
Efficient SAT-based Dynamic Compaction and Relaxation for
Longest Sensitizable Paths

Matthias Sauer∗ Sven Reimer∗ Tobias Schubert∗ Ilia Polian† Bernd Becker∗

∗ Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ sauerm ∣ reimer∣ schubert ∣ becker }@informatik.uni-freiburg.de

† University of Passau
Innstraße 43

94032 Passau, Germany
ilia.polian @uni-passau.de

Abstract— Comprehensive coverage of small-delay
faults under massive process variations is achieved when
multiple paths through the fault locations are sensitized
by the test pair set. Using one test pair per path may lead
to impractical test set sizes and test application times due
to the large number of near-critical paths in state-of-the-
art circuits.

We present a novel SAT-based dynamic test-pattern
compaction and relaxation method for sensitized paths
in sequential and combinational circuits. The method
identifies necessary assignments for path sensitization
and encodes them as a SAT-instance. An efficient imple-
mentation of a bitonic sorting network is used to find
test patterns maximizing the number of simultaneously
sensitized paths. The compaction is combined with an
efficient lifting-based relaxation technique. An innovative
implication-based path-conflict analysis is used for a fast
identification of conflicting paths.

Detailed experimental results demonstrate the applic-
ability and quality of the method for academical and in-
dustrial benchmark circuits. Compared to fault dropping
the number of patterns is significantly reduced by over
85% on average while at the same time leaving more than
70% of the inputs unspecified.

I. Introduction

High-performance and low-power design methods often
result in circuits with a large number of near-critical paths.
By employing versions of primitive cells with different VT , or
by using body biasing techniques, designers can realize local
power-performance trade-offs, choosing for each gate whether
it should be slow and power-efficient or fast and power-
hungry. Slow versions of gates are consequently used on short
paths, such that the delays of such paths become comparable
to the critical path delay. High-quality testing of small-
delay faults under process variations requires sensitization
of several, ideally all, near-critical paths through the fault
location. Since the number of such paths is so high, using
one test pair per path will imply excessive pattern count and
test application time. Therefore, it is desirable to generate
compact test pair sets where one pair sensitizes multiple long
paths and thus detects many small-delay faults along these
paths. This problem is related to test compaction.

Static compaction [1], [2] starts with existing test patterns
and tries to merge them by finding common non-conflicting
inputs. In contrast to static compaction, dynamic compaction
[3], [4] yields new test patterns that target several faults at
the same time. Often, these methods are combined with fault
dropping [5], where simulation is used to detect random fault
detection. Previous work on test pattern compaction [6], [7]

for stuck-at-faults, which use SAT-solvers [8], creates SAT-
instances that iteratively target additional faults individually.

The compaction of delay fault models is especially challen-
ging, as multiple timeframes and stringent test requirements
need to be considered. Approaches in [9], [10] keep a pool of
paths and try to generate test patterns that sensitize several
paths from the pool together by combining a structural
compatibility analysis with ATPG. The procedure in [11]
aims at selecting paths with matching crosspoints to yield a
compact test set with high fault coverage.

A central requirement for any practical test strategy is
compatibility with state-of-the-art test compression methods
[12], [13], [14]. Encoded test data is transmitted from the
tester to the chip where it is decompressed by on-chip
decoders and fed into the scan chains. The efficiency of test
compression heavily depends on a large number of don’t-care
values (Xes) being present in the test data. Unfortunately,
compaction tends to eliminate many Xes, resulting in test sets
that are smaller but much harder to compress. Test relaxation
methods that introduce Xes at positions not essential for
detection [15], [16] are needed to combine compaction with
test compression.

We present a small delay fault oriented dynamic com-
paction method that compacts long sensitizable paths. The
method generates a SAT-instance that encodes the circuit
functionality and sensitization rules for a group of target
paths. By maximizing the number of paths that are sensitized
by a single test pattern pair, highly compacted test sets are
generated. In addition, efficient SAT-based test pattern relax-
ation is used to generate high-quality test cubes. Extensive
experimental results on academical and industrial benchmark
circuits demonstrate the effectiveness of the approach.

The remainder of the paper is structured as follows.
Section II explains the preliminary work. An overview of the
method is given in Section III. The details of our approach are
explained in Section IV. Experimental results are reported
in Section V and Section VI concludes the paper.

