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Abstract—Reducing the energy consumption of controllers in
vehicles requires sophisticated regulation mechanisms. Better
power management can be enabled by allowing the controller
to shut down sensors, actuators or embedded control units in a
way that keeps the car safe and comfortable for the user, with the
goal of optimizing the (average or maximal) energy consumption.
This paper proposes an approach to systematically explore
the design space of SW/HW mappings to determine energy-
optimal deployments. It employs constraint-solving techniques
for generating deployment candidates and probabilistic analyses
for computing the expected energy consumption of the respective
deployment. The feasibility and scalability of the method is
demonstrated by several case studies.

I. INTRODUCTION

A. Problem Description

Nowadays, energy-saving activities in the transport domain
mainly concentrates on the engines. But also the electronic
control systems in vehicles significantly contribute to their
energy consumption. Better power management can be enabled
by allowing the controller to shut down sensors, actuators or
embedded control units. As vehicles have to be considered
as safety-critical systems, sophisticated regulation mechanisms
are required to optimize the (average or maximal) energy
consumption while guaranteeing the user’s safety and comfort
at all times. A key factor on which to base an optimization
strategy is the operational mode of a vehicle, because not all
functionality of a vehicle control system is used in all oper-
ational modes. Examples for operational modes are: parking,
driving in the city, driving on a highway, and entertainment.
Operational modes can be orthogonal to one another, i.e.
several modes may be active simultaneously, such as parking
and entertainment.

Software components do not work independently of one
another. Moreover they form so called function chains, which
operate together to perform a desired task. Among software
components we distinguish between input/output drivers and
functional components. In a deployment step the function
chains must be mapped to existing hardware components.
More precisely, input and output drivers are mapped to sen-
sors and actuators, and functional components are mapped
to Electronic Control Units (ECUs). Hardware and software
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Fig. 1. An example deployment of function chains

components can be required to operate within multiple func-
tion chains. That means they can be a member of many
function chains by consuming inputs or providing outputs for
other components. Each of the different operation modes of
a car implies that a certain number of function chains are
(potentially) operational and that other function chains need
not be available.

As a function chain generally consists of many software
components, all participating components are active if the
function chain is. A hardware component must be active if
there is an active software component in any active function
chain that is deployed to this hardware component. Shutting
down an ECU thus disables all software components that are
deployed to this ECU or that depend on the attached sensors
and actuators.

In today’s systems the power management is quite conser-
vative in disabling functionality. In this paper we present an
approach to reduce the energy consumption of an automotive
control system by optimizing the deployment of functionality,
and subsequently exploiting the power management opportu-
nities that the chosen deployment provides. In particular, our
approach analyzes the deployment problem based on opera-
tional modes and behavioral profiles, so that we can propose
function chain deployments that allow for shutting down parts
of the system while optimizing energy consumption over time
(average) or to avoid peak energy consumption.

The scenario in Fig. 1 illustrates three function
chains, which are deployed to two different ECUs.
Function chains can include input/output drivers, such
as Output-Driver-1. In a specific operational mode,978-3-9815370-0-0/DATE13/ c©2013 EDAA



Function-Chain-1 implicitly triggers a dependency
on Function-Chain-2, because the result of that
chain is required as an input for Component-2.
Function-Chain-3 is not required to support the
other chains and therefore can be put in a low-power state.
An analysis of design alternatives can reveal that moving or
duplicating the software component of Function-Chain-2
to Controller-A will allow the system management to
power down Controller-B completely in that specific
operational mode.

B. Our Optimization Approach in a Nutshell

Due to the complexity of such intelligent control systems,
computer support for their design is indispensable. Our ap-
proach relies on exploring the design space of embedded
systems using the FORMULA1 tool [1], [2]. The latter is based
on model-based design and logic programming and allows for
the logical specification of non-functional requirements for the
components of the system. This includes e.g., schedulability
or communication constraints. The FORMULA modeling tool
can then be used to systematically analyze the interactions
between and the impacts of these requirements on platform
mappings and design spaces. This allows to automatically
generate deployment candidates, i.e., mappings of software to
hardware components that satisfy the given requirements.

