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Abstract—Soft errors and errors caused by intermittent faults 

are a major concern for modern processors. In this paper we 
provide a drastically different approach for fault tolerant 
scheduling (FTS) of tasks in such processors. 

Traditionally in FTS, error detection is performed implicitly 
and concurrently with task execution, and associated overheads 
are incurred as increases in software run-time or hardware area. 
However, such embedded error detection (EED) techniques, e.g., 
watchdog processor assisted control flow checking, only provide 
approximately 70% error coverage [1, 2]. We propose the idea of 
utilizing straightforward explicit output comparison (EOC) 
which provides nearly 100% error coverage. We construct a 
framework for utilizing EOC in FTS, identify new challenges and 
tradeoffs, and develop a new off-line scheduling algorithm for 
EOC. We show that our EOC based approach provides higher 
error coverage and an average performance improvement of 
nearly 10% over EED-based FTS approaches, without increasing 
resource requirements. In our ongoing research we are 
identifying a richer set of ways of applying EOC, by itself and in 
conjunction with EED, to obtain further improvements. 

I. INTRODUCTION 

Providing reliable computation is the most basic 
requirement for any hardware system. However, with the 
scaling of technology, this is becoming more difficult to 
achieve [3]. Errors can occur in circuits due to many factors 
such as noise, high energy cosmic particles, radiation, and 
fatigue-induced intermittent faults in hardware. Any errors 
propagating to user outputs can potentially have detrimental 
effects. Much effort has been devoted at the level of circuit 
design and manufacturing to reduce the frequency of error 
occurrence, but these cannot entirely eliminate errors.  

Fortunately, approaches at the software level can help. In 
this paper we consider fault tolerance in the context of task 
scheduling in distributed computing systems. There are two 
major aspects in fault tolerant scheduling (FTS):  
1. Errors that can potentially corrupt outputs and cause 

operational failures must be detected. 
2. The schedule must be able to tolerate errors via some form 

of redundant execution. 
We begin with some background information. 

A. Error Detection 
To detect occasional errors, the most intuitive method is to 

execute multiple copies of the same program simultaneously 
on different processors and compare their outputs. We refer to 
this concept as Explicit Output Comparison (EOC). Triple 
Modular Redundancy (TMR) [4] is a commonly discussed 
example of EOC. EOC requires minimal or no program 
modifications and provides high error coverage, but is 
generally considered as imposing prohibitively high hardware 

overheads. To avoid these overheads, alternative methods 
have been proposed, where error detection is implicitly 
embedded during execution without the need for EOC. We 
refer to the broad collection of these error detection 
techniques, such as control flow checking (CFC), as embedded 
error detection (EED). EED inevitably increases the time 
required to complete tasks. We define the time to complete 
execution of a specific task on a standard processor/core 
without EED as the native latency (L), and the time needed for 
execution when EED is enabled as the EED latency (L’). For 
error detection using EOC, the total task execution time is the 
native latency L, plus the time required for output comparison 
which will be modeled in sections ahead. 

EED can be efficiently implemented in hardware for 
certain components. Error correcting codes (ECC) [5] is a 
well-known error detection/correction method for regular 
structures, especially memories. As for techniques that are 
universally applicable in general purpose processors, the 
current prevailing methods are CFC and signature checking 
[6]. The basic idea is to verify that the program is branching to 
legal destinations and executing only expected types of 
instructions. For such techniques, the expected behavior of the 
program must be pre-computed and stored either in memory 
structures or the compiled code, incurring area or program size 
overheads. During execution, program signatures must be 
computed in real time, which incurs performance overheads. 
Recent research has proposed hardware-assisted error 
detection using separate watchdog processors [1]. But even 
with hardware assistance, EED still impacts performance.  

The other shortcoming of any form of EED is incomplete 
error coverage. Although most EED methods report high error 
coverage (Table I provides an overview of the contemporary 
watchdog processor assisted EED techniques), their fault 
injection is often limited to faults that result in control flow 
violations. Hence, even if the reported coverage is 100%, it is 
only 100% of the control flow errors, which are around 70% 
of all the soft errors that can occur during execution [1, 2]. 

