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Abstract—Some data- and compute-intensive applications can
be accelerated by offloading portions of codes to platforms such
as GPGPUs or FPGAs. However, to get high performance for
these kernels, it is mandatory to restructure the application, to
generate adequate communication mechanisms for the transfer
of remote data, and to make good usage of the memory band-
width. In the context of the high-level synthesis (HLS), from
a C program, of hardware accelerators on FPGA, we show
how to automatically generate optimized remote accesses for an
accelerator communicating to an external DDR memory. Loop
tiling is used to enable block communications, suitable for DDR
memories. Pipelined communication processes are generated to
overlap communications and computations, thereby hiding some
latencies, in a way similar to double buffering. Finally, not only
intra-tile but also inter-tile data reuse is exploited to avoid remote
accesses when data are already available in the local memory.

Our first contribution is to show how to generate the sets of
data to be read from (resp. written to) the external memory just
before (resp. after) each tile so as to reduce communications
and reuse data as much as possible in the accelerator. The
main difficulty arises when some data may be (re)defined in the
accelerator and should be kept locally. Our second contribution
is an optimized code generation scheme, entirely at source-
level, i.e., in C, that allows us to compile all the necessary
glue (the communication processes) with the same HLS tool
as for the computation kernel. Both contributions use advanced
polyhedral techniques for program analysis and transformation.
Experiments with Altera HLS tools demonstrate how to use our
techniques to efficiently map C kernels to FPGA.

I. INTRODUCTION

HLS tools [1], e.g., Catapult-C, Impulse-C, Pico-Express,
C2H, Gaut, Spark, Ugh, provide a convenient level of abstrac-
tion (in C-like languages) to implement complex designs. Most
of these tools integrate state-of-the-art back-end compilation
techniques and are thus able to derive an optimized internal
structure, thanks to efficient techniques for scheduling, re-
source sharing, and finite-state machines generation. However,
integrating the automatically-generated hardware accelerators
within the complete design, with optimized communications,
synchronizations, and local buffers, remains a hard task, re-
served to expert designers. In addition to the VHDL glue that
must sometimes be added, the input program must often be
rewritten, in a proper way that is not obvious to guess. For
HLS tools to be viable, these issues need to be addressed: a)
the interface should be part of the specification and/or automat-
ically generated by the HLS tool; b) HLS-specific optimizing
program restructuring should be available, either in the tool or
accessible to the designer, so that high performances (mainly
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throughput) can be achieved. High-level transformations and
optimizations are common in high-performance compilers,
not yet in high-level synthesis. But their interest and their
specificities for HLS have been demonstrated through hand-
made designs or restructuring methodologies [2], [3], [4], [5].

The goal of this paper is to show how the handmade
restructuring proposed in [5] in the context of C2H, the Altera
HLS tool, can be fully automated, thanks to advanced polyhe-
dral techniques for code analysis and code generation, entirely
at source level (i.e., in C). We focus on the optimization
of hardware accelerators that work on a large data set that
cannot be completely stored in local memory, but need to be
transferred from a DDR memory at the highest possible rate,
and possibly temporarily stored locally. For such a memory,
the throughput of memory transfers is not uniform: successive
accesses to the same DDR row are pipelined an order of
magnitude faster than when accessing different rows. Conse-
quently, accessing data by blocks is a direct way of improving
performances: if not, the hardware accelerator, even if it is
highly-optimized, keeps stalling and runs at the frequency of
the DDR accesses. A similar situation occurs when accessing a
bus for which burst communications are more efficient or when
optimizing remote accesses for GPGPUs. More generally, this
offloading problem occurs when transfers between an external
large memory and an accelerator with a limited memory
should be reduced (thanks to data reuse in the accelerator),
pipelined, and preferably performed by blocks. This is why
our optimization techniques, although developed for HLS and
specialized to Altera C2H, may be interesting in other contexts.

