
Priority Assignment for Event-triggered Systems
using Mathematical Programming

Martin Lukasiewycz1, Sebastian Steinhorst1, Samarjit Chakraborty2

1 TUM CREATE, Singapore, Email: {martin.lukasiewycz, sebastian.steinhorst}@tum-create.edu.sg
2 TU Munich, Germany, Email: samarjit@tum.de

Abstract—This paper presents a methodology based on math-
ematical programming for the priority assignment of processes
and messages in event-triggered systems with tight end-to-end
real-time deadlines. For this purpose, the problem is converted
into a Quadratically Constrained Quadratic Program (QCQP)
and addressed with a state-of-the-art solver. The formulation
includes preemptive as well as non-preemptive schedulers and
avoids cyclic dependencies that may lead to intractable real-
time analysis problems. For problems with stringent real-time
requirements, the proposed mathematical programming method
is capable of finding a feasible solution efficiently where other
approaches suffer from a poor scalability. In case there exists no
feasible solution, an algorithm is presented that uses the proposed
method to find a minimal reason for the infeasibility which may
be used as a feedback to the designer. To give evidence of the
scalability of the proposed method and in order to show the clear
benefit over existing approaches, a set of synthetic test cases is
evaluated. Finally, a large realistic case study is introduced and
solved, showing the applicability of the proposed method in the
automotive domain.

I. INTRODUCTION

Modern automobiles comprise dozens of Electronic Control
Units (ECUs) and bus systems. For safety-critical functions
like Anti-lock Braking System (ABS) or Electronic Stability
Program (ESP) there exist hard real-time deadlines that have
to be satisfied to guarantee their proper functionality. In event-
triggered systems, ECUs using preemptive schedulers such as
OSEK [1] or the non-preemptive Controller Area Network
(CAN) bus [2] are used. In order to satisfy real-time deadlines,
the schedulers use predefined priorities to determine which
process or message, respectively, is scheduled in case of a
contention. These priorities for all processes and messages
are defined in the integration phase when the subsystems are
combined to the entire system. In fact, the priorities have a
very high impact on the real-time properties of functions such
that they have to be chosen with deliberation. However, for
realistic problems, the search space is very large and deter-
mining the priorities that satisfy all deadlines might become
a very challenging task. Previous approaches are based on
heuristics or do not scale well such that they are not applicable
for many realistic problems. As a remedy, this paper proposes
an approach using an Quadratically Constrained Quadratic
Program (QCQP) such that state-of-the-art solvers can be
applied efficiently.

This work was financially supported by the Singapore National Research
Foundation under its Campus for Research Excellence And Technological
Enterprise (CREATE) programme.

Contributions of the paper. This paper proposes a novel
method for determining priorities in event-triggered systems
in order to satisfy hard real-time deadline constraints. Priority
assignment is a general problem that arises in many application
domains. It is a computationally hard problem and scalability
is a major issue that needs to be addressed in order to make
the technique relevant for many real-life problems. Our method
is based on mathematical programming, relying on a graph-
based approach, a translation into a QCQP, and its efficient
solving. The fixed-priority scheduling problem is converted
into a QCQP, taking all problem-specific constraints and the
function deadlines into account. Formulations for preemptive
and non-preemptive scheduling for the QCQP are proposed.
This enables a modeling of OSEK operating systems and CAN
buses and, thus, the application in the automotive domain
becomes possible. The experimental results give evidence of
the superiority of the proposed mathematical programming
method in terms of scalability compared to existing approaches
from literature that are based on heuristics or pruning. A
realistic case study that consists of 25 ECUs and more than
300 tasks gives evidence of the applicability of the proposed
method on large problems that are common in the automotive
domain. Here, the proposed approach obtains a feasible prior-
ity assignment in less than a minute while previous approaches
do not find any solution within 24 hours.

In case there exists no feasible priority assignment, we
also propose an algorithm to determine a justification for the
infeasibility. This justification is a minimal reason for the
infeasibility of the problem and may be used as a feedback
for the system designer or within an architectural design space
exploration.
Organization of the paper. The remainder of the paper is or-
ganized as follows: Section II introduces and discusses related
work. In Section III, the system model is presented. Section IV
introduces the proposed methodology, including the design
flow, the encoding into the QCQP, and an algorithm for the
determination of a justification in case of infeasible problems.
In Section V, experimental results based on synthetic test cases
and a large realistic case study are given. Section VI closes
the paper with concluding remarks.

