
Comprehensive Analysis of Software
Countermeasures Against Fault Attacks
Nikolaus Theißing∗, Dominik Merli†, Michael Smola‡, Frederic Stumpf†, Georg Sigl§

∗Institute of Flight Systems, University of the Armed Forces, Munich, Germany
Email: nikolaus.theissing@unibw.de

†Fraunhofer Research Institution for Applied and Integrated Security (AISEC), Munich, Germany
Email: {dominik.merli, frederic.stumpf}@aisec.fraunhofer.de

‡Infineon Technologies AG, Munich, Germany
Email: michael.smola@infineon.com

§Institute for Security in Information Technology, Technische Universität München, Munich, Germany
Email: sigl@tum.de

Abstract—Fault tolerant software against fault attacks con-
stitutes an important class of countermeasures for embedded
systems. In this work, we implemented and systematically ana-
lyzed a comprehensive set of 19 different strategies for software
countermeasures with respect to protection effectiveness as well
as time and memory efficiency. We evaluated the performance
and security of all implementations by fault injections into
a microcontroller simulator based on an ARM Cortex-M3.
Our results show that some rather simple countermeasures
outperform other more sophisticated methods due to their low
memory and/or performance overhead. Further, combinations
of countermeasures show strong characteristics and can lead to
a high fault coverage, while keeping additional resources at a
minimum. The results obtained in this study provide developers
of secure software for embedded systems with a solid basis to
decide on the right type of fault attack countermeasure for their
application.

I. INTRODUCTION

In 1997, Boneh et al. [1] were able to conduct an attack on a
cryptographic microcontroller with a method which was later
to be known as a fault attack. Unlike previous cryptanalysts,
who had attempted to break cryptosystems purely by analyzing
mathematical weaknesses inside their algorithms, Boneh et
al. purposely injected faults into the circuit of the actual
implementation. These faults caused the implemented cipher,
in this case RSA [2], to behave erroneously. The induced errors
made it possible for the researchers to break the cryptographic
key in polynomial time.

On the practical side, it was shown that attackers have a
wide range of possibilities to cause faults within integrated
circuits. They might vary operating conditions, e.g. by heating
the circuit [3] or manipulating the power supply [4], [5] by
inducing glitches. Also, radiation of all kinds enables fault
injection, e.g. cosmic radiation [3], X-ray [6], light [7] and
laser beams [8]. Invasive methods, like microprobing [9] allow
injecting faults precisely at targeted signals.

Physical faults can cause three different types of errors
in software. They can (1) directly affect critical data values,
(2) cause erroneous calculations or (3) lead to Control-Flow

Errors (CFE) by influencing the instruction sequence of a pro-
gram. To handle these different types of errors, several coun-
termeasures [10]–[14] have been proposed. However, software
developers cannot focus on countermeasure development and
evaluation, but need a supportive analysis of effectiveness and
performance overhead of protection ideas as a basis to decide
on the most suitable countermeasure(s) to use.

Our contribution is a comprehensive analysis of software-
implemented countermeasures against fault attacks. We sim-
ulated a variety of countermeasures while injecting random
bit faults into registers and memory of a microcontroller
simulator. Our results give an insight into effectiveness and
performance of these protective software modules and are
therefore a strong foundation for designers of secure embedded
software.

The rest of this paper is organized as follows. Section II
gives an overview of publications on related work. Section III
presents our simulation system, benchmark application and
assessment approach. In Section IV, the list of implemented
and tested software countermeasures is presented. Section V
provides data and interpretation of the observed experimental
results, followed by a conclusion in Section VI.

II. RELATED WORK

Since the exploitation of fault attacks by Boneh et al. [1],
their main focus has been breaking cryptographic protocols. A
lot of research has been conducted on methods protecting im-
plementations of cryptographic protocols against fault attacks,
e.g. the protection of RSA [2] by Blömer et al. [15], Kim
and Quisquater [16], and Bao et al. [17]. Countermeasures
hardening implementations of Schnorr and Fiat-Shamir au-
thentication were presented by Boneh et al. [1] and a protected
version of the El-Gamal key exchange protocol was shown
by Bao et al. [17]. In our simulation setup, we also use an
authentication application to evaluate each countermeasure.

978-3-9815370-0-0/DATE13/ c©2013 EDAA



III. METHODOLOGY

In this section, we give an overview of the evaluation system
we used to inject faults into a program running on a mi-
crocontroller simulator. Further, we explain the authentication
benchmark software which was used for testing.