II. Preliminaries

A. SAT

Given a propositional formula φ, an assignment A is a
function A ∶ V → {0,1}, where V is the set of Boolean
variables, which occur in φ. The SAT problem is looking
for an assignment A for φ, such that φ is satisfied. If such
an assignment exists we say A is a model for φ. Usually,
the formula φ is given in conjunctive normal form (CNF ),
which is a conjunction of disjunctions of literals. A literal

978-3-9815370-0-0/DATE13/©2013 EDAA



Table I
Sensitization conditions for AND/NAND gates

Type If on-path Off-path Additional
transition inputs are conditions
is set to

strong non-robust 0→ 1 U1 –
1→ 0 H1 –

restricted functional 0→ 1 U1 transition at
1→ 0 XX gate output

is a variable v or its negation ¬v. A disjunction of literals
is also called a clause, which is often written as a set of
literals. A circuit can be transformed into a CNF by using
Tseitin-encoding [17], which uses separate variables for each
circuit line. The resulting CNF size is linear in the circuit
size.

A clause ce is empty, if all literals in ce are assigned to 0.
We say a clause c implies a literal l, if only l ∈ c is not
assigned and all other literals l′ ∈ c are assigned to 0. As
resulting implication l is assigned to 1.

Consider a directed acyclic graph G = (V,E), where the
vertices V indicate assignments of literals, and edges E
indicate implications. Given a clause c = {l1, . . . , ln}, where
l1 is an implication (and consequently l2, . . . , ln are assigned
to 0), G contains for every vertex li , i ∈ {2, . . . , n} an edge to
the vertex l1. This graph is called implication graph and is
used to generate a reason in case an empty clause is produced
by a SAT-solver. A reason is a set of variables VR ∈ V , whose
assignment is responsible for the empty clause. In general,
there are many reasons for one empty clause.

Modern SAT-solvers are based on the DPLL [18] algorithm.
They basically execute a loop consisting of (1) making
a decision, (2) propagating the decision (processing all
implications forced by the current decision), and (3) if a
conflict occurred, resolving the conflict by determining the
reason for the empty clause. After unassigning all wrong
variables the search process continues until a model has
been found or the instance has been proven unsatisfiable
(unresolvable conflict).

B. Path Sensitization

A path p is defined by a sequence of gates g1, . . . , gk,
such that the input of gj is driven by the output gj−1 for
all 1 < j ≤ k. Intuitively, a path p is sensitized by a test
pair (v1, v2) if a transition at its input g1 propagates to its
output gk, thus exposing delays along the path. Path-oriented
ATPGs [19], [20] generate test pairs for a delay fault on gate g
that sensitize a number of longest paths through g. If the
additional delay introduced by a fault is greater than the
slack of one of these paths, the corresponding test pair is
likely to detect the fault. Hence, the excitation of longer paths
leads generally to an improved small delay fault detection
quality.

A path p is formally defined to be sensitized by a test
pair (v1, v2) if it launches a transition at g1 and justifies
certain sensitization conditions on the off-path inputs of
all gates of p. The sensitization conditions considered in
this work are shown in Table I for AND/NAND gates and

explained in detail in [21], [22]. H1 stands for a signal that
stabilizes to logic 1 in both cycles after application of v1

and v2. U1 stands for a signal that eventually stabilizes at
logic 1 in the second cycle without imposing conditions on
the first cycle. Finally, XX stands for a signal on which no
conditions are imposed at all. The requirements for OR/NOR-
gates are defined analogously. Due to their more stringent
requirements on the side inputs, strong non-robust path
sensitization reduces the probability of a test invalidation
by e. g., glitches and offer hence a higher test quality than
restricted functionally sensitized paths.

III. Overview of the method

The main objective of our proposed dynamic compac-
tion and relaxation method is to sensitize all given target
paths PT with as few patterns as possible and minimize
the number of specified primary inputs in addition. Figure 1
gives an overview of the algorithm.

In the path generation phase, we use the in-house SAT-
based path generation tool PHAETON. PHAETON reads a
sequential circuit given as gate-level net list along the timing
specification (given as SDF-file) and the fault list. For each
gate g in the fault list, the longest sensitizable path through
g is generated.