The FORMULA approach, however, does not allow to
assess more quantitative aspects of the system, like its energy
consumption. The analysis of such properties additionally
requires to take the timed and/or stochastic behavior of com-
ponents and users into account. It is therefore necessary to
extend the model-based design method towards a generate-
and-test approach which comprises two steps: first, FOR-
MULA generates a set of deployment candidates fulfilling
the given constraints. Second, dedicated analysis methods are
applied to evaluate the interesting quantitative properties of the
respective deployment. The latter generally requires additional
information that FORMULA does not deal with such as usage
profiles of function chains. Given the random nature of such
profiles in automotive embedded systems, a natural candidate
for the analysis of quantitative aspects of the SW/HW mapping
are probabilistic techniques.

Fig. 2 gives a more detailed overview of our approach.
The computation of the expected energy consumption (lower
box) is essentially based on two inputs. The first is the usage
profile, specified as a discrete-time Markov chain (DTMC;
upper left box) over mode configurations. The second is the
set of deployment candidates (upper middle box) as provided
by FORMULA. The outcome is the optimal deployment, in
the sense that the expected energy consumption (for the given
usage profile) is minimal. The procedure will be detailed
further in this paper and will be applied to some (abstract)
case studies so as to indicate its scalability and feasibility.

1http://research.microsoft.com/en-us/projects/formula/
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Fig. 2. Overview of our approach towards energy optimization of deployment
candidates

C. Related Work

The main novelty of our approach is the combination of
constraint-based generation of deployment candidates with
the efficient quantitative analysis of Markov chains to anal-
yse energy consumption. In our view, the constraint-based
perspective is a natural fit to deployment generation, and
conceptually differs from e.g., state-based techniques such
as BIP as used in [3]. In particular, our approach allows to
obtain useful information about energy optimization in an
early design phase where detailed automata-based models are
not yet at our disposal. Whereas most approaches are based
on simulation [3] or analytical techniques [4], we advocate
a numerical approach to determine the maximum expected
overall energy consumption. Energy consumption analyses
of single deployments include e.g., the analysis of selective
deactivation of ECUs in networked embedded systems [5], and
probabilistic model checking analysis [6]. Other approaches
include e.g., the usage of non-linear convex programming
techniques for determining optimal voltage supply [7].

II. THE FORMULA TOOL

Declarative specification languages with constraints are used
in model-driven engineering to give formal semantics, de-
fine model transformations, and describe domain constraints.
FORMULA (Formal Modeling Using Logic Programming and
Analysis) [1], [2] is a modern formal specification language
targeting model-based development (MBD). The core of FOR-
MULA’s approach uses algebraic data types (ADTs) and
strongly-typed constraint logic programming (CLP), which
support concise specifications of abstractions (domains) and
model transformations. Specifications are understood as con-
straints on relations; the logic is a class of fixpoint logic (FPL),
similar to (but more general than) Datalog.

In general, logic programs have a precise execution se-
mantics, so domains can be understood programmatically.
However, FORMULA’s logic programs also have a precise
interpretation as a system of first-order formulas, making
them analyzable by existing tools. FORMULA applies the
satisfiability modulo theories (SMT) solver Z3 [8] for search.
A major advantage is its model finding and design space



exploration facility. It can be used to construct system models
satisfying complex domain constraints. The user inputs a par-
tially specified model, and FORMULA searches the space of
completed models until it finds a globally satisfactory design.
This process may be repeated to find many globally consistent
designs. Variations on this procedure can be used to prove
properties on model transformations and to perform bounded-
symbolic model checking. Specifications are composable via a
novel set of operators acting on data types and logic programs.
They are constructive and they make semantic guarantees
about composite domains.

III. THE SYSTEM MODEL

This section describes the system model in detail and
explains the modeling of the usage profile.

A. System Structure

A key factor on which to base optimization strategies is the
operational mode of a system, because not every functionality
of a system is used in all modes. In turn, the functionalities or,
more technically, function chains determine which (software
and hardware) components need to be active. These entities
are formally represented by finite sets of (operational) modes,
Mod , function chains, Chn , and software and hardware com-
ponents, SW and HW , respectively.