A. Fault Simulation

In order to be able to simulate a large amount of fault
injections for several different software versions on a state-
of-the-art microcontroller, we used a simulator of an ARM
Cortex-M3. As shown in Figure 1, we implemented an in-
jection mechanism which allowed us to stop the simulation
at every given point in time in order to inspect or modify
the system state, namely the contents of all registers of the
microcontroller.

ARM
Cortex-M3
Simulator

Fault
Injection
Engine

Fault
Generator

Preparation Simulation

Fig. 1. Fault simulation system

We further implemented a fault generator, which was able
to generate a list of faults covering the whole simulation space
created by time × memory elements. We used the single-bit
fault model [1] to created transient faults randomly affecting
any register or memory cell at a random point in time. This
is a very suitable and practical definition of a limited attacker,
who is able to manipulate single bits with little or no precision.
Since extensive simulations require an extreme amount of time
and computational resources, we added a feature to reduce the
number of necessary simulations, i.e. it was possible to reduce
the number of memory addresses or the number of single-bit
faults per data word, while maintaining a uniform distribution
over the simulation space.

B. Benchmark Application

We implemented an operating system for a microcontroller
within a fictitious money card to simulate it on our Cortex-
M3 simulator. This card works analogously to existing pay
cards [18]. After authentication by the user’s PIN, one can
charge money to the card and pay with it at payment stations.
Additionally, a mutual challenge-response authentication pro-
tocol based on the Advanced Encryption Standard (AES) takes
place between the card and the charging/payment stations.

The software consists of three separate program parts:
• Module A: Mutual authentication based on AES
• Module B: PIN verification
• Module C: Balance transaction

The AES key management, encryption and decryption was
purely carried out in software. However, this software part
was spared from fault simulations throughout this work, since
in real security microcontrollers, the AES will be computed
by specific hardware circuits protected by hardware counter-
measures [19].

C. Simulation Runs and Assessment

In order to assess the result state of a simulation run, we
separated the simulation space into six distinct subsets, i.e.,
every module was simulated once for register faults and RAM
faults, respectively. At each simulation run, the whole program
was executed, but faults were only injected into the module-
under-test.

For module A, the software was provided with invalid
authentication data, i.e., a critical fault would lead to positive
authentication without valid data. While testing module B,
only a wrong PIN was supplied. In module C, all data is
correctly input, thus, a critical error is only recognized if the
balance value is manipulated during a transfer.

Following the definitions above, we obtained one of the
following results after each simulation run:

• Pass. The fault has not been security-critical, or in case
of a critical fault, the processor has entered its error state,
i.e., the fault was detected.

• Fail. The normal terminal state could be reached without
valid authentication data or PIN, or the balance value was
modified.

• Timeout. The microcontroller continues without ever or
at least very late reaching the terminal or the error state.
Reasons might be CFEs causing infinite or long-lasting
loops or unhandled interrupts causing a system halt. As
in hardware, these cases are detected by a timer and can
be assessed as successful fault detections.

IV. SOFTWARE COUNTERMEASURES

This section describes all implemented countermeasures.
Each test scenario is assigned a two-digit code number where
the first one represents the protection classes listed below
and the second one is a sequence number. Countermeasure
combinations were chosen in a way that they compensate each
other’s weaknesses.

• 00: Original software without countermeasures
• 1x: Countermeasures protecting the data layer
• 2x: Combinations of data protection methods
• 3x: Countermeasures protecting the control flow layer
• 4x: Combinations of control flow protection methods
• 5x: Combinations of data and control flow protection

Following countermeasures were implemented and simulated:
• Test 10: Instruction Duplication:

A calculation is carried out multiple times (here: twice)
and the result is assigned to two variables. Afterwards,
both results are checked for equality.



• Test 11: Data Duplication:
Redundant copies of all data elements are created [10]
and operations are performed for every data copy. Com-
paring all copies of the respective element, one is able to
detect data errors at an arbitrary point in time.

• Test 12: Inverse Operations:
Application of the inverse operation on the operation re-
sult of a preceding calculation and assertion that the result
is equal to the initial parameter of the first calculation.

• Test 13: Operand Modification:
Calculations are carried out multiple times (here: twice).
The first calculation is carried out with the original values
of the operands. Then, the operands are modified in a
certain way, the calculation is performed again and the
modification is inverted before comparison [11].