II. RELATED WORK

A real-time analysis for priority-based schedulers with pre-
defined priorities might be done efficiently using response-
time analysis.A general approach for preemptive systems is
presented in [3] which might be applied to ECUs with OSEK
schedulers. For non-preemptive systems like the CAN bus,
the method was adapted in [4] and later revised in [5].978-3-9815370-0-0/DATE13/©2013 EDAA

Both approaches are applied in our paper and explained in
Section III. In general, the priorities of these systems are
defined in the integration phase in order to satisfy all deadlines.
Other approaches like [6] that instead optimize the periods
might not be applicable to control functions that are designed
for specific periods only. The priorities of event-triggered
systems could be optimized with population-based heuristics
in order to reduce the end-to-end latencies and to satisfy the
deadlines. An approach using Evolutionary Algorithms (EAs)
is implemented in the SymTA/S framework and presented
in [7]. However, these heuristic approaches do not perform
well when the deadline constraints are hard to satisfy and,
moreover, they are not able to prove the nonexistence of a
feasible priority assignment. To overcome this drawback and
integrate the priority assignment in an architectural decision
process, an iterative pruning approach is presented in [8],
[9]. In each iteration, a priority assignment is determined and
analyzed such that in case of violated deadline constraints,
a part of the search space is pruned. However, as presented
in the experimental results, pruning infeasible solutions does
not scale well and is, therefore, not applicable to large
and realistic problems. An approach to tackle the priority
assignment problem with an Integer Linear Program (ILP)
is presented in [10] where applications cannot be defined in
general but are restricted to chains of tasks and the problem
has to be linearized, introducing a high number of additional
constraints and variables. As a remedy, our paper proposes a
novel mathematical programming method using QCQP that is
able to find a feasible priority assignment efficiently, showing
a very good scalability. Moreover, in case there exists no
feasible priority assignment, an algorithm is proposed that can
determine a minimal justification.

III. SYSTEM MODEL

In this paper, we use a generic task graph as an application
model and its mapping to an existing architecture. A task graph
is defined as GT (T,ET) where T is a set of tasks which might
be processes or messages, respectively. The set of edges in the
task graph ET defines data-dependencies such that for each
(t, t̃) ∈ ET the task t̃ is released (ready for execution) when
the task t finished its execution. Each task in T is mapped
to exactly one resource in R which might be a bus, ECU, or
gateway determined by the mapping function m : T → R.
An example of a task graph and a mapping to an resource
architecture is given in Figure 1.

To determine the worst-case response times of processes or
messages, respectively, we use the recurrence equations from
[3] and [5], respectively. They are of the form (1) and (2).
It is assumed that the worst-case execution time et (equiv.
to transmission time for messages) is known at design time.
Moreover, each task has a period defined by ht and a release
jitter jt.
Preemptive Scheduling. Following the approach in [3], the
maximal response time rt of a task running on a resource
with a preemptive scheduler, e.g., an OSEK ECU, might be
determined. Here, all possible preemptions of tasks with a
higher priority defined by hp(t) have to be taken into account:

rt = et +
∑

t̃∈hp(t)

⌈
rt + jt̃
ht̃

⌉
· et̃ (1)

t1

t2

t3 t4

t5

t6 t7

t8 t9

t10 t11

t12

ECU1 ECU2 ECU3

CAN bus

et1=0.8

et2=0.26

et3=2.0 et4=1.2

et5=0.5

et6=0.26 et7=0.146

et8=0.3 et9=0.6

et10=0.26 et11=0.146

et12=0.8

periods: ht1=..=ht4=5.0
deadlines: τt3=τt4=4.0

periods: ht5=..=ht12=5.0
deadlines: τt12=5.0

Fig. 1. Example of a task graph GT (T,ET) consisting of two functions and
a mapping to the resources R which are three ECUs and one CAN bus. Note
that the tasks t2, t6, t10 are 8 byte messages and t7, t11 are 2 byte messages,
respectively, mapped on the CAN bus with a bandwidth of 500kbit/s.

ECU1

ECU2

ECU3

CAN

t1

t3

t4

t2

t1

tx

t4

t3

tzty t2

et1+et2+et3 et1+et2+et3+etx+ety+etz

Fig. 2. Illustration of the priority-based scheduling for the first function in the
example architecture in Figure 1. Here, the best-case without any preemption
or suspension is illustrated as well as a case where the tasks are delayed by
tasks with a higher priority, leading to a higher end-to-end delay.

