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Abstract—The efficient and flexible management of large
datasets is one of the core requirements of modern business
applications. Having access to consistent and up-to-date infor-
mation is the foundation for operational, tactical, and strategic
decision making. Within the last few years, the database com-
munity sparked a large number of extremely innovative research
projects to push the envelope in the context of modern database
system architectures. In this paper, we outline requirements and
influencing factors to identify some of the hot research topics
in database management systems. We argue that—even after 30
years of active database research—the time is right to rethink
some of the core architectural principles and come up with novel
approaches to meet the requirements of the next decades in
data management. The sheer number of diverse and novel (e.g.,
scientific) application areas, the existence of modern hardware
capabilities, and the need of large data centers to become more
energy-efficient will be the drivers for database research in the
years to come.

I. INTRODUCTION

Data management is a core service for every business or
scientific application. The data life cycle comprises different
phases starting from understanding external data sources and
integrating data into a common database schema. The life
cycle continues with an exploitation phase by answering
queries against a potentially very large database and closes
with archiving activities to store data with respect to legal
requirements and cost efficiency. While understanding the data
and creating a common database schema is a challenging task
from a modeling perspective, efficiently and flexibly storing
and processing large datasets is the core requirement from a
system architectural perspective. For the last 30 years, disk-
centric systems based on commodity hardware exploiting only
a minimal set of “regular” operating system services have
reflected the state-of-the art. Within the last years however,
this picture has dramatically changed due to several reasons,
but especially due to significant developments in the hardware
sector. This awareness to be more focused on special capabil-
ities of the underlying system currently implies a huge impact
on the research as well as on the commercial data management
ecosystem [1], [2].

Within this paper, we will highlight some of these changes
and accompanying challenges, pinpoint open issues, and out-
line some solutions as examples for current and ongoing
database research activities. In a first step, we will summarize

the key challenges for large-scale data management from an
application perspective and the direction of low-level services
provided by the operating system or underlying hardware. We
will argue that the time has come to re-think data management
architectures and demand “support” from the application as
well as from the low-level services. We identify flexibility
as the key concept to cope with functional as well as non-
functional requirements where improved energy efficiency is
one of the most dominating factors.

Fig. 1. General Situation of Database Management Systems.

II. APPLICATION REQUIREMENTS

Currently, database systems are considered a software com-
ponent providing a comprehensive SQL language layer and
exploiting common services provided by the operating system
and the hardware layer. However, current applications demand
a quite different picture of a data management solution. As
shown in Figure 1, data management functionality is chal-
lenged from two directions: From an application perspective
and from a hardware and operating system perspective. From
an application’s point of view, we see the following major
requirements:

• Running a database system as a platform: Classical
database applications are based on application server
infrastructures, which serve as an intermediate with re-
spect to the database layer. Application logic runs within
the application server layer providing services like load-
balancing, session management, security framework, and
distributed transactions to access multiple data sources.
The price which has to be paid consists in SQL as978-3-9815370-0-0/DATE13/ c©2013 EDAA



the only communication path between the data and the
application. This results in multiple and extensive round-
trips to express database interactions from an application
layer perspective. Modern architectures have to provide
a highly integrated platform of database and application
server services within a single runtime to enable the ap-
plication server component to directly access the internal
service primitives of the database system.

• Providing “data-as-a-service”: Database systems are
usually running on-premise within a well-defined and
well-administrated setup. Moving more and more services
into cloud-like infrastructure with elasticity as one of
the main driver, database systems have to learn how
to act following the “as-a-service” paradigm. Although
offerings at infrastructure-, platform-, or software-as-a-
service exist in a wide variety, “data-as-a-service” is still
in its infancy. This operational model requires substantial
support from the system architectural side of a data
management layer in order to natively support “elasticity
in the large”.

• Support for flexible schema: In modern, web-style ap-
plications scenarios, the schema is not known in advance
but develops over time as data enters the system following
the “data comes first, schema comes second”-paradigm.
Therefore, the system has to constantly change the struc-
ture of the logical design with corresponding implications
on the physical layer. As of now, schema changes reflect
a major administrative task. Current database solutions
require to carefully planning and designing the database
schema, followed by filling the system with data, and
finally performing necessary tuning operations like cre-
ating an index or partitioning the database to allow for
partition pruning.

• Coping with >10.000 tables in a query: Traditional
applications have dozens or a few hundred tables com-
pletely covering the semantics of a specific set of ap-
plications. Even in large application scenarios like ERP
solutions with multiple thousands of tables (e.g., SAP
ERP shows 50.000 tables) queries only referencing a
small slice of the overall database (e.g., 10-100 tables
within a query). Especially in web applications targeting
knowledge extraction out of different web sources or
open data platforms, 100s or even 1.000s of (weakly
structured) tables within a single database query are
common. Current compilation (especially optimization)
components and database runtime infrastructures are not
able to cope with this situation, forcing the application to
split database interaction patterns into smaller pieces and
merge the partial results within the application layer.