Table I. Overview of CFC Techniques with Watchdog Assistance 

 CFC   
 Technique 

Memory 
Overhead 

 Performance 
 Overhead 

 Reported Error  
 Coverage* 

 Modifies 
 Program 

 CIC [7]  5% - 28%  52% - 189%  91% - 98%  Yes 

 CFCET [8]  3.5%  33% - 141%  80% - 85%  No 

 CFCSS [6]  26.6% - 63.6%  16% - 70%  96% - 98%  Yes 

 ACFC [9]  48% - 112.2%  41% - 136%  10% - 95%  Yes 

 YACCA [10]  91% - 96%  10% - 254%  Near 100%  Yes 

 CFCBTE [11]  33% - 44%  110% - 304%  89% - 94%  No 

 SWTES [12]  90.9% - 174.8%  11% - 191%  81% - 98%  Yes 

*Only specific types of errors such as control flow errors are considered 

In systems running safety-critical applications which 
require high error coverage, EED’s coverage is a limitation. 
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B. Fault Tolerant Scheduling 
We consider the static off-line scheduling of aperiodic 

tasks in time-triggered architectures (TTA) [13] which can 
provide the desired predictability for safety-critical 
applications [14]. Tasks are mapped to processors and 
assigned start times prior to execution. The primary objective 
function is to minimize the total execution time for all tasks, 
also referred to as total latency or the length of the schedule. 
[15, 16] provide a summary of performance-effective static 
off-line scheduling algorithms. The drawback of static 
schedules is that they are susceptible to unpredictable events 
such as randomly occurring faults or upsets. To this end many 
ways of incorporating temporal and/or spatial redundancy to 
achieve fault tolerance have been proposed [17, 18, 19, 20]. 

Typically, fault tolerant scheduling (FTS) techniques 
assume that error detection is performed concurrently during 
execution, and any error detection overhead is integrated into 
the worst case execution time of each individual task. 
Furthermore, any area or performance overhead required for 
error detection is conceptually accepted but not explicitly 
accounted for. Simply put, scheduling begins after error 
detection is implemented in the form of EED and its impact on 
a task’s run time is taken as a given; this run time is never 
compared with the task’s run time without EED. Such 
conventional schedules will be referred to as EED schedules. 

In this paper, we revisit the seemingly straightforward 
EOC concept for error detection in the context of FTS. We 
reveal the benefits of EOC in terms of achieving near-perfect 
error coverage while simultaneously reducing total latency, 
without increasing resource requirements. In this process we 
will present a comprehensive analysis of FTS that leverages 
tradeoffs in error detection, and thus expanding the scope of 
FTS. Such schedules will be referred to as EOC schedules. 

II. OVERVIEW OF THE SYSTEM CONFIGURATION 

A. Hardware Configuration 
We model the hardware system as a set of R processing 

nodes {C1, C2, ..., CR} interconnected by a communication 
channel. We will refer to them as cores for clarity. Each core 
Ci ∈ {C1, C2, ..., CR} contains a main execution engine and a 
network interface that arbitrates communication. We assume 
homogeneous cores for simplicity, but our approach can be 
extended to heterogeneous cores. We also assume that the 
communication channel is implemented as a broadcast bus, 
where only one core can write to the bus at any given time, but 
all cores can simultaneously read from the bus. Other network 
topologies can potentially relax the constraints on channel 
access, but such variations are not central to our discussion. 
Fig. 1 depicts a system with four cores. 

EED and EOC can both be implemented completely in 
software with little or no change to the existing architecture. 
However, both approaches can also utilize additional hardware 
to reduce the performance overheads of error detection. 
Redesigning the hardware to reduce performance overheads of 
error detection is beyond the scope of this paper. 

 
Figure 1. System Hardware Configuration 

B. Application Model 
We model the application as a directed acyclic graph G(V, 

E) called a task graph, such as the example shown in Fig. 2. 
Each vertex Ti ∈ V represents a task. Each task Ti is coupled 
with a 3-tuple set: {Pi, Li, L’i}, where Li is the native latency of 
Ti and L’i is the EED latency of Ti. We define αi = L’i / Li as 
the latency overhead of EED. In Fig. 2, αi is set according to 
Table I. Pi is the size of the output data of Ti.  