Our technique relies on loop tiling to increase the granu-
larity of computations and communications. Each strip of tiles
is optimized as follows. Transfers from and to the DDR are
pipelined, in a blocking and double-buffering fashion, thanks
to the introduction of software-pipelined communicating pro-
cesses. Data reuse within a strip, in particular inter-tile reuse,
is exploited by accessing data from the accelerator and not
from the DDR when already present. Local memories are
automatically generated to store the communicated data and
exploit data reuse. Our main contributions are the following:

Program analysis We show how to compute the sets Load(T )
and Store(T ) of data to be loaded/stored before/after the
execution of a tile T , thanks to parametric linear programming,
so that the lifetime of each individual data in the local memory
is minimized, which tends to reduce its size. Unlike previous
approaches, ours can pipeline communications and exploit
reuse among tiles even for data redefined in the tile strip.
It can also be extended to the case where data accesses are
approximated, i.e., when reads/writes are not known for sure.



Code generation Driven by a “scheduling function” that
expresses the tiling of loops and the pipelining of tiles, our
technique generates automatically the size of local buffers, the
access functions, the scanning of data sets to access the DDR
row-wise, and the generation of communicating processes,
thanks to the integration of several polyhedral techniques.

HLS integration A unique feature of our scheme is that the
original computation kernel and all generated communicating
processes are expressed in C and compiled into hardware with
the same HLS tool (C2H), used as a back-end compiler.

In Section II, we recall loop tiling and illustrate our
technique through a synthetic example. Section III explains
how to optimize remote accesses for an offloaded kernel, when
the sets of data read and written in a tile are known exactly 1.
In Section IV, we apply our technique to the special case of
HLS with Altera C2H. We present the different steps of the
code generation and some experimental results comparing the
performances of the hardware accelerators of [5], optimized by
hand, and those optimized automatically thanks to our method.

II. LOOP TILING AND TRANSFER SETS

Our method can be applied to offload a kernel on which
loop tiling [7] and polyhedral transformations can be applied,
i.e., a set of for nested loops, manipulating arrays and
scalar variables, whose iterations can be represented by an
iteration domain using polyhedra, i.e., when loop bounds, if
conditions, and array access functions are affine expressions
of surrounding loops counters and structure parameters. Many
compute-intensive kernels (e.g., from linear algebra, image
processing) fit into this model.

Loop tiling is a standard loop transformation, known to
be effective for automatic parallelization and data locality im-
provement. With loop tiling, the iteration domain is partitioned
into rectangular blocks (tiles) of iterations to be executed
atomically. Loop tiling can be viewed as a composition of
strip-mining and loop interchange. Strip-mining introduces
two kinds of loops: the tile loops, which iterate over the
tiles, and the intra-tile loops, which iterate within a tile. This
step is always legal. Then, loop interchange pushes the intra-
tile loops to innermost positions. In some cases, a first loop
transformation, e.g., loop skewing, is needed to make the
loops tilable (i.e., fully permutable). “Rectangular” has to be
understood w.r.t. this preliminary change of basis.

We call tile strip the set of tiles described by the innermost
tile loop, for a given iteration of the outer tile loops. This
notion is widely used in our approach, as our optimizations
are performed within such a one-dimensional tile strip, pa-
rameterized by the counters of the outer tile loops. A loop
tiling for a statement S, within n nested loops with iteration
domain DS , can be defined thanks to an n-dimensional affine
function ~i 7→ θ(S,~i) (the permutable dimensions), where ~i is
the iteration vector scanning DS , and a (single, to make things
simpler) tile size b. Then, a tile, defined by n loop counters
I1, . . . , In, contains ~i ∈ DS if bIk ≤ θ(S,~i) < b(Ik + 1),
for k ∈ [1..n]. Adding these constraints, for a fixed value b,

1This restriction is enough for the kernels of Section IV and, more generally,
when reads are approximated. When writes are approximated, the technique
can be extended [6], but this goes out of the scope of this paper.
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Figure 1. Different tilings and communications

to those expressing DS specifies an iteration domain D′
S of

dimension 2n. If the transformation θ leads to n permutable
loops, then a valid sequential schedule of the tiled code is, for
example: θtiled(S, I1 . . . In,~i) = (I1, . . . , In, θ(S,~i)).