• Test 14: Acceptance Tests:
Acceptance Tests make use of a-priori information of the
programmer. They check for a valid operation result by
asserting that the respective value lies within a known
subset of valid assignments [12].

• Test 15: Error-Detecting Parity Codes:
Alongside the data elements to be stored, a parity data
word, i.e. an XOR of all data elements, is saved. Later,
this redundant data is used to verify the integrity of the
stored information [20], [21].

• Test 20: Data Duplication + Operand Modification:
A combination of the two methods of tests 11 and 13.

• Test 21: Inverse Operations + Operand Modification:
A combination of the two methods of tests 12 and 13.

• Test 30: Jump ID:
Before a branch to a remote code block takes place, the
ID of the target block is assigned to a signature variable
which can be verified by every block. An error is detected
if the target ID and the block ID do not match [22].

• Test 31: Jump ID (Late Check):
The same principle as in test 30 is applied, but the ID
checking step is conducted at the end of each block
instead of at the beginning.

• Test 32: Source and Destination ID:
Similarly to the concept of Jump ID, a signature of
the target block as well as one of the originating block
is stored. The target block is then able to verify the
transition between these blocks.

• Test 33: Control-Flow Checking by Software Signa-
tures (CFCSS):
A dynamic signature variable is updated before each
branch according to the IDs of both blocks. Again, the
target block verifies the transition [13], [14].

• Test 34: Assertions for Control Flow Checking
(ACFC):
ACFC utilizes a global variable to monitor the execution
flow. It keeps track of a part of the history of the recently
executed blocks and assures that the protected program is
valid according to a predefined control flow graph [23].

• Test 35: Incremental Checkpassing ID:
Checkpoints are placed at various positions within a
block. Whenever the program execution reaches a check-
point, a variable is manipulated in a certain way. At the
end of the block, a check is executed which ascertains
that each checkpoint was processed [10].

• Test 40: Source-Destination-ID + Checkpassing:
A combination of the two methods of tests 32 and 35.

• Test 41: Source-Destination-ID + Condition Checks:
A combination of the method described in test 32 and
condition checks, which compute conditional expressions
redundantly to assure that a conditional branch is valid.

• Test 50: Jump ID + Data Duplication:
A combination of the data-protecting method described in
test 11 and the control-flow-protecting method described
in test 30.

• Test 51: Source-Destination-ID + Checkpassing +
Inverse Operations + Operand Modification:
A combination of the data-protecting methods described
in tests 12 and 13, and the control-flow-protecting meth-
ods described in tests 32 and 35.

V. RESULT ANALYSIS

This section discusses the results of our experiments re-
garding critical errors, fault coverage and performance. For
each countermeasure, depending on the implementation, sim-
ulations covering faults in all registers at all times required
20, 000 to 180, 000 simulation runs, 85, 000 on average. For
RAM faults in a randomly selected part of the used RAM at
all times, a number of 150, 000 to 280, 000 simulation runs
were performed, 235.000 on average per countermeasure.

A. Critical Errors

The results of the fault simulation on the original software
(test 00) allow for a qualitative analysis of critical errors
caused by injected faults and a quantitative analysis of their
distribution.

In modules A and B, the injection of register faults led to
the following distinct types of critical errors:

• Data errors in parts of the authentication data
• Data errors in branching condition variables
• Data errors in the value of the Link Register, resulting in

a stack storage of an invalid return address
• Intra-block CFEs skipping a PUSH LR1 instruction
• Inter-block CFEs jumping into wrong conditional blocks
• Inter-block CFEs jumping into other routines
Our analysis showed that the vast majority of errors is

comprised of inter-block CFEs jumping to remote routines. At
the beginning of the routine querying the PIN or conducting
the authentication, the return address (stored in the Link
Register) is pushed onto the stack. It points to the instruction
in the main routine where execution should be continued after
a successful authentication or PIN query. After the inter-block
CFE, the code of the remote block is executed. At the end

1store Link Register (LR) to stack



of that block, the return address is restored to the Instruction
Pointer via a POP IP2 instruction. At that point, because the
initial PUSH LR of the remote block has been skipped, the
invalid former return address is loaded into the Instruction
Pointer. Then, the code execution continues at the position
immediately after the successful authentication or PIN query.