An edge from Ti to Tj denotes that Tj is dependent on the 
output of Ti. A task with no predecessors will be called an 
entry task, and a task with no successors will be called an exit 
task. Di_j represents the amount of time it takes to transport 
one unit of data from Ti to Tj, hence the total time needed for 
data transmission between the two tasks is Di_j · Pi. We assume 
Di_j = 1 if Tj is dependent on Ti and both tasks are not mapped 
onto the same core, 0 otherwise. We assume that each task can 
execute on any core, and that the message passing itself is 
fault tolerant, using protocols like the TTP [21].  

 
Figure 2. Application Model 

C. Fault Model and Error Coverage 
Faults in circuits could be permanent or intermittent; also 

circuits can have transient or soft errors due to external noise 
or radiation. In this paper we address intermittent faults and 
transient errors (henceforth referred to as faults), which are 
major concerns for modern processors [3]. We only consider 
faults that are not masked logically or architecturally, and 
eventually produce errors at task outputs and cause operational 
failures. For the techniques used in this paper, fault duration is 
irrelevant and is therefore considered to be atomic. If one or 
more fault occurs during the execution of Ti or the input to Ti 
is erroneous, the output of Ti will be deemed incorrect.  

Naturally, any errors in the task output can be detected by 
EOC, namely comparing outputs of copies of the task 
executed on different cores. EOC achieves near-perfect error 
coverage, as the only exception is the unlikely event when 
multiple errors corrupt the outputs of various copies of the task 
running on distinct cores in identical ways. EED techniques 
such as CFC [6], in contrast, may only detect faults that cause 
control flow violations, resulting in 70% error coverage. In 
FTS, the error coverage does not depend on the task schedule, 
but on the underlying error detection mechanism. 

For a given time frame, we consider k detectable faults 
which occur at arbitrary times. Under these conditions, if the 
schedule is guaranteed to deliver correct results within the 
timing constraints, it will be considered as having a fault 
tolerance level of k. The value of k is determined by how tasks 
are scheduled, i.e., how redundant execution is applied. A 
schedule may have high fault tolerance level, i.e., a large k, but 
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low error coverage due to incomplete coverage provided by 
EED. In this work we assume k = 1, and stricter fault tolerance 
requirements can be satisfied by decreasing the time frame.  

III. FAULT TOLERANT SCHEDULING TECHNIQUES 

A. Scheduling a Single Task using EED 
We begin with a brief review of FTS. Fig. 3 shows two 

ways of scheduling a single task Ti. In Fig. 3a, Ti is scheduled 
with its EED latency L’i since EED is assumed. Without the 
slack, upon detection of an error, the system can halt operation 
or alert the user. If the slack is scheduled, then re-execution is 
possible and fault tolerance is achieved through such temporal 
redundancy [22]. The advantage of re-execution lies in slack 
sharing, which will be demonstrated later. Note that the length 
of the slack is equal to L’i in order to tolerate faults that occur 
towards task completion, so the ability to detect errors as soon 
as they occur cannot help reduce the slack. Re-execution can 
be applied at fine granularity if tasks can be divided into 
smaller subtasks, which is the basic principle of checkpointing 
[18]. Checkpointing will not be examined in this paper. 

 Without Slack With Slack (Slack=L’i) Coverage 

(a) 

 

Latency: 
L'i 

Tolerance: 
k = 0  

Latency: 
2L'i 

Tolerance: 
k = 1 

~70% 

(b) 

 

Latency: 
L'i+Pi 

Tolerance: 
k = 1  

Latency: 
2L'i+Pi 

Tolerance: 
k = 3 

~70% 

 
Latency w/ EED: L’i  
Consolidation Overhead: Pi 

Figure 3. Conventional scheduling of a single task Ti with EED 

Fig. 3b illustrates another key FTS technique: replication, 
an instance of spatial redundancy. Two copies of the same task 
are mapped onto two different cores. If one core detects errors, 
the results of the other core will be carried to the next 
dependent task or system output through the broadcast bus 
during the following consolidation period. It is usually 
assumed that this consolidation overhead is equal to Pi. This 
schedule achieves k = 1 without any slack. In [17], the authors 
combined re-execution with replication, thus fully exploiting 
the capabilities of EED. As an illustrative example, for the 
task graph in Fig. 2, the optimum EED schedule on four cores 
is shown in detail in Fig. 4. 