In a preprocessing phase we simplify the generated list of
longest sensitizable paths. A given path may be the longest
path for several of the gates. As different instances of the
same path can be compacted trivially without increasing the
fault coverage, we remove duplications, and just keep the
unique paths. Furthermore, we recognized in our experiments
that paths with a high probability to conflict with other paths
(c.f. IV-A), are also harder to compact and should therefore
be considered early in the compaction process. Therefore
we determine the number of conflicting paths for each path
(c.f. IV-B). Hereupon the paths are sorted by this number,
resulting in an ordered list of target paths PT .

In the dynamic compaction phase we utilize modern SAT-
solver techniques to generate test patterns that maximize
the number of target paths sensitized at the same time.

First, we perform a path selection, where a list of required
paths PR ⊆ PT , which we want to sensitize, and a list
of candidate paths PC ⊆ PT , which should be sensitized
in addition to the required paths PR, are extracted. The
number of candidates is limited by a user-defined value cmax,
which serves as a trade-off between quality and performance.
Initially, we pick the first uncompacted path in the ordered
path list PT as the required path in PR, and choose the next
cmax paths in PT as candidate paths PC .

In the path compaction phase (c.f. IV-C), a SAT-instance
is generated, which is satisfied iff 1) all paths in PR can
be sensitized at once and 2) k paths out of PC can be
sensitized in addition. As a greedy heuristic, we maximize the
number of candidate paths k using incremental SAT-solving.
In the manner of a binary search, we solve the instance with
the same set of paths but with different values for k until
the maximum value for k has been found. If an instance is
satisfiable, a test pattern ATP can be extracted from the
model returned by the SAT-solver. This pattern sensitizes
all required paths and k candidate paths.



Longest
sensitizable

paths

Delay data Circuit data

Path Generation

Dynamic Compaction

No

Fault list

Unique
paths

Remaining
paths?

Dynamic path
compaction

Output final
test cubes

Test pattern
relaxation

Path
dropping

Yes

Sort
paths

Pattern
extendable?

Yes

No

Reset
pattern

         Preprocessing

PT

Path 
selection

PR / PC

              Relaxation

Identify
conflicting 

paths

Path
generator

Figure 1. Dynamic compaction and relaxation flow

In addition, a forward-looking simulation-based path drop-
ping is performed to identify paths that are not in PC but
still sensitized by the returned test pattern by chance.

If there are remaining target paths PT that have not been
tried to merge into the current test pattern, the current
pattern may be extendable. Therefore, we extend the list
of required paths by the newly sensitized candidate paths
PR = PR⋃PC and select new candidate paths PC from PT .
As before, we create the corresponding SAT-instance and
maximize the number of newly compacted paths. This step
is repeated until each path in PT is conflicting with at least
one path in PR, i. e. PR can not be extended anymore. Note
that the test compaction is dynamic and hence the pattern
may change in every step of this procedure.

If the pattern is not extendable anymore, the compacted
paths are removed from PT and the current test pattern is
marked as representative for these compacted paths. If PT is
not empty, the pattern is reset for the following steps and we
start over with the path selection, choosing a new required
path and cnew candidate paths from PT . This loop repeats
until all initial target paths are covered by at least one test
pattern.

In order to increase the compatibility of the generated
test patterns with on-chip compaction techniques like LSFR-
based test generation in a BIST environment, we apply
test pattern relaxation (c.f. IV-D) for each compacted test
pattern. That way, we obtain test cubes that are guaranteed
to sensitize all required paths. Hence, the method is highly
flexible and can be easily combined with refilling techniques
to optimize secondary objectives.

g1

g2

g4

g3

D

C

B

A X

YV21V11

V23V13

V24V14
V22V12V2DV1D

V2AV1A

V2BV1B

V2CV1C

p1

p2

Figure 2. Path sensitization example

IV. Details of the method

A. Encoding of path sensitization

Figure 2 shows an example circuit instance consisting of the
inputs A, . . . ,D, AND-gates g1, . . . , g4 and the outputs X,Y .

Path p1, given by a rising transition along the gates
B,g1, g3,X and path p2 that is defined by a rising transition
at C, g2, g4, Y are indicated by thick lines. For each line in
the example, the logic value upon application of the first
and the second test pattern is given by thick lines inside the
boxes. Although both paths are not directly connected, they
are partially influenced by the same signals, e. g., the output
of gate g1. Despite this fact, it is possible to sensitize both
paths at the same time with the given test pattern.