Register faults during the execution of module C caused
these critical errors:

• Intra-block CFEs skipping instructions on critical data
• Data errors modifying the stack pointer
• Data errors in branching condition variables
• Data errors in critical data
There, according to our analysis, the majority of errors

is equally shared by two types of data errors. One half is
comprised of data errors in the critical data itself, i.e. the value
of the current balance or the booking difference. The other data
errors affect elements responsible for conditional jumps. The
control flow in module C consists of a switch-case construct,
where faults in the switching variable are causing critical errors
of this kind. The critical errors caused by memory faults in
module C entirely consisted of modified critical data, i.e. of
modified balance values.

B. Fault Coverage

To measure the fault coverage of an implemented counter-
measure, we used the absolute number of failed tests. It yields
the number of undetected faults within the used subset of the
fault space. The smaller this number is, the higher is the error
detection of the tested module.

1) Modules A and B, Register Faults: Modules A and B
are mostly vulnerable to CFEs. The results in Figure 2 show
that countermeasures only protecting the data layer (tests 10 to
21) provide only little (if any) coverage against faults causing
security-critical errors.

The best results were achieved by test 41. The employed
countermeasure combines block signatures with redundant
checks of branching conditions.

As shown in Section V-A, a vast majority of critical CFEs
is comprised of invalid inter-block CFEs according to the

2fetch Instruction Pointer (IP) from stack

Fig. 2. Number of undetected register faults in modules A and B

control-flow graph. Most of these errors can be detected by
all CFE-detecting methods. A significant part of the remaining
errors, however, is caused by invalid executions of conditional
branches either by an erroneous jump or an erroneous evalu-
ation of a jump condition. The methods implemented in test
41 are able to detect most of those CFEs and hence yield an
exceptionally high CFE coverage.

Notably, the countermeasure from test 41 even outperforms
the two highly sophisticated methods ACFC and CFCSS.
Reasons therefore are, that on one hand, both countermeasures
do not protect against data errors and graph-valid inter-block
CFEs. On the other hand, their greater overhead provides an
attacker a greater time interval to inject a fault.

2) Module C, Register Faults: Module C is mostly vulner-
able against errors in the data layer, as shown in Section V-A.
Some faults causing data errors immediately affect the crit-
ical data. The rest of the inflicted faults cause CFEs which
indirectly affect the critical data. Even most of the CFEs are
created by data errors at first hand.

Countermeasures protecting the control flow can hence
provide protection to a certain degree. A more extensive
protection, however, is given by data protection methods, as
shown in Figure 3.

The data protection methods Data Duplication, Inverse
Operations, and Operand Modification protect data elements
not only stored in RAM, but also in the processor registers.
Henceforth, in this scenario, countermeasures employing at
least one of these methods provide a high fault coverage.

The two methods in tests 50 and 51, combining the
mentioned data protection methods with additional protection
against CFEs, provide the highest degree of protection. Espe-
cially, the two complementary methods combined in test 50
perform extremely well.

3) Module C, RAM Faults: For RAM faults, the measured
number of undetected faults corresponds only to a reduced
fault space, i.e. only a randomly selected part of the RAM
addresses have been used, because of computational limita-
tions. Hence, to achieve comparable numbers, the measured
number of undetected faults is divided by the sample size
and multiplied by the scaling normalization factor of 2 · 105

Fig. 3. Number of undetected register faults in module C



Fig. 4. Normalzied number of undetected RAM faults in module C

faults, which has no deeper meaning. The resulting numbers
are depicted in Figure 4.

Data Duplication yields a good fault coverage, but it is
slightly outperformed by the countermeasure employing error-
detecting codes. While these methods provide only little
coverage against register faults affecting the control flow, they
protect RAM data to a great extent. Test 51 achieves the
greatest fault coverage in this scenario.

4) Overall Fault Coverage: Figure 5 depicts the overall
relative number of failed tests, i.e. the sum of the number of
undetected faults in all three modules for register as well as
memory faults, divided by the sum of all injected faults.

The method of Data Duplication yields the best results when
considering test sets with only one countermeasure strategy.
Tests 50 and 51, combining data and control flow protection,
show the lowest relative number of undetected faults and,
henceforth, the best overall fault coverage.

C. Performance

This section discusses the performance penalty of all soft-
ware countermeasures, as it is an important criterion for many
applications.

Fig. 5. Overall number of undetected faults, including all three modules

Fig. 6. Countermeasure overheads regarding execution time and memory
consumption, relative to the values of the original program

1) Memory Overhead: Figure 6 depicts the relative over-
head of the countermeasures regarding their execution time
and their overall consumed memory.