 
Figure 4. The Optimum EED Schedule (Total Latency: 69, k = 1) 

B. Scheduling a Single Task using EOC 
The missing coverage in EED can be addressed via the use 

of a second core and EOC (Fig. 5a). Ti is scheduled with its 
native latency Li. The two cores will mirror each other’s 
operation, but clock by clock synchronization is not necessary. 
Without the scheduling of the slack, errors can only be 
detected, but the error coverage is high. In cases where slack is 
included, when comparison fails, a contingency schedule is 
triggered, and Ti is re-executed on both cores during the slack. 
At time 2Li + Pi, both cores will contain correct outputs, and 
no more comparison is needed if we assume k = 1.  

 Without Slack With Slack (Slack = Li) Coverage 

(a) 

 

Latency: 
Li+Pi 

Tolerance: 
k = 0  

Latency: 
2Li+Pi 

Tolerance: 
k = 1 

~100% 

(b) 

 

Latency: 
Li+3Pi 

Tolerance: 
k = 1  

Latency: 
2Li+3Pi 

Tolerance: 
k = 3 

~100% 

(c) 

 

Latency: 
Li+2Pi 

Tolerance: 
k = 1 

 

Latency: 
Li+2Pi 

Tolerance: 
k = 3 

~100% 

 
Latency w/o EED: Li 
Consolidation Overhead: Pi 

Figure 5. Scheduling of a single task Ti with EOC 

Fig. 5b shows the concept of the classic TMR, which can 
eliminate the slack for k = 1. The voting procedure is assumed 
to require time 3Pi. TMR is suitable when hardware resources 
are abundant. TMR will not be directly employed by our 
algorithm. However, we do opportunistically utilize a similar 
method described in Fig. 5c. In Fig. 5c, if comparison fails 
either for the C1/C2 pair or the C3/C4 pair, the correct results 
will be taken from other pair of cores during consolidation.  

Two drawbacks of EOC are as follows: (1) the additional 
core requirement, and (2) the comparison overhead. We 
account for the first factor by using processors with identical 
number of cores when comparing EED and EOC schedules. 
Also, we explicitly account for the comparison overhead, 
which is equal to the size of the data to be compared: Pi.  

While EED schedules only employ practices shown in Fig. 
3, we believe that using the entire range of methods in Fig. 3 
and Fig. 5 would result in much more compact schedules. In 
this paper however, we will limit ourselves to schedules with 
EOC alone (Fig. 5) to guarantee ~100% error coverage. 

C. Case Study for Scheduling Multiple Tasks 
A comparison between Fig. 3 and Fig. 5 may suggest that 

we are trading performance for higher error coverage. 
However, the motivational example shown in Fig. 6 will 
demonstrate that, by adopting EOC, it is possible to increase 
error coverage and, at the same time, reduce the total latency. 

 Figure 6. Latency advantages of the EOC schedule 

In the optimum EED schedule of three tasks in Fig. 6, 
consolidation is required after each task to support transparent 
execution in TTA [13]. Transparent execution allows any core 
to start execution of scheduled tasks regardless of faults 
occurring in other cores. In this paper all EED and EOC 
schedules will conform to transparent execution. The dashed 
edges of the exit tasks represent the consolidation time needed 
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for the system to recognize which core contains the correct 
outputs, in case the exit tasks encountered errors. 

In EOC schedule 1 shown in Fig. 6, comparison is done 
after every task completion. A slack of four time units is 
needed for the possible re-execution of the longest task T2. T1 
and T3 are shorter than T2 and thus can share the slack. The 
total latency is 6.25% less than the optimum EED schedule. 
Also note that the EED schedule has very high resource usage 
as both cores do not have any idle time during the schedule. 

The EOC schedule 2 shown in Fig. 6 further reduces the 
total execution time by (1) rearranging the tasks while still 
satisfying the precedence constraints, and (2) grouping T1 and 
T3 into one partition, i.e., performing comparison on the 
outputs of T3 only. If comparison fails, then re-execution will 
be initiated on both cores for T1 and T3 during the slack. 
Otherwise we conclude that both T1 and T3 have executed 
correctly. This is assuming that T3 consumes all the outputs of 
T1. In the following section we will detail those two important 
procedures, namely sorting and partitioning. 

