE STUDY

The 16/32bit ISA of the RISC processor [6] is considered
as a case-study. For a core handling at least 74 instructions, 74
benches are required for intrinsic power characterization and
2701 benches for pair of instructions estimations. Therefore, it
is not realistic to quickly provide a complete gate-level power
model for the processor. In fact, an aggregate testbench would
have a length of 1 millisecond for the activity file. A single
analysis at the netlist level of an activity file of such a length
cannot be planned.

In this case study, the developed power estimation flow at
the RT level allows a speedup by a factor 15 compared to gate
level methods for the RISC processor running at 400 MHz
on a TSMC 45nm library. The powercard contains all average
power consumption obtained for the execution of the same in-
structions and the execution of all possible pairs of instructions.
They are classified by functionality (load/store, arithmetic,
logical, branch/jmp/call and coprocessor operations), by format
(i.e., 16/32 bit encoding style) and by data access (registers or
immediate). These figures have been used to back annotate the
standalone instruction set simulator of the chosen processor.
An average accuracy of nearly 80% was obtained for the power
model on a representative set of benchmarks executing motion
estimation, discrete wavelet transform, and a sort algorithm
compared to gate-level characterization.

Experiments have also been performed for unified/split
register file architectures and different numbers of registers
(physical/compiling option). Here, a 16x32 bit register unified
architecture (compilation for 16 registers available) is consid-
ered as the reference baseline. The second configuration is the
same architecture with only 8 registers available. Next, a 8x32
bit register unified architecture with 8 registers option is the
last unified configuration. Finally, three split configurations are
implemented: an 8+2 architecture (with 10 registers available),
an 2x8 architecture (with 16 registers available) and a last 2x8
architecture with a clock-gated cluster.

Figure 2 depicts the power consumption of the processor
core and the register file, in mW, for the unified 16x32 register
file architecture. Considering the unified version, when the
number of used registers is shifted from 16 to 8, the total
design and the register file power consumption remain the
same. However, the execution time increases by 5.6%. The

Fig. 2. Power consumption of a RISC processor and its RF

third case gives the power figure for an 8x32 unified RF
implementation. The total power consumption is reduced by
17% whereas the register file component decreases by 44%.
Additionally, the register file is modified to implement an
8+2 split configuration containing r0-r7 and r14-r15 (mapped
to r8-r9) to avoid performance loss. Thus, the total power
consumption is reduced by 12% whereas the register file
component decreases by 30%. A strict splitting of the RF
results in a slight gain only for the RF. Moreover, when clock
gating is applied on the second part of the RF, the global power
consumption decreases by 7.5% (19% for the RF).

V. CONCLUSIONS

This paper shows that a processor characterization can be
done in an efficient manner using a power tool at the RT-Level
rather than a strict gate-level power approach. Applying the
SpyGlass Power Estimate tool resulted in a 15 fold speedup
to obtain an accurate power model of a RISC processor.
Moreover, a classification of instructions can be done with
respect to their execution on the hardware description, allowing
the back annotation of the instruction set simulator. This first
step enables us to explore the impact of architectural choice.
We focused on the register file design. Opportunities such as
customization through compiling options have been studied.
The splitting and the clock gating of one part of the RF can
save 19% of the power consumption.

This opportunity for early design tools to consider pro-
grammable architectures power consumption is a promising
solution to make the design process easier. It is of particular
importance for compiler and hardware designers when pursu-
ing power saving improvements. In the future, the approach
would be applied on the other part of the microarchitecture.

REFERENCES

[1] D.Brooks, V.Tiwari, and al. Wattch: A framework for architectural-level
power analysis and optimizations. In Intl Symp. on Computer Arch.,
2000.

[2] D.Austin et al. Simplescalar: An infrastructure for computer system
modeling. In IEEE Computer 35, 2002.

[3] Z. Herczeg, D. Schmidt, Á. Kiss, N. Wehn, and T. Gyimóthy. Energy
simulation of embedded xscale systems with xeemu. J. Embedded
Comput., 3(3):209–219, August 2009.

[4] R.Nalluri et al. Customization of register file banking architecture for
low power. In Conference Proceedings:VLSI Design, 2007.

[5] H.Takamura et al. Reducing access count to register-files through operand
reuse. In Advances in Computer Systems Architecture, Lecture Notes in
Computer Science, 2003.

[6] Charly Bechara et al. A small footprint interleaved multithreaded
processor for embedded systems. In ICECS, pages 685–690, 2011.