For the example system shown in Fig. 1 and using appro-
priate abbreviations, we obtain the following sets. (Note that
the figure does not visualize the modes.)
• Mod = {M1,M2,M3}
• Chn = {FC1,FC2,FC3}
• SW = {ID1,C1, . . . ,C5,OD1}
• HW = {S1,CA,CB,A1}
Furthermore we need mappings that determine the relation

between modes and function chains, between function chains
and software components, and between software and hardware
components. (In the following, 2S := {T | T ⊆ S} denotes
the powerset of a given set S.)
• chn : Mod → 2Chn : for every m ∈ Mod , chn(m) yields

the set of function chains that are operative in mode m;
• sw : Chn → 2SW : for every c ∈ Chn , sw(c) yields the

set of software components that are engaged in function
chain c (where sw(c1) and sw(c2) are not necessarily
disjoint for c1, c2 ∈ Chn); and

• dpl : SW → HW defines the deployment mapping,
which determines for every s ∈ SW the hardware
component dpl(s) on which software component s is
running. We let Dpl denote the set of all such deployment
mappings.

Thus the structure of the example system is formal-
ized by letting chn(M1) = {FC1,FC2}, sw(FC1) =
{ID1,C1,C2,OD1}, dpl(ID1) = S1, etc.

B. Cost Parameters

In order to determine the (expected) energy consumption of
the system for a given deployment, the following quantitative
parameters are required.

• the cycle time of the system (in ms), δ ∈ R, which de-
termines the period during which its mode configuration
remains unchanged;

• for every s ∈ SW , twc(s) ∈ R gives the worst-
case execution time (WCET; in ms) for a single run of
software component s;

• for every s ∈ SW , f (s) ∈ N gives the execution
frequency of software component s, that is, the number
of executions per cycle;

• for every h ∈ HW , Pdown /Pidle(h)/Pact(h) ∈ R re-
spectively determines the power consumption of hardware
component h in shutdown/idle/active state (in W). Here
a hardware component is considered to be active when
it is currently executing a software component, otherwise
idle. We assume that Pdown(h) ≤ Pidle(h) ≤ Pact(h)
for every h ∈ HW .

To enable proper scheduling of software components, we
moreover assume that f (s) · twc(s) ≤ δ for every s ∈ SW .

C. Behavioral Profile

With regard to the analysis of energy consumption, it is
important to observe that operational modes can be orthogonal
to each other, i.e., that several modes may be simultaneously
active. The overall activity of the system is therefore deter-
mined by a (non-empty) set M ⊆ Mod of currently active
modes, called a mode configuration. As mentioned earlier, this
configuration remains constant during the execution of a single
cycle. Between cycles, however, it may change. We assume
that inter-cycle transitions can be represented by a stochastic
model which, for a given current configuration, enumerates
all possible successor configurations that can be taken for
the next cycle, together with their associated probabilities.
Clearly, the successor configurations may include the current
one. Formally, this model is a discrete-time Markov chain
(DTMC), a triple (S, s0, p) where S is a countable set of states
with initial state s0 ∈ S and p : S×S → [0, 1] is a probability
matrix satisfying

∑
s′∈S p(s, s

′) = 1 for each s ∈ S. Thus we
assume that the mode transition behavior of the given system
can be represented by a DTMC over mode configurations, i.e.,
with (finite) state space S = 2Mod \ {∅}.

For example, the diagram shown in Fig. 3 visualizes a
DTMC with configurations over modes from the set Mod =
{M1,M2,M3}. A possible interpretation is that M1 and M2
respectively represent the parking and driving mode of the
vehicle while M3 indicates the activity of the entertainment
system. Thus M1 and M2 exclude each other (and therefore do
not occur jointly in any reachable configuration) while M3 is
orthogonal to the other two modes. The initial state, {M1}, is
marked by an ingoing arrow.

IV. THE ANALYSIS

The goal of our analysis is to rank the deployment can-
didates as provided by the FORMULA tool with respect to
their (expected) energy consumption. Clearly the analysis has
to employ probabilistic methods as the underlying behavior
model, DTMCs, is of a stochastic nature. More concretely, for
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Fig. 3. A DTMC over mode configurations

a given deployment candidate, the expected energy consump-
tion of the system using that deployment can be determined
in the following way.

1) Compute the steady-state probabilities for all states in
the DTMC.

2) Compute the energy consumption in each of the states,
and attach it as reward information to the DTMC.

3) Compute the expected overall energy consumption per
cycle as the expected reward.

These steps are detailed in the following.

A. Computation of Steady-State Probabilities

Evaluating the energy consumption of a system is based on
computing the stationary distribution of the DTMC (S, s0, p).
It gives the probability of being in a certain state when taking
a snapshot after a very long time or, in other words, the
proportion of time that the DTMC “spends” in that state in
the long run. Under certain mild assumptions regarding the
DTMC (which usually apply in our setting), this distribution
can be characterized by a flow balance equation system of the
form

π = π · p

which expresses that the total probability flow out of a state
is equal to the total flow into the state.