• Providing hybrid query languages: The SQL database
language was originally intended for the application
programmer. However, after more than 20 years of ex-
tending the language, SQL can only be generated by a
software component and is no longer suitable for users
like knowledge workers or data scientists, interactively
working with the data. The original idea of declarative

query languages consists in telling the system what to
retrieve and not how to retrieve the required information
and is still relevant. Additionally procedural elements
are extremely worthwhile and should be part of a next
generation data programming language. First ideas like
JAQL [3], direct access to database elements via R [4],
or the MapReduce programming paradigm [5] relying
on 2nd order functions to provide an automated parallel
execution of application logic are some examples of novel
database languages.

• Scaling to multiple billion record databases: Database
system are traditionally mostly used for transactional
operations on small datasets, e.g., order processing, ma-
terial distribution planning etc. However, more and more
analytical applications are aiming at utilizing the mech-
anisms of a database management system. For example
the transparent mapping of data model to storage model
primitives by an sophisticated optimization framework is
extremely beneficial for database applications. Referring
to applications like sensor data or click-stream analysis,
database systems have to cope with multiple billion
record databases from a query processing perspective
(e.g., exploiting massive parallelism) as well as from a
data life cycle management perspective (e.g., aging data
with respect to a given storage hierarchy or securing
archived data from a posteriori modifications due to legal
constraints).

III. HARDWARE AND OS-LEVEL REQUIREMENTS

While the data management layer is faced with a huge
variety of requirements from the application side, recent
and future developments at the hardware side and operating
systems layer will additionally have a significant impact on the
design of future database systems. However, in opposite to the
requirements from the application side, the database commu-
nity does consider these developments at the lower layers of
the software stack as extremely valuable and beneficial in order
to “outsource” some of the original core service primitives to
the underlying software and hardware levels.

• Enhanced synchronization methods: While database
systems provide concurrency control at the level of
database objects, i.e., on table or tuple level, many of the
internal data structures are based on traditional synchro-
nization methods like locks and latches. In order to cope
with a large number of computing units, more elaborate
synchronization methods are highly welcomed by data-
intensive tasks. For example, splitting an aggregation op-
erator to compute the sales behavior of different customer
groups into hundreds of different threads eventually im-
plies high synchronization overhead, because every data
stream may have database entries of different customer
groups. Even read-only synchronization (to prevent from
concurrent writers) already shows a significant serial
part dramatically reducing the speedup with a growing
number of parallel operators [6]. Optimistic concurrency



control mechanisms like Intel’s TSX outlined in [7] are
a big step forward.

• Comprehensive xPU and co-processor support: A
significant number of research activities maps traditional
database operators to non-standard hardware platforms,
especially GPUs and FPGAs. As of now, only a limited
number of operators show significant benefit when run-
ning on non-CPU hardware platforms. However, research
activities are required to look into more complex and non-
traditional database operators to support application sce-
narios beyond transaction processing or simple analytical
aggregation scans. For example, [8] is looking into the
efficient computation of frequent item sets based on a
recorded set of transaction data. [9] is giving a wealth of
other database-related problems for GPU usage.

• Large-scale main-memory management: Commodity
servers equipped with 1 TByte main memory are cur-
rently available for a very reasonable price. While most
of the servers follow the NUMA-architecture principles
with local but cache-coherent memory layout, modern
database systems exactly have to know the allocation
scheme of the data in order to compute an optimal
schedule for the operators of a given query. As a require-
ment, cache coherency should not always automatically
be ensured at the hardware level, if the database system
exactly knows the allocation scheme and the dependency
between the different data sets. Additionally, modern
server infrastructures like the prototype developed with
the HAEC research project [10] deploys high-bandwidth,
short-range wireless and optical links to dynamically
configure the topology of the computer during runtime.

• Multi-level reliability: Depending on the semantics of
a piece of data, different reliability constraints should
be attached to a memory fragment. For example, inter-
mediate results of a currently running query could be
placed in some “cheap” memory with high write and read
performance. On the other hand, REDO-log information,
containing data of the least successfully committed trans-
actions, should be stored in a replicated way, within a
compute cluster or even across multiple locations. The
database system therefore requires mechanisms to con-
vey quality-of-service information about specific memory
fragments to the underling software respectively hardware
layer. The system can then decide for the most optimal
way to achieve the required service-level request either
in the fastest or cheapest way.