Main example: We illustrate the different steps of our
technique with the next code, which computes, in c, the product
of 2 polynomials of degree N , stored in arrays p and q.

for (i=0; i<=2*N; i++)
S1: c[i] = 0;

for (i=0; i<=N; i++)
for (j=0; j<=N; j++)

S2: c[i+j] = c[i+j] + p[i]*q[j];

From now on, we suppose that the offloaded kernel is
the set of nested loops containing S2. If commutativity and
associativity are not exploited, some preliminary loop trans-
formation is needed to make the loops permutable.

A possible tiling is given by the schedule (i, j) 7→ (N −
j, i), corresponding to a loop interchange and a loop reversal
of the j loop, see the left of Fig. 1. For such a tiling, there
is maximal inter-tile reuse of q within a tile strip (along the j
axis), maximal intra-tile reuse of p within a tile (along the i
axis), and some intra- and inter-tile reuse for c between two
successive tiles. In grey are shown the elements of c that must
be loaded by each tile, if maximal data reuse is exploited, and
in hatched white those that must be stored back by each tile.

With the tiling in the right of Fig. 1, defined by the schedule
(i, j) 7→ (i+ j, i), the data dependences on c are always kept
in the tile strip. This way, the loads and stores for array c
only arise on the first and last tiles of the tile strip. Notice
that the loads and stores for the array p are the same in
both cases. However, the number of transfers for array q now
increases compared to the first tiling. As an illustration, for this
second tiling, the full sequential schedule of iterations, θtiled,
is (i, j) 7→ (I, J, i+ j, i) where bI ≤ i+ j ≤ bI +(b− 1) and
bJ ≤ i ≤ bJ + (b− 1), i.e., I = b i+j

b c and J = b ibc. �

The choice of the tiling is left to the user 2 and specified,
thanks to a C pragma, as a function θ, such as (N − j, i).
Given S, D′

S , and θtiled, standard polyhedral code generation
could be used to generate a tiled code. However, applying such
a preliminary rewriting step would complicate our subsequent
optimizations. Instead, all analysis and code generation steps
described hereafter are done with respect to this function θ.

2For the automatic selection of tile directions and size, see for ex. [7], [8].



The execution of each tile T is then decomposed, thanks
to communication coalescing (see Section III), into three
pipelined processes, for loading data, storing data, and per-
forming the computations, as required for T . The function θ
is then also used to express the relative schedules of these
processes and to help us synthesize the adequate local buffers
in a double-buffering fashion. Actually, “double-buffering” is
a language simplification: we will not use two buffers, but
one single (larger) buffer. However, two successive blocks of
computation in a tile strip are indeed pipelined with two blocks
of communications, which results in an overlapping between
communications and computations (see Section IV).

To define the transfer sets Load(T ) and Store(T ) express-
ing the data to be loaded/stored before/after the execution of
a tile indexed by T , we make the following assumptions:

• Elements in Load(T ) are loaded from external memory
before the tile T starts, but in any order for a given T .

• Elements in Store(T ) are stored to external memory after
the tile T ends, but in any order for a given T .

• Tiles are executed in sequence, following the sequential
order specified by θtiled, in particular with increasing T .

• Similarly, transfers in Load(T ) (resp. Store(T )) are initi-
ated before those in Load(T ′) (resp. Store(T ′)) if T < T ′.

In addition, we will make sure that a data is never loaded
from the external memory if it has already been loaded earlier.
Instead, it will be kept in local memory until its last use.