For each path p we identify the set of sensitization logic
constraints Lp = lp1, . . . , l

p
n that need to hold in order to

guarantee sensitization of p under the selected sensitization
conditions, i. e. strong-non-robust or restricted functional
sensitization. Based on this logic constraints, a decision
variable sp indicates whether a path p is sensitized as defined
as follows:

sp⇔ lp1 ∧ . . . ∧ lpn (1)

A list of paths P = p1, . . . , pn is compatible with each
other, if a test pattern pair exists, such that each path’s
logic constraint can be met at the same time, i. e.

sP = (sp1 ∧ . . . ∧ spn) (2)

does hold. Otherwise, the paths in P are conflicting.

B. Implication-based path-conflict analysis

The implication-based path-conflict analysis identifies
conflicting paths very efficiently employing the infrastructure
of the used SAT-solver.

At first, a general SAT-instance ξ(E, sP ) is generated,
that encodes the logic of the circuit for two timeframes (E).
In addition, for each path pi ∈ P we encode spi according
to Equation 1. Based on this general instance, we pass the
SAT-solver a path spj variable as an assumption. The solver
can identify the implications of requiring spj to hold and
therefore can identify which of the spi variables are implied
to be 0. Hence, we can identify the paths that are conflicting
with pj directly by looking at implied variables in the SAT-
solver.
In addition to the direct implications on the logic constraints,
the solver can identify more complex implications even on
related lines. For example, if a gate input has a controlling
input constraint, the output of the gate can be determined.



Primary inputs

...

Two-pattern delay testMaximization
Fl

ip
-F

lo
ps

Fl
ip

-F
lo

ps

p1

...

pi

pn

p1

...

pi

pn

...

Bitonic
Sorting
Network

son

so1

...
...

soi

...
sp1

spi

spn

Figure 3. Illustration of SAT-instance generation

Likewise, if a gate output has a non-controlling output
constraint, each input must be set accordingly.

Although our implication-based path-conflict analysis may
miss some conflicting paths that require a more detailed
analysis, the method is very fast and efficient. Hence, it is
perfectly suited for a runtime efficient preprocessing step to
identify initial conflicts.

C. Path compaction

The main path compaction step is based on the generation
of the SAT-instance φ(E,PR, PC , k) where E is the circuit
encoding of the two timeframes. PR = pR1 , . . . , pRm is a list of
paths that are required to be sensitized by the resulting test
pattern and PC = pC1 , . . . , pCn gives a list of path candidates
out of which at least k paths should be sensitized in addition
to the required paths.

Figure 3 shows the details of the instance generation. For
each path in the list of required paths PR and candidate
paths PC , the decision variables sp

R
i and sp

C
i are encoded

as defined in Equation 1. An addition we are forcing the
required paths to be sensitizable by encoding Equation 2 for
PR and force sP

R

to hold.
In order to maximize the number of paths that are

sensitized at the same time, the number of sp
C
i variables

set to 1 needs to be maximized. This is achieved by the
encoding a bitonic sorting network [23] directly into the
SAT-instance. The bitonic sorting algorithm is comparison
based and has a complexity of O(n ⋅ log n). Note that using
such an unary sorting network based encoding is much more
efficient than a binary representation. In addition, the bitonic
sorting network is especially suited for implementation in a
SAT-instance, as the sorting-flow is relatively independent on
the sorted data. By sorting the variables sP

C

an ordered list
of the decision variables soP

C

1 , . . . , soP
C

n is defined that has

the form 1 . . . 10 . . . 0. Hence, if soP
C

i is set to 1, there are at
least i paths sensitized simultaneously. Note that the ordered
decision variables soP

C

i represent the number of sensitized
paths, but do not correspond to the sensitization of a specific
path pi.

By requiring a certain soP
C

i -variable to be set to 1, the
SAT-solver is forced to return a solution that will sensitize
at least i paths. If no such assignment exists, the instance is
classified as unsatisfiable. By the means of a binary search
over the number of paths, the maximal number k is computed
such that φ(E,PR, PC , k) is satisfied but φ(E,PR, PC , k+1)
is not. Hence, such a k represents the maximal number of
paths that can be sensitizable simultaneously together with
the required paths. Based on the returned model of the SAT-

solver, the test pattern ATP is obtained by extracting the
logic values of the inputs. Furthermore, the sensitized paths
are identified as their sp

C
i -variables are set to 1.