The response time is defined as the sum of the execution
time of the task and the execution times of all higher priority
tasks. The

⌈
rt+jt̃
ht̃

⌉
determines how often a task t̃ with a higher

priority might interrupt the execution of task t. The response
time rt exists on both sides of the equation, hence a fix point
has to be determined. Starting with rt = et, the recurrence
equation will reach a fix point if the utilization is below or
equal 1.0.
Non-Preemptive Scheduling. Corresponding to the preemp-
tive case, a non-preemptive recurrence equation might be for-
mulated which might be used for instance for the transmission
of messages on the CAN bus. However, a higher priority task
might suspend other tasks while a preemption is not possible.
The recurrence equation for this case is presented in [5] and
defined as follows:

rt = et + max
t̃∈lp(t)∩{t}

et̃ +
∑

t̃∈hp(t)

⌈
rt − et + jt̃

ht̃

⌉
· et̃ (2)

Here, the maximal execution time of any task with a lower
priority lp(t) or a previous instance of the same task has to be
considered as well, since it cannot be preempted. On the other
hand, the execution of the considered task cannot be preempted

ECU1

CAN bus

ECU3

ECU2

t1

t2

t3 t4

t5

t6 t7

t8 t9

t10 t11

t12

Fig. 3. Task graph GTA(T,ETA) with additional priority edges for the
example architecture in Figure 1. Note that the bidirectional edges depict
two independent edges between the two respective nodes. The priority edges
between t6 and t10 (as well as t7 and t11) might be omitted because a
suspension between these messages is not possible for the given periods and
deadlines.

anymore once its execution started. As a result, the amount of
tasks with a higher priority that are executed before the task
under consideration and might suspend this task is determined
by
⌈
rt−et+jt̃

ht̃

⌉
.

In a system as illustrated in Figure 1, the response times of
all tasks in the task graph have to be calculated to determine
whether each deadline τt is satisfied. Whether a deadline
is violated, is determined by considering all paths to the
respective task. For a part of the system from Figure 1, a
schedule taking preemption and suspension into account is
illustrated in Figure 2.

IV. METHODOLOGY

A. Design Flow

In order to determine the priorities of tasks, the task graph
GT is extended by additional edges EA that define all possible
priorities. One priority edge a = (t, t̃) ∈ EA indicates that
the priority of task t is higher than the priority of task t̃.
Therefore, these edges have to be added between all tasks
that share a resource and might preempt or suspend each other.
For the example in Figure 1, the resulting extended task graph
GTA(T,ETA) with ETA = ET ∪EA is illustrated in Figure 3.

In an event-triggered system, a priority assignment has to
be determined such that a real-time analysis guarantees that
all deadlines are satisfied. In the proposed model, the priority
assignment is done in a graph-based manner by reducing the
set of priority edges to Eα ⊆ EA such that

∀(t, t̃) ∈ EA : ((t, t̃) ∈ Eα)⊕ ((t̃, t) ∈ Eα). (3)

Given the set of all priority edges EA, either each priority
edge or its opposite priority edge (if existent) are kept in the
reduced set of priority edges Eα. Additionally, the priorities
have to be transitive to enable a priority assignment using
integer values. Therefore, for each three tasks that share a
resource, the following requirement has to be fulfilled:

∀t, t̃, t̂ ∈ T,m(t)=m(t̃)=m(t̂), (t, t̃), (t̃, t̂) ∈ Eα : (t, t̂) ∈ Eα
(4)

⊕ is the exclusive or operator

The resulting graph GTα(T,ETα) with ETα = ET ∪ Eα
might then be used to determine a priority assignment by
considering the remaining priority edges Eα.

By adapting the graph GTA, the designer might already
predefine several priorities by removing edges from EA. This
might be necessary in case there exists a requirement such as a
rate-monotonic scheduling. In this case, the edges a = (t, t̃) ∈
EA with ht > ht̃ have to removed from EA. Correspondingly,
a requirement for deadline-monotonic scheduling might be
formulated. These additional requirements help to reduce the
search space significantly, complying with the state-of-the-
art design in many domains. In the experimental results, for
instance, rate-monotonic scheduling is assumed if the periods
of tasks are not equal. Note that further domain knowledge
might be incorporated such as illustrated in Figure 3. Here,
there exist no priority edges between t6 and t10 (as well as
t7 and t11). This is done to prohibit cycles and because a
suspension between these messages is not possible for the
given periods and deadlines.