IV. EOC BASED FAULT TOLERANT SCHEDULING 

A. Observations about EOC 
We first present some observations that reveal new 

complications and tradeoffs in EOC scheduling. As illustrated 
in Fig. 6, the place where we choose to insert output 
comparisons is an important factor affecting the schedule 
length. Comparing after each task is completed will minimize 
the slack, but incur large comparison overheads. On the other 
extreme, comparing only after the exit tasks will minimize 
comparison overheads but maximize the slack. The optimal 
solution will typically be a point in between. The example 
below will provide further insight and important theorems. 

Assume a set of n tasks, identical in latency. The native 
latency of each task is L, and the EED latency is αL. Ti is 
dependent only on Ti-1, and Pi = P ∀1 ≤ i ≤ n. The task graph is 
illustrated in Fig. 7, referred to as a linear task graph of n 
tasks. Also the hardware consists of R = 2 cores, and k = 1. 

 
Figure 7. Scheduling a Linear Task Graph 

Theorem 1: When performing EOC scheduling under the 
above assumptions, to achieve minimum latency, comparisons 
should be made between every x tasks, where: 

                      . 

The lower bound of total latency is:            . 
The upper bound of total latency when x takes the above 
values is:                . 

Proof: Deleted due to space limitations
1
. 

We notice that x is proportional to P and inversely 
proportional to L. This is expected, since if the output data size 
is so large that communication and comparison overheads 
outweigh the execution latencies, the time saved from 
grouping tasks together to skip comparisons can offset the cost 
of increased slack. Similarly, the optimum EED schedule in 
this case is either one that only uses replication or one that 
only uses re-execution depending on the relationship between 
P and L. A comparison of the optimum EED schedule with the 
optimum EOC schedule yields the following. 

Theorem 2: The optimum EOC schedule will outperform the 
optimum EED schedule in terms of total latency if: 

          
 

  
 

   

  
 

 

 
        

 

  
 

 

  
  

Proof: Deleted due to space limitations
1
. 

Now we are ready to present our EOC scheduling flow, 
which is similar to [22] at a high-level. Here we mainly focus 
on the above key differences of EOC. In the next section we 
compare our EOC schedules with nearly optimum EED 
schedules that can use any combination of replication and re-
execution as in [17] to eliminate bias in our results. 

The inputs to the EOC scheduling algorithm are the task 
graph (Fig. 2) and the hardware configuration (Fig. 1). The 
first step of our EOC scheduling is very similar to [22], yet the 
second and third steps are specific to EOC scheduling only. 
1) Mapping: Map each task to one of the available cores. 
2) Detailed Scheduling: Schedule all tasks in each core 

while satisfying their mapping/precedence constraints.  
3) Adjustments: Adjustments are made to ensure a legal 

schedule. Some ad-hoc optimizations are also applied. 

B. Mapping 
Task to core mapping is the first step of EOC or EED 

scheduling. A mapping heuristic for EED based on critical 
path clustering is presented in [22]. During this mapping 
process, the task with the highest critical path priority will be 
mapped to a core that minimizes the estimated schedule 
length. This process is repeated until every task has been 
mapped to a core. The schedule length can be easily and 
accurately estimated in [22] before the tasks are actually 
scheduled. We adopt this heuristic with one modification, 
namely we estimate the schedule lengths differently. 

In EOC scheduling, the output of each task can only be 
delivered to other cores when the slack of the current and all 
previous partitions have been accounted for. However, the 
partitioning step has not yet been carried out. As a result, we 
replace the slack computation step in [22] by the following, 
which stems from Theorem 1:  

                    ∀   
     ∀ 

   ∀ 
   . 

The rest of the mapping process is similar to [22]. 

C. Detailed Scheduling 
The detailed scheduling step will determine the start time 

of every task. In [22], this is done using the list scheduling 
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algorithm [23], where the task with the highest priority is 
selected and scheduled on its allocated core. List scheduling is 
not applicable for EOC scheduling because it cannot handle 
the selection of the insertion of data comparisons. In the 
following subsections, we formulate the problem, and then 
provide optimization algorithms tailored to EOC scheduling.  