To put it into a nutshell, application demands and hardware
developments suggest to completely rethinking the architecture
of database management systems. While current state-of-the-
art systems follow the classical assumption of being able to
exploit a generic infrastructure and provide some extent of
SQL for the application, novel architectural approaches have to
architected around the cross-cutting concept of FLEXIBILITY.
The overall hypothesis is that only a flexible system design
comprising the overall system development, the query compi-

lation framework, and the query runtime is able to cope with
current application challenges. Also, we think that flexibility
is the core to achieve energy efficiency without compromising
the overall system performance. We will detail some of our
thoughts in the following section.

IV. CONSEQUENCES FOR RESEARCH ACTIVITIES

As already outlined, a huge number of functional extensions
is necessary to satisfy the already existing demand of non-
standard database applications. However, in addition to the
functional extensions, we see four major goals that have to be
achieved from a non-functional perspective:

• Performance: Following the famous statement of Bruce
Lindsay [11], performance is the most relevant non-
functional property of a data management platform. High
performance is and will remain the main driver for future
database systems. However, we see application domains–
especially in the context of scientific computing–where
throughput optimization is more important than response
time optimization of a single query. Query optimization
frameworks have to consider this shift of the overall
optimization goal, which is also highly correlated to
improved energy efficiency (see below).

• Energy efficiency: In order to improve the energy effi-
ciency of a database server, two independent directions
can be pursued. On the on hand, the faster a query is
being processed, the less energy is consumed [12]. For
example, if a query can be answered using an index
lookup instead of a table scan, fewer cycles are spend on
that particular query. In that respect, traditional query op-
timization is still implicitly an optimization with respect
to energy efficiency. However, those naive considerations
fail, if queries are executed in a distributed environment
with additional communication costs. For example, an
optimizer has to decide about sending intermediate data
in a compressed or uncompressed format to other nodes
or even sockets on the same board. In the former case, the
system has to spend time and energy for (de-)compression
but saves time and energy for the communication path.
Since both cost factors are independent, the optimizer
has to decide on a case-by-case basis. On the other hand,
energy can be saved, if individual hardware components
are turned off to save idle power and increase the uti-
lization of running components. As a consequence, the
individual response time of a query may suffer from
improved energy efficiency. Again, the system has to
flexibly balance query response time minimization and
throughput maximization under a given energy constraint
on a case-by-case basis (Figure 2). In the opposite to
“elasticity in the large” (section III), this property can be
considered “elasticity in the small”.

• Robustness: Current query and transaction execution
semantics force a database request to abort and roll back
if one single failure occurs, be it on a node level or within
an individual operator. One of the lesson learned from
Hadoop-like infrastructures, a future database system



Fig. 2. Impact of Energy Constraint on Query Optimization.

should in a much wider sense compensate for failures
and hide failures with respect to the application. The
effort should be balanced with respect to the individual
queries: while short read requests can be easily repeated,
intermediate results of long-running analytical queries
or long-running transactions have to be preserved and
transparently used for a restart.

• Reliability: While robustness focuses on an individual
user interaction with the system, reliability addresses the
overall system stability and physical consistency of the
persistent database. While more and more features are
added to a database platform, principles of separation
of concern have to be the overall guideline for system
development.

The central question is: How to achieve those functional and
non-functional optimizations beyond flexibility during compile
and runtime? The answer is two-fold: On the one side, the
application layer has to acknowledge some relaxations in
terms of the expected services potentially shaking some of
the classical data management principles. On the other side,
significant research investment is needed to significantly better
exploit existing solutions provided by the hardware and to
demand even more sophisticated low-level services. We will
comment on these statements in more detail.

A. Assistance from the Applications

Applications typically require all the “nice” services of
database systems at no price: transactional guarantees (prefer-
ably strict serializability), high availability of the system,
automatic physical design of the database, seamless integration
into the application programming philosophy. However, as we
have seen in the context of NoSQL stores, some restrictions
have to be accepted by the application to be able to fulfill
the wish list of a scalable data management solution. For
example, Key-values stores reduce the schema to only the
key/value-pair. No additional constraint checking, no complex
processing framework etc. is required; parallelization can be
automatically performed on the key-level without any side-
effects. On the downside however, the application has to take
care of the specific semantics of the “value” and decompose
the “value” of the database into application-specific entities. A
second example can be seen in the BASE consistency model
[13]. Changes to the database will eventually make it to all
replicas in a distributed system, but there is no serializability
guarantee given to the application. The application itself
has to ensure that–for example–two objects read from the
same database are actually representing the same state with
respect to concurrently running updates. Following this line
of thought, more alternative concepts could be envisioned to
gain some support by future database platforms, e.g.:

Fig. 3. Research Potential for Database Computing.