Back to the example: Consider Fig. 1 with the left
tiling corresponding to (i, j)→ (I, J, ii, jj) where ii = N−j
and jj = i. Our technique determines that the elements of c to
be loaded are those depicted in grey boxes, indicated as “First
read (c)”. For that, given 3 parameters, the loop bound N ,
the outer tile index I , and the memory index m of array c,
we derive (here for b = 10) an expression of the initial loop
indices (i, j) that perform the first reads of c in the tile strip:

• (i, j) = (0,m) if 0 ≤ −10I + N − m ≤ 9 (this case
corresponds to a vertical portion of c);

• (i, j) = (10I−N+m,N−10I) if 1 ≤ 10I−N+m ≤ N
(this corresponds to an horizontal portion).

Then, we derive Load(T ) (here T = J with previous notations)
as the set of data m read in T if this is the first access in the
tile strip indexed by I:

{m | max(0, N − 10I − 9) ≤ m ≤ N − 10I, T = 0}∪
{m | max(1, 10T ) ≤ m+ 10I −N ≤ min(N, 10T + 9)}

How to get these load/store sets (basically, first read/last
writes) in general, how the corresponding transfers are orches-
trated, and how the necessary local memories are dimensioned
and addressed, is detailed in the rest of this paper. �

III. COMMUNICATION COALESCING

We now show how to select the array regions to be loaded
from and stored to the external DDR memory. This step
impacts the amount of communications, the lifetime of array
elements in the local memory, and the size of this memory.

To perform data transfers, the most naive solution is to
access the DDR for each remote data access in the code. This

solution does not require any local memory but is very ineffi-
cient: the latency to the DDR has to be paid for each access,
which takes roughly 400 ns on our platform. Accesses must
thus be pipelined (a feature available in Altera C2H) so that the
accelerator throughput depends not on the DDR latency, but on
its throughput. The accelerator can then receive 32 bits every
80 ns, if successively-accessed data are not in the same DDR
row. However, if data accesses are reorganized by blocks on
the same row, thanks to loop tiling, the accelerator can work at
full rate, i.e., it can receive 32 bits every 10 ns. But to sustain
this rate and not pay any DDR latency, communications must
be fully pipelined. This can be done thanks to communication
coalescing, which amounts to hoisting transfers out of a tile
and to regrouping the same accesses to eliminate redundancy.

Communication coalescing is a common optimization in
compilers, for optimizing communications and scratch-pad
memories [9], [10], [11], [12], [8], [13], [14], [15]. The form
of communication coalescing we develop here is different as it
exploits not only intra-tile reuse but also inter-tile reuse, even
if data dependences exist between tiles, at the granularity of
individual array elements. Usually, the approach is to load,
just before executing a tile, all the data read in the tile, then
to store to the DDR all data written in the tile. This solution
does not exploit inter-tile data reuse and, unless no data-flow
dependence exists between successive tiles, forbids to overlap
computations and communications. This is the approach im-
plemented in the RStream compiler, as described in [13]. The
other extreme solution is to first load all data needed in a tile
strip, then to execute all tiles in the strip, and finally to store
to the DDR all data produced by the tile strip, in other words,
to hoist some communications outside the innermost tile loop.
This exploits data reuse but requires a large local memory to
store all needed data. Also, computations cannot start before
all data have arrived. Another important difference is that our
technique performs loads from the external memory even when
this memory is not fully up-to-date.

Our strategy consists of sending load and store requests
to the DDR only at the time they are needed. Furthermore,
we load from (resp. store to) the DDR any data read (resp.
written) in the current tile strip only once. Between the first and
the last accesses, the data is kept and used (read and written)
in the local memory, exploiting data reuse. As a bonus, this
method handles naturally the case where dependences exist
between tiles of a tile strip. Indeed, as data concerned by
inter-tile dependences are kept in local memory, the sequential
execution of tiles guarantees the program correctness. Another
consequence is that, unlike for previous approaches where the
resulting lifetimes of array elements are all the same (either
from the first tile to the last tile, or just within a tile), memory
allocation based on bounding box as in [13], [10], [8] is not
enough: to exploit the different lifetimes of individual array
elements, we need to use a more general allocation scheme,
based on modular mappings, as explained in Section IV-B.