B. Encoding
In the following, the problem of priority assignment

is defined as Quadratically Constrained Quadratic Program
(QCQP). In contrast to ILPs, a QCQP might also contain terms
that are quadratic, considering products of two variables. This
is required here in the Constraints (11) and (13) that model
the recurrence Equations (1) and (2). In case the QCQP is
convex (as it is the case in the provided formulation), modern
solvers [11] that transform the problem into a Second-Order
Cone Program (SOCP) [12] can determine a feasible priority
assignment efficiently using an interior point method.
Priority Assignment. In order to determine the desired set of
active priority edges Eα from the set EA, a binary variable
a ∈ {0, 1} is introduced for each edge a ∈ EA. This binary
variable determines whether the edge is in Eα (1) or not (0).
The requirements on the set Eα as stated in (3) and (4) are
summarized in the following constraints:
∀a = (t, t̃), ã = (t̃, t) ∈ EA :

a+ ã = 1 (5)

∀a = (t, t̃) ∈ ET ,¬∃ã = (t̃, t) ∈ EA :

a = 1 (6)

∀a = (t, t̃), ã = (t̃, t̂), â = (t̂, t) ∈ EA :

a+ ã+ â ≤ 2 (7)

Constraint (5) and (6), respectively, fulfill the requirement
in (3). The first constraint considers the case that there
exist priority edges in both directions between two tasks,
the latter constraint considers the case that there exists only
a single priority edge in one direction between two tasks.
Constraint (7) fulfills (4) by excluding all combinations of
priority assignments that violate the transitive requirement, i.e.,
in case a cycle of priority edges exists between three tasks.
These constraints ensure that cycles in the resulting task graph
GTα on tasks that are mapped to the same resource do not
exist. An example for such as a cycle is given as π1 in Figure 4.

Global Cycles. Cycles across different functions as illustrated
as π2 in Figure 4 and discussed in [13] might become a burden

t1

t2

t3 t4

t5

t6 t7

t8 t9

t10 t11

t12

π2=(t1, t2, t3, t5, t6, t8)

π1=(t6, t7, t10, t11)

Fig. 4. Illustration of possible cycles in the GTα that results from GTA.
The cycle π1 is affecting tasks that are mapped to a single resource, the cycle
π2 is distributed over two functions.

when determining the real-time properties of systems. There-
fore, it is useful to exclude these cycles from the search space
by introducing additional variables and constraints. Although
it is not necessary to exclude these cycles, it minimizes the
complexity of the system and helps in reducing the search
space. It becomes necessary to add an additional variable
ct ∈ R for each t ∈ T that is used as counter. For each used
edge (either in ET or Eα), the source task has a lower counter
value than the destination task, leading to an exclusion of all
cycles. For both types of edges, the constraints are defined as
follows:
∀(t, t̃) ∈ ET :

ct < ct̃ (8)

∀a = (t, t̃) ∈ EA :
ct < ct̃ + |T | − |T | · a (9)

Constraint (8) ensures that the counter values fulfill the
requirement for all data dependencies. Constraint (9) states
that for each priority edge the counter values have to be
incremented only if the edge is active, i.e., in Eα.

Additionally, it might be necessary to assign implications
on priority edges. For instance, if messages are routed over
different components which results in multiple tasks in T .
Then, the messages should not change the their priorities for
different components as expressed by the following constraint:
∀a = (t, t′), ã = (t̃, t̃′) ∈ ET , t

prio
= t̃, t′

prio
= t̃′ :

a = ã (10)

Preemptive Scheduling. Given the priority edges and vari-
ables, respectively, it is possible to determine the response
times of tasks. For each task t, the response time is defined as
the variable rt ∈ R. Additionally, it is necessary to introduce
the release jitter jt ∈ R for each task. To encode how often
a task with a higher priority might preempt the execution,
the variable ia ∈ N is introduced for each priority edge. The
response time for a preemptive resource is determined by the
following constraints:
∀t ∈ T :

rt = et +
∑

a=(t̃,t)∈EA

et̃ · a · ia (11)