• Database conversations: In addition to the traditional
transactional model, database conversations may help to
free the database system from managing and maintain-
ing the single point of truth. The concept of database
conversations creates application specific views on top of
the underlying database which are materialized (i.e., exist
beyond the scope of a single application transactions)
and can be shared with others. The “community” of
applications are creating potentially different domain-
specific versions of the original database in a step-by-step
manner; there is no need for the database itself to ensure
correctness with respect to all potential applications.

• Need-to-Know principle: The Need-to-Know principle
states that the system has to reflect only that degree of
consistency, which is required by a specific application. In
the opposite, the traditional principle of ubiquity requires
from the system a consistent state at any point in time
without considering any users. For example, a system
following the principle of ubiquity has to maintain an
index entry after an update in the database independent
of any reader referring to the index. A system following
the Need-to-Know principle would only update the index
if another application has indicated interest in reading the
index.

B. Assistance from the Hardware Side

Forcing the application to take over some of the burden
of the database system creates extensive degree of freedom,
which could be exploited by the architectural design. However,
these opportunities coming from the application side have to be
supported by an efficient storage and query execution engine
able to orchestrate a huge number of parallel tasks. Parallelism
in general can be positioned as the core principle to achieve
high performance on the one hand and to enable energy
efficient processing schemes with an appropriate scheduling
design on the other hand. Parallelism has to be considered in
an end-to-end manner starting from the query language level
down to the execution runtime. Particularly, we see research
potential in the following areas:

• Customized plan operators: Recent developments focus
on efficient code generation as an alternative to build a
data-flow graph based on pre-compiled plan operators
[14]. However, in addition to the compilation process,
next generation operators should be “hybrid” and “recon-
figurable” [15]. The first property targets heterogeneous
hardware components. As of now, an operator (or even
a complete query) may be deployed either on a CPU or



on a GPU platform, e.g. [16]. Next generation operators
are supposed to exploit an even more fine-grained dis-
tinction. For example, while init() and finish()-phases of
operators may run on a CPU side, the actual work()-part
of an operator may be scheduled on a GPU platform.
Orthogonal, operators have to quickly adapt to changing
data characteristics and potentially to changing hardware
structures. For example, selectivity factors significantly
impact the success of branch prediction forcing the op-
erator to switch between different implementations [17].
Even more reconfigurability is required, if the hardware
can be restructured at runtime, e.g., trading cores against
cache capacity.

• Multi-level storage structures: Within the last years, a
significant shift from disc-centric to main memory-centric
systems can be observed. Large main memory capacities
are economically affordable and many database scenarios
fit into main-memories of today’s commodity servers.
This development can be considered a substantial shift
in database architectures: On the one hand, the complete
storage hierarchy shifted “one level up”; main memory is
the new disk, disk is the new archive. Interestingly main-
memory and disk share some common characteristics. For
example, both techniques are block-oriented, where cache
lines may be considered the new block size and the CPU
cache management may reflect the new buffer manager.
On the other hand, main memory-centric database system
design denotes radical change: For example, as shown in
[18], novel concurrency schemes are heavily relying on
direct access to the database objects without any signif-
icant performance penalty. With the advent of persistent
main memory, even more advanced techniques in the
context of logging will appear [19]. Nevertheless, disks
will still play a major role in large database installations.
Physical database design will distinguish between “low-
density” and “high-density” data. High-density data like
order entries or other business-critical objects with high
transaction load will stay and manipulated in main-
memory. “Low-density” data represents primarily read-
only data coming from sensors or web activities (click
streams) and will be placed on traditional cheap disk
devices; low-density data in general does not have any
semantics per se but is used for statistical hypothesis
testing. While point access is typical for high-density
data, low-density data is usually queried by massive
and parallel scans against large disk-farms. Moving data
between different levels in a storage hierarchy is currently
under the control of the database system but could be
extremely well handled by system-level services.

V. SUMMARY

Flexibility is the key for future database system architec-
tures. On the one hand, novel applications are driving database
technology requesting performance and adaptivity with respect
to the web-style data processing, large volumes, short load-
to-query times etc. On the other hand, recent developments

in the hardware sector require a total rewrite of database
systems. Large main memories and a high number of cores
are the main drivers as of now; persistent memory, advanced
synchronization, reconfigurable hardware etc will be the driv-
ing factors of the future. Improved energy efficiency–or more
specifically query processing under a given energy constraint–
will be a constant challenge which has to be tackled from
many different directions during compile and runtime. More
generally speaking, database systems are and will be one of the
most demanding but also grateful “applications” for advances
in hardware and operating systems.
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