As described in section IV-B modern SAT-solvers are
tuned to detect implications very efficiently. Therefore many
of the lines are set to defined values, big parts of the circuit
are decided, and consequently the level of complexity is
reduced.

D. Test pattern relaxation

The goal of test pattern relaxation is to minimize the
specified primary inputs for a test pattern. Our relaxation
is based on a static SAT-based method lifting [24].

For each obtained test pattern ATP from the main
compaction phase a new SAT-instance ψ(E,PR,ATP ) =
(E ∧ATP )⇒ PR is built, where E is again the encoding of
two timeframes, and PR are the required paths (requirement),
which are detected by the previous compaction step to be
sensitizable with the test pattern ATP . Therefore we can
ensure that ψ(E,PR,ATP ) is trivially satisfiable.

In order to find a minimal test cube, we have to identify
a minimal subset ATC ⊆ ATP , such that ψ(E,PR,ATC) is
still satisfiable. Intuitively we are looking for a sufficient set
of assignments, which satisfies the requirement.

Due to SAT-solver specific properties, the requirement PR

is substituted by its negation, i. e. ψ(E,¬PR,ATP ) = (E ∧
ATP )⇒ ¬PR. Based on this substitution, we have to identify
a minimal subset ATC ⊆ ATP such that ψ(E,¬PR,ATC) is
not satisfied. For more details of this modification the reader
is referred to [24].

Based on this problem statement, there are several lifting
variants, which differs in terms of test cube quality and
runtimes. For our experiments we use a variant of implication-
graph-lifting, which is based on the implication graph, pro-
duced by a SAT-solver. By definition ψ(E,¬PR,ATP ) is
unsatisfiable, since the test pattern satisfies the requirement,
therefore the pattern violates the negated requirement.
A SAT-solver will produce an empty clause and a reason
by traversing the implication graph backwards. The solver is
able to produce several reasons from which we pick a reason
consisting only input variables. Then we can ensure that all
input variables, which are not part of this reason, are not
responsible for the empty clause, i. e. are not part of the
received test cube ATC .

Other lifting techniques are more effective, but also more
expensive. Since we have many solver calls (one for each test
pattern), we choose this less expensive relaxation variant.
In an earlier work [25], we compared our method to other
relaxation variants and observed that the quality loss is
very reasonable. The implication-graph-lifting profoundly
depends on the initial input pattern, the order in which
the root assignments are added to the SAT-instance and the
implication graph built by the SAT-solver. The initial pattern
is given by the compaction and the generated implication
graph depends on the used SAT-solver. For the order of
assignment we investigated several heuristics, depending on
fanouts and the close environment of an input.



Table II
Compaction of longest strong non-robust paths

Number of patterns Time [s]

Circuit Init Uniq. Comp. FD X% Comp. Relax.

s05378 5090 2122 247 1521 65.07 2.88 0.57
s09234 8887 2110 317 1347 73.34 3.53 1.20
s13207 13190 2850 611 1843 93.88 4.34 3.42
s15850 15292 3566 608 2298 86.50 5.72 4.13
s35932 29026 9753 40 6436 55.96 35.88 3.56
s38417 37465 12121 398 8768 76.09 55.36 10.36
s38584 28074 11451 235 7118 80.94 30.95 4.51

b14 7987 5477 2194 4513 55.15 35.45 27.93
b15 10492 6706 2462 4779 81.73 95.74 41.23
b17 32842 21346 2956 15417 83.68 944.64 147.48
b20 18553 12714 4437 11014 56.81 1104.30 100.73
b21 18457 12538 4811 10776 53.52 1036.72 109.98
b22 27023 19186 5398 16514 60.23 3946.82 174.93

p35k-s 74963 48082 6956 41194 73.10 22457.40 826.22
p45k-s 73231 29437 3655 25131 87.78 2873.19 170.09
p78k-s 147550 82850 778 73103 38.72 23506.90 321.78

V. Experimental results

The method is applied to the sequential versions of
ISCAS 89 and ITC 99 benchmark circuits and industrial
circuits provided by NXP in two experimental setups. All
measurements were performed on an Intel Xeon computer
running at 3.3 GHz with the runtimes listed in seconds.