Our technique relies on the following definitions and the-
orems. For a tile T , let In(T ) be the data read in T , but not
defined earlier in the tile, i.e., used in T and live-in for T , and
let Out(T ) be the data written in T . We assume In(T ) and
Out(T ) to be exact. The following theorem gives a solution
where loads are performed as late as possible and stores as
soon as possible. This has the effect of minimizing the lifetime



of data in the local memory, which tends to reduce its size.

Theorem 1: The functions Load and Store defined by

• Load(T ) = In(T ) \ {In(t < T ) ∪ Out(t < T )}
• Store(T ) = Out(T ) \ Out(t > T )

avoid useless transfers and reduce lifetimes in local memory.

Theorem 1 specifies optimized transfers based on set
operations. Instead of relying on such operations, which could
be done with the libraries Omega or ISL 3, our implementation
uses an alternative approach based on PIP, a tool for parametric
linear programming [16]. Assuming that the analyzed kernel
fits in the polytope model, i.e., has affine loop bounds and
access functions, we define:

• FirstOpReadBeforeWrite(~m), first operation that accesses
an array cell indexed by ~m, if it is a read.

• LastOpWrite(~m), last operation accessing ~m as a write.

Theorem 1 can then be reformulated as follows:

Theorem 2: The operators of Thm. 1 can be defined as:

• Load(T ) = {~m | FirstOpReadBeforeWrite(~m) ∈ T}
• Store(T ) = {~m | LastOpWrite(~m) ∈ T}

Load(T ) gives the data accessed for the first time in T if this
is a read, Store(T ) the data written for the last time in T .

FirstOpReadBeforeWrite(~m) is obtained by first extracting
the set of operations accessing ~m. Then, we compute the access
that is scheduled first (with respect to θtiled, the tiled schedule)
in the tile strip, which boils down to compute the lexicographic
minimum in a union of polytopes, as for exact array data-flow
analysis [17]. More precisely, in the polytope model, reads
(this is similar for writes) to c are as follows:

S :~i ∈ D : . . . = . . . c[u(~i)] . . .

where D is the iteration domain of statement S, ~i an iteration
vector, and u is affine. The reads of c(~m) in S are the
operations (S,~i) such that u(~i) = ~m and ~i ∈ D:

Read(~m, S) = {~i ∈ D | u(~i) = ~m}

(If c occurs more than once in S, each access is distinguished.)
Now, remember that S is given an affine schedule θS , see
Section II. We extend the definition of Read by incorporating
the execution date of ~i, i.e., (~I, ~ii) = (bθS(~i)c, θS(~i)) to get:

{(~I, ~ii,~i) | ~ii = θS(~i)∧b~I ≤ ~ii < b(~I+~1)∧u(~i) = ~m∧~i ∈ D}

Then, we use PIP to compute the lexicographic minimum
of Read(~m, S). The result depends on the parameters (in
our example, the loop bound N , the outer tile index I , the
memory cell ~m) and is presented as a discussion on their values
(and possibly some additional parameters expressing integer
division), more precisely as a tree of affine conditions (a quasi-
affine selection tree or Quast in PIP’s terminology), where each
result (leaf of the tree) is expressed as an affine function. When
several references exist (reads and writes) to the array c, the
previous process is applied to each reference and the resulting
piece-wise affine functions are combined, with standard Quasts
combinations and simplifications, to get the global mini-
mum. Of course, for computing FirstOpReadBeforeWrite(~m),

3Omega: http://chunchen.info/omega/, ISL: http://freecode.com/projects/isl
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Figure 2. Software-pipelined synchronizations.