∀t ∈ T, a = (t̃, t) ∈ EA :

ia ≥
1

ht̃
· rt +

1

ht̃
· jt̃ (12)

Constraint (11) corresponds to Equation (1) where the
variable a defines whether some other task has a higher
priority and ia corresponds to the amount of preemptions that
are possible by another task. The value of ia is determined by
Constraint (12). Note that although the variable for the number
of preemption is open to the top and the response time might
be over-approximated using these constraints, the values are
never higher than necessary to fulfill the deadline constraints.
Non-Preemptive Scheduling. Corresponding to the preemp-
tive schedule, the constraints for the non-preemptive schedul-
ing are defined in the following. The formulation requires the
additional variable bt ∈ R that encodes the maximal delay by
a lower priority task or a previous instance of the task itself.
The constraints are formulated as follows:
∀t ∈ T :

rt = et + bt +
∑

a=(t̃,t)∈EA

et̃ · a · ia (13)

bt ≥ et (14)

∀t ∈ T, a = (t, t̃) ∈ EA :

bt ≥ a · et̃ (15)

∀t ∈ T, a = (t̃, t) ∈ EA :

ia ≥
1

ht̃
· rt +

1

ht̃
· jt̃ −

et
ht̃

(16)

Constraint (13) corresponds to Equation (2). Con-
straints (14) and (15), respectively, determine the maximal
delay due to a previous instance of the task itself or a task
with lower priority. Constraint (16) determines how often a
higher priority task might suspend the considered task.
Deadlines. In order to determine whether each deadline is
satisfied, it necessary to calculate the delay and release jitter
for each task along each path in the task graph. For each task
t, the delay is defined as variable dt ∈ R and the release jitter
is defined as jt ∈ R. The constraints to determine the values
of these variables and to determine whether the deadlines are
fulfilled are as follows:
∀t ∈ T,¬∃(t̃, t) ∈ ET :

dt = rt (17)

jt = 0 (18)

∀t ∈ T, (t̃, t) ∈ ET :
dt ≥ rt + dt̃ (19)

jt ≥ rt̃ − et̃ + jt̃ (20)

∀t ∈ T :
dt ≤ τt (21)

For each task that has no predecessor, the delay and jitter are
defined by the Constraints (17) and (18), respectively. Here,
the initial release jitter is assumed to be 0. In case a task
has predecessors, the delay and jitter values are determined
by the Constraints (19) and (20), respectively. Here, the delay
is determined as the sum of the maximum of the delays of
the preceding tasks and the response time of the current task.
Correspondingly, the jitter is the maximum of the preceding
task jitter values and the current jitter which is the difference
between the worst-case response time and the execution time.
Finally, Constraint (21) ensures that all deadlines are satisfied
by constraining the delays.

t1

t2

t3 t4

t5

t6 t7

t8 t9

t10 t11

t12

rt1=0.8

rt2=0.666

rt3=2.5 rt4=2.0

rt5=0.5

rt7=0.406

rt8=1.4 rt9=2.2

rt10=1.072 rt11=0.926

rt12=0.8

rt6=0.926

dt3=3.966 dt4=3.466

dt12=4.832

Fig. 5. Task graph GTα that corresponds to the feasible priority assignment
for the system in Figure 1 and Figure 3.

t1

t5 t7

t2

t6

t3 t8

t9 t11

t10 t12 t4

1

2

3

4

5

6 7

8 9

10

11 12

Fig. 6. Topologically ordered graph with annotated priorities for GTα in
Figure 1.

For the example in Figure 1, the QCQP determines the
solution that corresponds to the task graph GTα in Figure 5.
Note that already for this small example, there exist 248
different priority assignments while only two of them satisfy
the deadlines. A global priority assignment is obtained by
ordering the graph GTα topologically as illustrated in Figure 6.

C. Justification
In case there exists no feasible priority assignment that

satisfies the deadlines, the QCQP will terminate without a
feasible result. In this case, it is desirable to analyze the reason
for the infeasibility of the problem. This is also known as the
determination of the justification and used in mathematical
programming known also as Irreducible Infeasible Subsets
(IIS) [14] or Minimally Unsatisfiable Subformula (MUS) [15],
respectively. Here, a justification equals a subgraph of GTA
that is still unsatisfiable and becomes satisfiable when a single
task is removed from this subgraph. Removing a task equals
the setting of its execution time to 0. In the following, a
problem-specific approach is presented.