As SAT-solving back-end we chose a single-threaded
version of the in-house SAT-solver antom [26] which sup-
ports efficient incremental SAT-solving with and without
assumptions. We adjusted several parameters of the SAT-
solver so as to make it fit our problem, which is mostly
characterized by a very large number of rather easy-to-solve
SAT-instances.

In the first experiment, we generated the longest rising
and falling non-robust path through each gate using our in-
house timing-aware ATPG-tool PHAETON [27], [28] with
strong non-robust path sensitization. Hence, the generated
paths are highly suitable for a small-delay fault oriented test
for both, slow-to-rise and slow-to-fall faults. We applied our
presented compaction and relaxation method to these paths
and list the results in Table II. The maximal number of
paths selected for the maximization step cmax was set to 50,
which tends to be the optimum value in terms of quality
and efficiency in our experiments. The first column gives the
circuit name. The next column lists the number of initial
paths which corresponds to the uncompacted number of test
patterns. Column 3 lists the number of unique paths. The
number of test patterns after the compaction are listed in
the “Comp.” column. For comparison, we implemented a
forward-looking fault dropping based compaction which also
subsumes as static compaction. That results are given in the
column “FD”. The “X%” column shows the number of X
inputs after the application of the relaxation. The last two
columns list the runtimes needed for the application of the
compaction step and the relaxation step respectively.

As can be seen, many of the longest paths are shared
resulting in a much lower number of unique paths. The
compaction method succeeds in reducing the numbers of
needed test patterns significantly for each of the circuits.

Table III
Application in transition fault mode

Number of patterns Test quality Time [s]

Circuit Init Uniq. Comp. FC% PL% X% Comp. Relax.

cs05378 5450 1527 90 98.06 96.98 76.10 0.54 0.18
cs09234 11018 2297 145 98.43 97.00 75.99 1.78 0.53
cs13207 15766 3490 595 99.14 97.05 96.18 2.29 2.55
cs15850 19234 3912 297 98.41 95.11 90.06 2.55 1.46
cs35932 29570 9700 26 92.03 93.71 54.85 34.81 2.56
cs38417 44166 9832 88 99.57 95.76 81.39 11.28 2.66
cs38584 35572 13387 304 92.38 94.44 93.04 19.58 3.52

b14c 10690 4632 800 99.96 96.53 67.64 14.15 4.94
b15c 14008 6441 2073 99.74 94.50 91.45 43.46 18.33
b17c 45378 22151 1896 99.70 94.99 90.68 393.03 64.34
b20c 23900 10116 707 99.94 96.73 63.88 87.67 14.36
b21c 24260 10295 693 99.97 96.74 56.67 94.47 15.08
b22c 34638 14680 720 99.94 97.00 64.25 273.34 25.23

p35k 87122 25216 664 99.49 95.13 76.19 695.62 82.81
p45k 79542 23149 2072 99.96 93.24 98.27 295.98 98.82
p78k 148486 47645 237 100.00 95.81 45.28 3437.34 97.81
p81k 176460 60870 351 99.42 95.31 46.08 1208.61 90.19
p89k 166772 50782 444 99.90 93.66 87.41 963.68 71.14

On average, the number of needed test patterns is reduced
by more than 93% and more than 87% compared to the
number of initial and unique paths respectively. Our method
outperforms fault dropping by 85%. Despite this strong
compaction, our relaxation step is still able to generate highly
unspecified test cubes. On average, over 70% of the inputs
can be relaxed. The application of a static compaction step
after the relaxation does not improve the compaction which
can be seen as evidence for the high quality of the generated
test cubes. In addition, the runtimes needed for compaction
and relaxation were rather low, esp. when compared to the
time needed to generate the initial set of paths. Hence, our
proposed method is efficient and effective at the same time.

In a second experiment, we targeted the generation of
a compact test set for transition delay faults through long
sensitizable paths.

In contrast to the previous experiment, we skipped the
computation of the longest path through a gate, if the path-
generator already found a path through that gate while
targeting a different gate. Hence, the number of unique
paths is reduced. The test set covers the complete circuit
using rather long paths but not necessarily the longest
paths. In order to achieve high fault coverages obtainable
by an enhanced full scan design, we applied this mode to
the combinational cores of the reported benchmark circuits.
Furthermore, we generated rising and falling restricted-
functionally-sensitizable paths for this experiment. Such
paths have weaker sensitization-conditions compared to
strong-non-robust paths but still guarantee the detection
of a transition delay fault.