only the cases where the minimum is a read (and not a
write) are kept. Then, following Theorem 2, it remains to
add the constraints that express the fact that an operation
FirstOpReadBeforeWrite(~m) belongs to a given tile T . The
final result is described as a relation between ~m and T that
can be read as a set of value ~m, parameterized by T to get the
sets Load(T ) and Store(T ). Similarly, Store(T ) is obtained by
maximization, through the computation of LastOpWrite(~m)

Back to the example: For the left tiling of Fig. 1,
computing FirstOpReadBeforeWrite(~m), for the tile strip in-
dexed by I , amounts to finding (i, j) such that (J, ii, jj, i, j)
is lexicographically minimum, with the constraints:{

ii = N − j, jj = i, i+ j = m, 0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1, bJ ≤ jj ≤ b(J + 1)− 1

This system can be solved with PIP if the tile size b is
fixed. After simplifications, we obtain the expression given in
Section II for b = 10. Finally, given the schedule θ(i, j) =
(N − j, i), we put back the constraint b ibc = T , where T is
a parameter indexing tiles, and, from this relation between T
and ~m, we derive the set Load(T ) given in Section II. �

IV. APPLICATION TO HLS FOR FPGA

We now use the theory developed in Section III to generate
automatically a C specification of communicating processes
that can be compiled into hardware by a HLS tool, namely Al-
tera C2H, following the procedure proposed in [5]. It remains
to show how the different communication and computation
processes are scheduled and synchronized, in C using C2H,
how the local memories (size and access function) are then
defined with respect to this schedule, and how the load and
store sets are finally scanned. We point out that all these steps
(computation of loads/stores, computation of a mapping for
designing local buffers, scanning of sets for kernel generation)
are done w.r.t. the schedule θ. This makes the whole technique
transparent, without even generating an initial loop tiling.

A. Synchronization of computation/communication processes

Following the methodology of [5], we generate 5 functions
(called drivers) to be translated by C2H into separate hardware
accelerators. For each tile strip, the Compute driver executes
all computations of tiles in sequence, whereas, for communi-
cations, the tiles are processed by pairs, by 2 load and 2 store
drivers, e.g., if Tmin = 0, Load0 and Store0 deal with even
tiles, Load1 and Store1 with odd tiles. Each driver contains
a loop nest iterating over the tiles. For each tile, a piece
of code (called micro-kernel) performs the required loads,
computations, or stores. The drivers are run in parallel and
software-pipelined as shown in Fig. 2, with synchronizations
implemented as blocking reads and writes in FIFOs of size 1.

In C2H, nested loops are scheduled with a hierarchical
finite-state machine (FSM) structure. Data fetches in loops
are pipelined to hide latency. Furthermore, a special state is



added, after a precomputed constant number of cycles, that
stalls the FSM until the data is received. We exploit this
mechanism to guarantee the data-flow dependences induced
by the remote data transfers (blue arrows in Fig. 2) by placing
the corresponding synchronizations outside the micro-kernels.
On the contrary, the synchronizations used to sequentialize
the accesses to the DDR (dotted arrows) are placed inside
the micro-kernels, at the last iteration, i.e., as soon as the
last DDR request within a tile is initiated. This avoids the
important penalty due to the loop pipeline that must be drained.
This way, computations and communications are pipelined and
latencies are hidden. The subtleties of this implementation and
the interaction with C2H specificities were detailed in [5].