Problem Formulation  
Unlike list scheduling, detailed scheduling is recursively 

applied to each core pair (recall that in EOC two cores will 
mirror each other’s operation). For each core pair the detailed 
scheduling process is formulated as a sorting problem 
followed by a multi-way partitioning problem. Consider a task 
graph with n tasks. For a particular core Cj, the mapping 
process will produce a subset of tasks Ts = {Ti | Ti ∈ {T1, T2, ..., 
TN}, Ti is mapped onto Cj}. Assume that |Ts| = M, and the tasks 
in Ts are labeled T1-TM. The detailed scheduling step will: 
1) Topologically sort the M tasks in Ts. 
2) Partition the M tasks in Ts into W groups labeled G1-Gw. 

The objective of the detailed scheduling algorithm is to 
minimize the total execution time of the M tasks, defined as: 

   

 

   

      

∀                        

 

 

   

     ∀    

∀    ∈  

  

A task Tx is defined as an exit task of the current partition 
Gi if Tx ∈ Gi and ∄1 ≤ j ≤ n such that Tj ∈ Gi and Dx_j = 1.  

Output comparisons will be made between partitions and 
after the completion of exit tasks of the current partition. In 
addition, the schedule must contain a timing slack, the length 
of which is equal to the latency of the longest partition.  

Guided Topological Sort 
For the M tasks in Ts, any topological sort for the tasks 

would be legal. However, a sort that would minimize total 
latency is desired. Procedure 1 is a customized version of the 
basic topological sorting algorithm. It utilizes results from 
Theorem 1. Since the assumption of uniformity in Theorem 1 
no longer holds, we use average values as approximations.  

Procedure 1: Guided Topological Sort 

Initialize  

      
   ∀ 

 
      

   ∀ 

 
      ∀  

      

    
     ∀  

     ∀ 

   ∀ 
  

 PUSH all entry tasks into < Ready Queue >   /* A LIFO queue */ 
End Initialization 
While ( < Ready Queue > ≠ ∅ ) begin 
 Ti = POP < Ready Queue >, Counter = 0 
 Schedule Ti, mark Ti as scheduled, UPDATE < Ready Queue >
 Counter = Counter + Li 
 for all Tj such that Di_j = 1 
  if ( Tj ∈  < Ready Queue > & Lj + Counter < G ) begin 
   EXTRACT Tj from < Ready Queue > 
   Counter = Lj + Counter, Schedule/Mark Tj 
   UPDATE < Ready Queue > 
Output sorted tasks for Partitioning 

Partitioning 
We will now present a simulated annealing based 

algorithm (Algorithm 1) to perform partitioning of the sorted 
task sequence. To facilitate fast convergence to near-optimum 
results, we initialize the partitions according to Theorem 1. 
One can make a valid argument that Algorithm 1 is oblivious 
of the tasks in other cores. While true, optimizations that are 
geared towards inter-core dependencies such as list scheduling 
can be harmful to the partitioning step in our EOC framework. 

Despite considerable efforts, we have not found an alternative 
that significantly outperforms Algorithm 1. 

Algorithm 1: Partitioning Algorithm Pseudo Code 

Initialize  
 Execute Procedure 1  /* Perform guided topological sort */ 

      
      

    
  /* The initial number of tasks in one partition */ 

 Initialize partitions according to x 
End Initialization 
While (T > TFinal) begin 
 Evaluate total execution time: L1, save current configuration 
 r = Random(0<r<1) 
 if (r < C1) begin   /* Randomly add or merge partitions */ 
  if (r < C2) begin 
  Append a new partition   else Merge last two partitions    
 Select a random partition, move the last task to the next partition  
 Evaluate total execution time: L2 

 if      
             

   begin   /* Evaluate the effect of the move */ 

  Restore and clear saved configuration   /* Reject */ 
 T = T - Cooling 
Evaluate total execution time: LFinal 

D. Adjustments 
Unlike [22], the partitioning step in EOC scheduling will 

insert output data comparisons and alter the schedule timeline. 
As a result, the final schedule needs to be adjusted. This step 
also applies an ad-hoc optimization: for each entry task Ti, it 
attempts to apply the method described in Fig. 5c for Ti if it is 
beneficial to the total latency.  