The results are given in Table III. The columns containing
the number of patterns are listed like in the previous
experiment. The columns 5 to 7 list measurements of the
test quality. The transition delay fault coverage is given in
the “FC%” column. The column “PL%” gives the average
percentage of the sensitized path lengths compared to the
maximal sensitizable path length in percent. The number
of unspecified inputs is shown in the column “X%”. The



runtimes needed for compaction and relaxation are given in
the last two columns.

The application of the transition delay mode leads to an
even larger reduction in the number of test patterns as the
initial number of unique paths is reduced compared to the
previous experiment. On average, the number of needed test
patterns in this mode is reduced by more than 98% and more
than 95% compared to the number of initial and unique paths
respectively. However, the obtained test set still achieves a
comprehensive transition delay fault coverage (more than
98% on average) as each gate is guaranteed to be sensitized
by a rising and falling transition. The average length of
the found path is 95% of the provably longest sensitizable
path through the same gate and therefore only a limited
amount of small-delay-fault coverage is lost. Compared to
the sensitization of the longest paths, this mode achieves an
additional pattern count reduction of about 30%.

A fair comparison with other path-compaction results is
difficult as the exact experimental setup is not comparable.
Identical timing specifications are needed to generate the
same longest paths. In addition, restrictions like considera-
tions of low-cost tester capabilities in [9] lead to limitations
that are easily quantifiable. Compared to the compacted
test-set sizes for transition delay faults reported in [29] our
method achieves a better compaction while at the same time
offering an improved small-delay fault coverage. In addition,
our method yield better pattern counts than the stuck-at-
fault test sizes reported in [3] for some circuits like cs38417.

Hence, our proposed compaction and relaxation flow offers
a high delay fault quality with a pattern count comparable
or better than the numbers reported in previous works. In
addition, it is suitable for large industrial circuits.

VI. Conclusions

We presented a novel SAT-based dynamic compaction
method able to handle well defined sensitized paths in
sequential and combinational circuits. The method identifies
necessary assignments for path sensitization and encodes
them as a SAT-instance. An efficient implementation of
a bitonic sorting network is used to find test patterns
maximizing the number of simultaneously sensitized paths.
Detailed experimental results demonstrate the applicability
and effectivity of the method on academic and industrial
benchmarks. Compared to fault dropping the number of
patterns was significantly reduced by over 85% on average.
Additionally our relaxation methods results in over 70% of
X-inputs on average.

In future, we want to extend the method to include
secondary objectives, e. g., the energy usage of the test
patterns.

Acknowledgement

Parts of this work were supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft – DFG) un-
der grants BE 1176-15/2, PO 1220-2/2, GRK 1103 and
SFB/TR 14 AVACS.

We thank J. Schlöffel (Mentor Graphics Hamburg, formerly
NXP) for supplying industrial benchmarks.

References

[1] R. Sankaralingam, R. Oruganti and N. Touba, “Static Compaction
Techniques to Control Scan Vector Power Dissipation,” in VLSI Test
Symposium, 2000. Proceedings. 18th IEEE, pp. 35 –40, 2000.

[2] I. Pomeranz and S. Reddy, “On Static Compaction of Test Sequences
for Synchronous Sequential Circuits,” in Proceedings of the 33rd an-
nual Design Automation Conference, DAC ’96, pp. 215–220, 1996.

[3] I. Pomeranz, L. Reddy and S. Reddy, “COMPACTEST: A Method to
Generate Compact Test Sets for Combinational Circuits,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 12, pp. 1040 –1049, jul 1993.

[4] E. Rudnick and J. Patel, “Efficient Techniques for Dynamic Test
Sequence Compaction,” Computers, IEEE Transactions on, vol. 48,
no. 3, pp. 323 –330, 1999.

[5] I. Pomeranz and S. Reddy, “Forward-Looking Fault Simulation for
Improved Static Compaction,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 20, no. 10, pp. 1262
–1265, 2001.

[6] A. Czutro, I. Polian, P. Engelke, S. Reddy and B. Becker, “Dynamic
Compaction in SAT-Based ATPG,” in Asian Test Symposium, 2009.
ATS ’09., pp. 187 –190, 2009.

[7] S. Eggersgluss, R. Krenz-Baath, A. Glowatz, F. Hapke and
R. Drechsler, “A New SAT-based ATPG for Generating Highly
Compacted Test Sets,” in Design and Diagnostics of Electronic
Circuits Systems (DDECS), IEEE International Symposium on,
pp. 230 –235, 2012.