The stationary distribution, that is, the solution π of the
equation system can be computed using tools such as PRISM
[9], based on the given DTMC. Note that this computation
is independent of the concrete deployment. It therefore needs
to be done only once in the beginning of the analysis before
specific deployment candidates are considered.

B. Energy Consumption per Mode Configuration

Knowing the stationary distribution of the DTMC, the
expected overall energy consumption per cycle with respect
to a given deployment candidate can be determined by first
computing the energy consumption per cycle for each of the
mode configurations in the DTMC, and second weighting it

with the stationary probability of the respective configuration.
This section describes the first step in detail.

Given the current mode configuration M ⊆ Mod (i.e., a
state of the DTMC) and the deployment mapping dpl ∈ Dpl ,
the maximal energy consumption in mode M per cycle with
respect to dpl can be computed as follows.

1) Determine the function chains that are operative in M :

Chn(M) :=
⋃

m∈M
chn(m) ⊆ Chn.

2) Determine the engaged software components:

SW (M) :=
⋃

c∈Chn(M)

sw(c) ⊆ SW .

3) Determine the engaged hardware components:

HW (M) := dpl(SW (M)) ⊆ HW .

4) For every h ∈ HW (M):
a) Determine the engaged software components that

are deployed on h:

SW (h) := SW (M) ∩ dpl−1(h) ⊆ SW .

Here dpl−1 : HW → 2SW denotes the inverse
mapping of dpl , defined by dpl−1(h) := {s ∈
SW | dpl(s) = h}.

b) For every s ∈ SW (h), determine the active time
of s (independent of mode M ):

tact(s) := f (s) · twc(s).

c) Determine the active time of h:

tact(h) :=
∑

s∈SW (h)

tact(s).

5) This yields the maximal energy consumption in mode
configuration M per cycle:

E(M) :=
∑

h∈HW \HW (M) Pdown(h) · δ
+

∑
h∈HW (M)E(h) where

E(h) := Pact(h) · tact(h) + Pidle(h) · (δ − tact(h)).

Here, E(h) is the expected energy usage of an engaged HW
component expressed as weighted sum over the active time
and idle time, respectively.

C. Expected Overall Energy Consumption

The expected overall energy consumption per cycle for
the given deployment mapping can easily be obtained by
computing the expected reward

E(dpl) =
∑

M⊆Mod

π(M) · E(M)

whose minimization yields the energy-optimal deployment.



#Mode conf. #Modes #FC #SW #HW #Dpl. Comp. time
4 3 3 7 4 16 1075 ms

TABLE I
OVERVIEW OF THE EXAMPLE

V. EVALUATION

The analysis described in the previous section has been
implemented in a tool that, given a set of deployments
determined by FORMULA, computes the expected energy
consumption of each candidate. This section gives the result of
some experiments to explore its capabilities. They were carried
out on a machine equipped with an 3.06 GHz Intel Core i7
CPU and 5.8 GB of memory. We start with the evaluation of
the running example, using 16 different deployments. Next we
explore the scalability of our tool by changing certain model
size parameters during deployment generation.

A. Running Example

In this experiment, we first use FORMULA to specify
all parameters and constraints, and then generate a set of
candidate deployments to compute their energy consumption.
The parameters are those described in Section III, dealing both
with the static part of the system structure (cf. Section III-A)
and with its cost parameters (cf. Section III-B). Furthermore,
FORMULA allows to specify some requirements that the gen-
erated deployments should satisfy, such as the schedulability
of the resulting system, the minimal or maximal number of
software components that are mapped to one hardware compo-
nent, etc. Based on this information, FORMULA generates the
possible deployments using SMT-based methods as sketched
in Section II. We again refer to [1], [2] for details.

Each deployment is exported as a 4ml file including addi-
tional information for energy consumption computation, and
then our tool will import these files and extract the information
for further processing. The steady-state probabilities of the
mode configurations (cf. Section IV-A) are obtained by calling
the PRISM2 model-checking tool. Based on the results, our
tool computes the expected energy consumption per cycle for
each deployment and returns the deployment with minimal
energy consumption.