In case a task graph GTA is infeasible, the justification is
determined by Algorithm 1.

The algorithm iteratively determines the tasks that can be
deleted (denoted as T̃) from the task graph GTA while keeping
it infeasible. The algorithm starts with an empty set T̃ (line 1)
and iterates over all tasks in the graph (line 2). For each task,
the execution is set to 0 while the original value is saved in
the temporary variable x (line 3-4). Setting the execution time
to 0 equals the deletion of the corresponding task while all
the deadlines are still considered. In case the task graph GTA
becomes feasible after the deletion of task t, the execution
time is reset to its original value (line 5-6). If the task graph
remains infeasible, the task t is not part of the justification

Algorithm 1 Algorithm for the determination of a justification
for an infeasible task graph GTA.

1: T̃ = {}
2: for t ∈ T do
3: x = et
4: et = 0
5: if GTA is feasible then
6: et = x
7: else
8: T̃ = T̃ ∪ {t}
9: end if

10: end for
11: return GTA(T\T̃ , {(t, t̃)|(t, t̃) ∈ ETA ∧ t, t̃ /∈ T̃})

t1

t2

t3 t4

t5

t6 t7

t8 t9

t10 t11

t12

et1=0.8

et2=0.26

et3=2.3

et5=0.5

et6=0.26

et10=0.26

et12=0.8

Fig. 7. Determined justification in case the execution time of task t3 is
increased to 2.3 and the problem becomes infeasible.

and is added to the set of deleted tasks (line 8). Finally, the
justification is determined by removing the tasks T̃ from the
task graph (line 11).

An example for the determination of a justification for the
system in Figure 1 is given in the following. If the execution
time of task t3 is increased to 2.3, the problem becomes
infeasible, i.e., there exists no feasible priority assignment such
that all deadlines are satisfied. The justification determined by
the presented algorithm is given in Figure 7 which shows that
only 7 tasks have to considered to understand the reason for
infeasibility.

V. EXPERIMENTAL RESULTS

In the following, experimental results are presented that give
evidence of the applicability of the proposed approach. For this
purpose, a set of synthetic test cases is evaluated and a large
realistic case study from the automotive domain is introduced.
All experiments were carried out on an Intel Xeon QuadCore
CPU with 3.20 GHz and 12 GB RAM using the GUROBI
QCQP solver [11].
Scalability. In order to show the scalability of the proposed
approach and to compare it with existing approaches, a set of
100 synthetic test cases is used. The test cases where randomly
generated and have various complexities. The smallest test
case consists of 2 ECUs, 1 CAN bus, and 2 functions with 11
tasks. The largest test case consists of 23 ECUs, 4 CAN buses
connected via a central gateway, and 25 functions resulting in
294 tasks. For all test cases, tight deadlines exist that make
only a small fraction of the entire search space feasible.

The proposed approach is compared to the pruning approach
from [9] and to an Evolutionary Algorithm (EA) method

10−1 100 101 102 103
10−1

100

101

102

103
x>y

x>10·y

x>100·y

x>1000·y

timeout 3600s

runtime pruning/EA [s] (x)

ru
nt

im
e

Q
C

Q
P

[s
]

(y
)

pruning
EA

Fig. 8. Comparison of the proposed method (QCQP) with existing approaches
on a set of 100 test cases. Note that the pruning approach failed to deliver
results for 42 test cases and the EA for 67 test cases due to a predefined
timeout of 3600 seconds.

corresponding to [7] that repairs the solutions in order to
avoid cycles. The runtimes with all approaches are illustrated
in Figure 8. The proposed approach is denoted as QCQP and is
superior to the other approaches. In particular, for the big test
cases, the QCQP approach is multiple orders of magnitude
faster than the other approaches. It is capable of finding a
feasible solution for all 100 test cases within 3600 seconds
while the pruning approach failed to deliver feasible solutions
for 42 test cases and the EA failed in 67 cases.
Case Study. In order to give evidence of the applicability of
the proposed methodology on realistic problems, a case study
is introduced. The case study consists of five CAN buses that
define clusters and a central gateway that interconnects these
clusters. Note that the functions in each cluster are not solely
mapped to ECUs of this cluster such that it is not possible to
determine the priorities for each cluster separately. The details
of the case study are summarized in Table I that also shows
the periods of the functions in each cluster. Overall, the case
study consists of 25 ECUs and 27 functions that result in 332
tasks with 2583 priority edges in the set EA (several edges
might be removed due to the rate-monotonic requirement).