[8] A. Biere, M.J.H. Heule, H. van Maaren and T. Walsh, eds., Handbook
of Satisfiability, vol. 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, February 2009.

[9] Z. Wang and D. Walker, “Dynamic Compaction for High Quality Delay
Test,” in VTS 2008, pp. 243 –248, 2008.

[10] J. Saxena and D. Pradhan, “A Method to Derive Compact Test Sets
for Path Delay Faults in Combinational Circuits,” in Test Conference,
1993. Proceedings., International, pp. 724 –733, 1993.

[11] M. Fukunaga, S. Kajihara, X. Wen, T. Maeda, S. Hamada and Y. Sato,
“A Dynamic Test Compaction Procedure for High-quality Path Delay
Testing,” in Design Automation, 2006. Asia and South Pacific, Con-
ference on, p. 6 pp., 2006.

[12] B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs,”
pp. 237–242, 1991.

[13] F. Hsu, K. Butler and J. Patel, “A Case Study on the Implementation of
the Illinois Scan Architecture,” in Test Conference, 2001. Proceedings.
International, pp. 538 –547, 2001.

[14] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee, “Embedded De-
terministic Test,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 23, no. 5, pp. 776 – 792, 2004.

[15] P.F. Flores, H.C. Neto and J.a.P. Marques-Silva, “An exact solution
to the minimum size test pattern problem,” ACM Trans. Des. Autom.
Electron. Syst., vol. 6, no. 4, pp. 629–644, 2001.

[16] I. Pomeranz, “Computing Two-Pattern Test Cubes for Transition Path
Delay Faults,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. PP, no. 99, pp. 1 –11, 2012.

[17] G.S. Tseitin, “On the Complexity of Derivations in Propositional
Calculus,” in Studies in Constructive Mathematics and Mathematical
Logics (A. Slisenko, ed.), 1968.

[18] M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem Proving,” Communications of the ACM, vol. 5, pp. 394–397,
1962.

[19] W. Qiu, J. Wang, D. Walker, D. Reddy, X. Lu, Z. Li, W. Shi and
H. Balachandran, “K longest paths per gate (KLPG) test generation for
scan-based sequential circuits,” in Test Conference, 2004. Proceedings.
ITC 2004. International, pp. 223 – 231, 2004.

[20] Z. He, T. Lv, H. Li and X. Li, “An Efficient Algorithm for Finding
a Universal Set of Testable Long Paths,” in Test Symposium (ATS),
2010 19th IEEE Asian, pp. 319 –324, 2010.

[21] N.K. Jha and S.K. Gupta, Testing of Digital Systems. Cambridge
University Press, 2003.

[22] S. Reddy, Models in Hardware Testing, ch. 3. Springer, 2010.
[23] K.E. Batcher, “Sorting networks and their applications,” in Proceed-

ings of the April 30–May 2, 1968, spring joint computer conference,
AFIPS ’68 (Spring), pp. 307–314, 1968.

[24] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in Tools and Algorithms for the Construction and Analysis
of Systems, vol. 2988, pp. 31–45, Springer, 2004.

[25] M. Sauer, S. Reimer, I. Polian, T. Schubert and B. Becker, “Provably
Optimal Test Cube Generation using Quantified Boolean Formula
Solving,” in Design Automation, 2013. Asia and South Pacific, Con-
ference on, 2013.

[26] T. Schubert, M. Lewis and B. Becker, “antom — Solver Description,”
in SAT Race, 2010.

[27] M. Sauer, A. Czutro, T. Schubert, S. Hillebrecht, I. Polian and
B. Becker, “SAT-based Analysis of Sensitisable Paths,” in IEEE
Design and Diagnostics of Electronic Circuits and Systems, pp. 93–98,
April 2011.

[28] M. Sauer, J. Jiang, A. Czutro, I. Polian and B. Becker, “Efficient SAT-
Based Search for Longest Sensitisable Paths,” in Asian Test Symp.,
November 2011.

[29] I. Hamzaoglu and J. Patel, “Compact Two-Pattern Test Set Generation
for Combinational and Full Scan Circuits,” in Test Conference, 1998.
Proceedings., International, pp. 944 –953, 1998.