The overview of the system parameters and the energy
consumption distribution of the example are shown in Table I
and Fig. 4, respectively. Furthermore, we set Pdown of each
hardware component be to 3% of its Pact . We observed that
the major portion (> 90%) of computation time is used to
generate the PRISM representation of the DTMC model and
to call PRISM for computing the steady-state probabilities for
each operational scenario.

From the energy consumption distribution of 16 deploy-
ments, we can see that the average energy consumption is
430.8 mWs. The minimal energy consumption of 380.84 mWs
can be achieved by choosing the 13th deployment, in which the
software components C1, C2 and C3 are mapped to hardware

2http://www.prismmodelchecker.org/
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Fig. 4. Distribution of expected energy consumption per cycle

component CB, C4 and C5 are mapped to CA, S1 is mapped
to ID1, and A1 is mapped to OD1. In contrast, both the 9th
and 16th deployment have the maximal energy consumption of
471.72 mWs, which exceeds the minimal one by 90.88 mWs.
From the results we observe that the deployments can be
divided into two groups with 8 elements each: deployments 1,
2, 3, 4, 6, 12, 13 and 14 with relatively low and deployments
5, 7, 8, 9, 10, 11, 15 and 16 with relatively high energy
consumption. This difference is caused by deploying C3 to
either CB or CA. There are three justifications why the first
choice performs better: 1) CA has a much higher power
consumption both in active and idle state than CB; 2) C3
has the longest execution time during one cycle time among
all software components; and 3) C3 is involved in several
mode configurations with a high probability of usage. Thus
the optimal deployment can only be in first group. Then, the
key factor of energy saving in these deployments is to fully
use CB. Due to the restrictions, to fully use CB after C3 is
deployed to CB, there are three possibilities: 1) to deploy both
C1 and C2 to CB, 2) to deploy C4 to CB, 3) to deploy C5
to CB (cf. deployments 13, 6 and 4 in Fig. 4, respectively).
From Fig. 4 we can easily see that mapping C1 and C2 to CB
yields the overall optimum.

B. Scalability Results

Next we tested the scalability of our tool by performing
experiments on deployments with different parameter settings.
We use another program to automatically create random
deployments which satisfy the given parameters, such as
the number of mode configurations, the number of function
chains, etc. Also the number of generated deployments can
be specified in this program. In our experiments, we compute
the minimal energy consumption of 10 deployments generated
by setting different parameters. Note that since we only
specify the most important parameters, some parameters of
the resulting deployments are randomly determined, such as
the transition probabilities in the mode configuration DTMC.
Table II shows the various parameters we use for testing and



#Mode conf. #Modes #FC #SW # HW
100-1000 100-1000 10-100 100-1000 100-1000

TABLE II
SCALABILITY PARAMETERS
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their value ranges.
The computation time distributions for different parameter

settings are shown in Fig. 5 and 6. The first successively varies
the number of mode configurations (md. cf), modes, software
components (sw) and hardware components (hw), which all
increase from 100 to 1000 in steps of 100, respectively. Here,
the sizes of the non-varying parameters (mode configurations,
modes, software and hardware components) are fixed to 10, 5,
1000 and 10, respectively. Moreover the number of function
chains of these generated deployments is fixed to 20. The
results indicate that the number of hardware components has
the strongest influence on the computation time whereas the
other three parameters have a similar, weaker effect.

In addition, Fig. 6 shows that the number of function chains
has an even more significant impact on the computation time.
About 2122 s (≈ 35 min) are needed to find the optimal
deployment for 100 function chains whereas only 36 s are
required for 10 chains. (The number of mode configurations,
modes, software and hardware components is again fixed to
10/5/1000/10.) Finally we performed a maximal test (whose
result is not shown in the figures) by computing 10 de-
ployments for 100 mode configurations, 1000 modes, 100
function chains, 1000 software components and 100 hardware
components. The computation takes about 5702 s (≈ 95 min),
which exceeds the longest time shown in Fig. 6 by a factor of
about 2.7.
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VI. CONCLUSION

This paper presented a novel combination of constraint-
based deployment generation and quantitative analysis to
determine the SW/HW deployment that minimizes expected
energy consumption. The approach has been implemented in
a prototypical tool-chain using FORMULA and PRISM as
tool components. Our experimental results show the sensitivity
on several parameters and indicate a good scalability. Further
research includes the application to automotive case studies.
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