For the design of local memories, we need to specify the
software-pipelined schedule of the processes to know when
buffer locations can be reused. Several software pipelines are
possible, the one implemented in our tool is as depicted in
Fig. 2. It is captured as follows. If T is the innermost tile
counter (i.e., iterating on the tile strip), we add the constraint
T = 2p (resp. T = 2p + 1) to the tile domains, where p
is a fresh integer variable. Then, as far as memory reuse is
concerned, it is enough to specify the pipelined schedule with
the following 2D schedule θdb (this is when Tmin is even):

θdb(Load0, 2p) = (p, 0) −−
θdb(Comp, 2p) = (p, 1) θdb(Load1, 2p+ 1) = (p, 1)
θdb(Store0, 2p) = (p, 2) θdb(Comp, 2p+ 1) = (p, 2)

−− θdb(Store1, 2p+ 1) = (p, 3)

B. Local memory management

With our method, all computations are done with variables
from the local memory. The lifetime of such a variable starts
at its first access (possibly resulting from a load operation)
and ends at its last access (possibly resulting from a store
operation). We now explain how variables are mapped in the
local memory. It must be done so that (i) two data live at the
same time are not mapped to the same local address, (ii) the
local memory size is as small as possible.

Unlike the methods developed in [18], which try to pack
data optimally (in size), possibly with complex and expensive
mapping functions and reorganization, we rely on hardware-
inexpensive array contraction based on modular mappings [19],
[20]: an array cell a(~i) is mapped to a local array cell
a tmp(σ(~i)) where σ(~i) = A~i mod ~b, A is an integer ma-
trix, and ~b is an integral vector defining a modulo oper-
ation component-wise. When the array index functions are
translations w.r.t. the loop indices, as in a[i][j-1], the
set of live array cells is a window sliding during a tiled
program execution, allowing efficient memory optimizations.
The framework presented in [20] generalizes this particular
situation, given an analysis of live array cells.

For code generation, a direct approach is to feed ClooG
(http://www.cloog.org) with the different data sets, together
with a sequential schedule. In our context however, although
correct, this produces inefficient code, mostly due to C2H
constraints. It is better to generate each kernel as a single
“linearized” loop executing one instruction per iteration, using
the Boulet-Feautrier algorithm [21]. This avoids the penalty
due to the pipeline of inner loops that must be drained
(see Sect. IV-A). Also, as recalled in Sect. III, accessing

successively in different DDR rows degrades the throughput.
With a single loop, we achieve spatial locality in the DDR
accesses by scanning the different arrays one after the other,
with no interleaving, and following rows, i.e., lexicographically
with respect to the array indices. Furthermore, such a loop is
nicely pipelined with C2H, with one DDR access per iteration.

C. Experimental results

We implemented our methods using the polyhedral tools
PIP and Polylib. Our prototype takes as input the C source
code of a small kernel to be optimized. The input parameters,
such as the loop tiling, are specified with pragmas. Then, a C
source code, which implements a double-bufferized version of
the kernel, is automatically generated. It can be simulated using
linux processes, FIFOs, and shared memories (with IPC linux
library). The 5 driver codes are then synthesized using C2H,
which integrates them automatically in the system instantiated
using Altera SOPC builder. This C source code is generic
and cannot be immediately compiled C2H. At this point, a
few modifications by hand are needed, such as inserting the
adequate pragmas for C2H, transforming array accesses to
linearized addresses with the right base addresses, instantiating
memories in the SOPC builder, changing some arrays into
non-aliasing pointers so that C2H, whose dependence analyzer
and software pipeliner are weak, can generate codes with the
right initiation intervals, etc. These changes are minor and
systematic, but they are not integrated yet in our code generator
and take time when performed by hand.

The study provided in [5], for the HLS tool C2H, showed
that, even for elementary kernels, generating adequate C
codes that can be automatically synthesized with no additional
handmade VHDL glue, while exploiting the maximal DDR
bandwidth, is very tricky. But it is feasible if codes and
synchronizations are written in a specific, though generic, way.
Our techniques show that this process can be automated. We
considered the 3 kernels studied in [5] (with the same tiling),
DMA transfer, sum of vectors (VS), matrix multiply (MM),
to check if we could achieve the same performance automat-
ically. Matrix multiply, the main example demonstrated for
the RStream compiler [13], is already, for circuit generation,
very involved: the original code has a few lines but the hand-
optimized version (a double-buffered matrix multiply by block)
has more than 500 lines!