V. EXPERIMENTAL RESULTS 

A. Two Core Architectures 
We assume that the system consists of two cores, the 

minimum amount of hardware for EOC to operate. In this case 
the mapping step can be skipped for EOC schedules. We 
examine two types of task graphs: linear and randomly 
generated. Randomly generated task graph will have native 
latencies uniformly distributed between 1 and Lmax, and output 
sizes uniformly distributed between 1 and Pmax. The EED 
latencies are defined as:   

                    .  

We first examine 30 sets of distinct linear task graphs with 
n = 10 tasks, Lmax = 11 and Pmax = 3. The resulting EOC 
schedules are shown in Fig. 8; our EOC schedules provide an 
average 29% improvement over the optimum EED schedule, 
where improvement is defined as: 

            
                       

           
     . 

To demonstrate the effects of the simulated annealing 
procedure, we compare results of the initial and the final 
schedules, which revealed that our final schedules provide an 
average improvement of 4.6% over our initial schedules. 

 
Figure 8. Total Execution Time Comparison (Two Core Architecture) 
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For random task graphs, the optimal EED schedule cannot 
be easily obtained. For our experiments, we implement the 
heuristics in [17] and apply extensive manual adjustments to 
obtain a good EED baseline schedule. We present eight sets of 
randomly generated task graphs each containing n = 25 tasks. 
As shown in Table II, our EOC schedules provide an average 
6% improvement over the baseline EED schedule. 

Table II. Total Execution Time for Randomly Generated Task Graphs 

 1 2 3 4 5 6 7 8 Avg 

Best EED 136 116 131 110 131 100 90 86 - 

EOC 114 110 114 106 105 105 90 91 - 

Improvement 16% 5% 13% 4% 20% -5% 0% -6% 6% 

B. R (R>2) Core Architectures 
When the system consists of more than two cores, task to 

core mapping decisions must be made prior to partitioning. 
We will showcase the results of EOC scheduling for a four 
core system. We limit ourselves to R = 4 since like TMR, EOC 
favors unbounded hardware resources, thus a large number of 
cores would provide EOC with an unfair advantage.  

 
Figure 9. The EOC Schedule (Total latency: 63, k = 1) 

For the task graph in Fig. 2 we illustrate the EOC 
scheduling results in detail. For R>2 core architectures, TMR 
can be applied with three cores without slack. The EOC 
schedule shown in Fig. 9 has a 7.4% improvement over the 
EED schedule shown in Fig. 4, and 13.7% improvement over 
the TMR schedule, which is calculated as    ∀         . 

EOC Set Performance Improvement Resource Usage Reduction 

1 19.82% -1.52% 

2 9.90% -5.35% 

3 9.28% 14.19% 

4 2.33% -4.64% 

5 15.12% -4.81% 

6 -2.30% 21.14% 

7 15.00% 2.81% 

8 7.14% -14.87% 

9 7.14% -4.12% 

10 14.29% 15.07% 

Avg 9.77% 1.79% 

Figure 10. Improvements provided by EOC over EED (four core architecture) 

We now study 10 sets of randomly generated task graphs 
each consisting of n = 25 tasks. The generation process is 
slightly tuned to produce task graphs that resemble real 
applications. Fig. 10 summarizes the results, where EOC 
schedules provide an average 9.8% performance improvement. 

It may seem that this latency improvement might have 
come from an increased use of resources, in other words, the 
EED schedule cannot fully utilize four cores. However, our 
results show that the resource usage of EOC schedules is 
slightly lower than that of the EED schedules. Therefore, 
compared to traditional EED schedules, EOC schedules can 
offer higher error coverage and nearly 10% performance 
improvement, without increasing resource requirements. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we overturn the accepted norms in fault 
tolerant scheduling (FTS) of assuming concurrent embedded 

error detection (EED) during execution, and outline a 
drastically different approach towards the problem. We first 
evaluate the coverage limitations and overheads of various 
error detection mechanisms, and revisit the seemingly simple 
idea of explicit output comparison (EOC). We construct a new 
framework of using EOC in FTS, identify the associated 
challenges and tradeoffs, and propose a new EOC based FTS 
algorithm. We show that compared to conventional EED 
scheduling methods, our new approach can provide higher 
(near-perfect) error coverage and nearly 10% improvement in 
performance, without increasing resource requirements.  

In our ongoing research, we are identifying a richer set of 
ways of applying EOC, by itself and in conjunction with EED, 
and scheduling algorithms to obtain greater improvements. 
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