With the proposed methodology, it is possible to determine
a feasible priority assignment within 44.3 seconds while
other approaches (pruning and EA) do not find a feasible
solution within 24 hours. This again shows the superiority
of the proposed approach and its ability to cope with realistic
problems.

In order to give evidence of the capabilities of the justifica-
tion determination, the execution times of half of the tasks are
increased by 0.1ms to make the case study infeasible. The
determination of the justification requires 514 seconds and
results in 74 tasks from 24 functions and all five clusters.
In case the execution times of two third of the tasks are
increased by 0.1ms or 0.2ms, respectively, the justification
becomes significantly smaller. It results in 7 tasks from one
cluster and one single function and is determined within 354

cluster (CAN bus) ECUs tasks functions / periods
body 6 71 40,40,50,80,80,80
driver assistance systems 3 74 5,10,20,40,80,80
chassis 4 97 10,20,40,40,50,50,100
infotainment 4 38 5,80,100
powertrain 8 52 5,10,40,50,50,80
system 25 332

TABLE I
CLUSTERS (BUSES), ECUS, NUMBER OF TASKS, AND PERIODS OF THE

FUNCTIONS OF THE CASE STUDY.

seconds.

VI. CONCLUDING REMARKS

This paper presented an exact approach for the determina-
tion of priorities in event-triggered systems such as automotive
systems based on OSEK schedulers and CAN buses. For this
purpose, the problem of priority assignment is converted into a
QCQP, using a state-of-the-art solver. This proposed approach
was extended to determine one minimal justification in case
the problem does not permit a feasible solution. This gives the
designer a feedback regarding the reason of the infeasibility.
The experimental results show the superiority of the proposed
method compared to existing approaches.

In future work, the approach will be extended by an addi-
tional determination and consideration of offsets. Moreover,
the justification determination will be improved regarding
the runtime and consequently integrated into an architectural
design space exploration.

REFERENCES

[1] OSEK, “OSEK VDX Portal,” http://www.osek-vdx.org/.
[2] CAN, “Controller Area Network,” http://www.can.bosch.com/.
[3] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming

in a Hard-real-time Environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[4] K. Tindell, A. Burns, and A. Wellings, “Calculating Controller Area Net-
work (CAN) Message Response Times,” Control Engineering Practice,
vol. 3, pp. 1163–1169, 1995.

[5] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[6] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period Optimization for Hard Real-time
Distributed Automotive Systems,” in Proc. of DAC, 2007, pp. 278–283.

[7] A. Hamann, M. Jersak, K. Richter, and R. Ernst, “Design Space
Exploration and System Optimization with SymTA/S–Symbolic Timing
Analysis for Systems,” in Proc. of RTSS, 2004, pp. 469–478.

[8] F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich, “Improving
Platform-based System Synthesis by Satisfiability Modulo Theories
Solving,” in Proc. of CODES+ISSS, 2010, pp. 135–144.

[9] F. Reimann, M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich,
“Symbolic System Synthesis in the Presence of Stringent Real-time
Constraints,” in Proc. of DAC, 2011, pp. 393–398.

[10] B. Lisper and P. Mellgren, “Response-time Calculation and Priority
Assignment with Integer Programming Methods,” in Proc. of ECRTS,
2001, pp. 13–16.

[11] Gurobi Optimizer, “Gurobi 5.0,” http://www.gurobi.com/.
[12] H. Mittelmann, “An Independent Benchmarking of SDP and SOCP

Solvers,” Mathematical Programming, vol. 95, no. 2, pp. 407–430, 2003.
[13] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi, “Cyclic Dependencies

in Modular Performance Analysis,” in Proc. of EMSOFT, 2008, pp.
179–188.

[14] O. Guieu and J. W. Chinneck, “Analyzing Infeasible Mixed-Integer and
Integer Linear Programs,” INFORMS Journal on Computing, vol. 11,
pp. 63–77, 1999.

[15] Y. Oh, M. Mneimneh, Z. Andraus, K. Sakallah, and I. Markov, “Amuse:
a minimally-unsatisfiable subformula extractor,” in Proc. of DAC, 2004,
pp. 518–523.