We used ModelSim to evaluate our designs, which were
synthesized on the Altera Stratix II EP2S180F1508C3
FPGA, running at 100 MHz, and connected to an outside
DDR memory, of specification JEDEC DDR-400 128 Mb x8,
CAS of 3.0, running at 200 MHz. The optimized versions
can run 6x or more faster than the direct implementations
(remember that the maximal speed-up is at most 8, if we start
from a code where successive DDR accesses are in different
rows). Note that these speed-ups are obtained not because
computations are parallelized (tiles are run in sequential), not
only because the communications are pipelined (this is also the
case in the original versions), but (i) because DDR requests
are reorganized to get successive accesses on the same row as
much as possible, (ii) because some communications overlap
computations, and (iii) because some data reuse is exploited.

However, to achieve this, there is a (moderate) price to
pay in terms of hardware resources, in addition to the local



Kernel ALUT Reg. Tot. reg. DSP Max. freq. Speed-up
System alone 4406 3474 3606 8 205.85
DMA original 4598 3612 3744 8 200.52 1
DMA manual 9853 10517 10649 8 162.55 6.01
DMA autom. 11052 12133 12265 48 167.87 5.99
VS original 5333 4607 4739 8 189.04 1
VS manual 10881 11361 11493 8 164 6.54
VS autom. 11632 13127 13259 48 159.8 6.51
MM original 6452 4557 4709 40 191.09 1
MM manual 15255 15630 15762 188 162.02 7.37
MM autom. 24669 32232 32364 336 146.25 7.32

Table I. SYNTHESIS: ORIGINAL, MANUAL, AUTOMATIC

memories involved to store the data locally. This is illus-
trated in Table I, which gives different parameters measuring
the hardware usage: the number of look-up tables (column
“ALUT”), of registers (“Reg.”), of registers used by the whole
system (“Total reg.”), and of hard 9-bit DSP cores (“DSP”).
Compared to the manually-optimized versions, the automatic
ones use slightly more ALUT and registers, mostly because
they use 2 separate FIFOs for synchronization between the
drivers Load0 and Load1, and the driver Compute (we changed
the design of [5] to make it more generic). They also use more
multipliers to perform tile address calculations, which could be
removed by strength reduction.

Speed-ups are given in the column “S-U”. Optimized ver-
sions have a slightly smaller maximal running frequency than
the original ones (column “Max. freq.” in MHz). But, if the
designs already saturate the memory bandwidth at 100 MHz,
running the systems at a higher frequency will not speed them
up anyway. This maximal frequency reduction could come
from more complex codes, the Avalon interconnect routing,
and the use of double-port memories available in the FPGA,
which induces additional synthesis constraints.

V. CONCLUSION

In the context of HLS for FPGA, we proposed an automatic
translation method to optimize, at source level, a kernel linked
to an external DDR memory. Our method relies on a code
restructuring that combines loop tiling (specified by the user),
advanced communication coalescing and data reuse, pipelining
of communicating processes in a double-buffer fashion, buffer
size optimization, and optimized loop linearization. It has been
implemented as a prototype, and the first experimental results
show that the method performs as good as our previous fully-
optimized handmade designs. To our knowledge, this is the
first time, in the context of HLS, that such accelerators are
automatically generated. Our method is also a generic form
of kernel offloading to a distant platform and thus could be
interesting in other contexts.

Our current implementation, exposed in this paper, is so
far limited to the case where the transfer sets Load(T ) and
Store(T ) can be built exactly. In theory, the case where the sets
In(T ) and Out(T ) (data read/written in T ) are approximated
can be handled. This will give the opportunity to handle more
irregular codes and to approximate the transfer sets if this is
more efficient. Another interesting extension is to analyze and
to generate codes in a parametric fashion w.r.t. tile sizes. These
extensions have still to be implemented and validated.
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