Test 50, combining Jump IDs and Data Duplication, con-
sumes the highest portion of RAM. The overhead is signifi-
cantly larger than the sum of the overheads of both counter-
measures in their respective standalone implementations. The
reason is that the combined countermeasure was created by
first protecting the original software by Data Duplication and
afterwards applying the Jump ID method on the protected,
larger version. The standalone countermeasure with the largest
memory overhead is CFCSS (test 33). Its low consumption
of data memory implies that most of the created overhead is
caused by the additional code executed by the method.

The lowest memory overhead is created by the countermea-
sures Instruction Duplication (test 10), Inverse Operations (test
12), and Acceptance Tests (test 14). These methods combine
a low amount of additional code with little temporarily stored
data.

2) Overhead in Execution Time: The highest overheads
regarding execution time are created by the two combined
methods from tests 50 and 51, followed by the combination
of Data Duplication and Modified Operands (test 20) and the
standalone implementation of Data Duplication (test 11). All
of them utilize a high amount of redundant function calls.

The lowest temporal overhead for methods protecting the
data layer is achieved by Acceptance Tests (test 14) since they
get along with a low amount of redundant executions, followed
by Operand Modification (test 13).

Out of the methods protecting the control flow, those con-
suming the lowest amount of execution time are those methods
utilizing the least complicated checks. These are Jump ID
methods (tests 30 and 31) as well as Source and Destination
ID Check (test 32).

3) Coverage vs. Overhead: The combination of Source
and Destination IDs with redundant Condition Checks (test
41) yields the best trade-off between coverage and overhead
regarding CFEs with high distinction. It combines a below-
average overhead with the best achieved fault coverage of all



performed tests.
The methods utilizing simple IDs for keeping track of the

inter-block control flow (tests 30, 31, 32, and 35) also yield
good compromises. They even outperform the sophisticated
methods CFCSS (test 33) and ACFC (test 34), which yield a
similar fault coverage, but impose a higher overhead.

The best balance of coverage and overhead for faults
affecting data elements is achieved by Acceptance Tests (test
14), because of their low resource consumption. The second
best methods are tests 50 and 51 for register and RAM faults,
respectively, because of their very high coverage.

The combination of a fault coverage which is moderately
worse than the one of Data Duplication and a significantly
better resource consumption, makes the Operand Modification
(Test 13) the method with the third best values.

VI. CONCLUSION

In this paper, we comprehensively analyzed software-
implemented countermeasures against fault attacks covering
methods protecting the data layer as well as the control
flow. We described our simulation and evaluation setup and
listed several state-of-the-art countermeasures with short ex-
planations. The main contribution of this work are extensive
fault simulations of our pay card benchmark application im-
plemented in 19 different countermeasure scenarios. These
tests yielded quantitative data about the effectiveness against
fault attacks and the performance of the evaluated software
countermeasures.

The best overall result was achieved by a combination
of redundant condition checks and source and destination
IDs, which reached the best fault coverage while implying a
moderate performance overhead. Further, our analysis shows
that simple countermeasures consisting of ID-based inter-block
control flow checking are able to outperform sophisticated
methods like CFCSS and ACFC.

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in EUROCRYPT, 1997,
pp. 37–51.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, pp. 120–126, February 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[3] S. Govindavajhala and A. W. Appel, “Using memory errors to
attack a virtual machine,” in Proceedings of the 2003 IEEE
Symposium on Security and Privacy, ser. SP ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 154–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=829515.830563

[4] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,
“Low voltage fault attacks to AES and RSA on general pur-
pose processors,” Cryptology ePrint Archive, Report 2010/130, 2010,
http://eprint.iacr.org/.

[5] O. Kömmerling and M. Kuhn, “Design principles for tamper-resistant
smartcard processors,” in Proceedings of the USENIX Workshop on
Smartcard Technology on USENIX Workshop on Smartcard Technology.
USENIX Association, 1999.

[6] M. Otto, “Fault attacks and countermeasures,” Ph.D. dissertation,
University of Paderborn, 2005. [Online]. Available: http://www.cs.uni-
paderborn.de/uploads/tx sibibtex/DissertationMartinOtto.pdf

[7] V. Oklobdzija, The Computer Engineering Handbook. Boca Raton:
CRC Press, 2008.

[8] M. G. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust protection
against fault-injection attacks on smart cards implementing the advanced
encryption standard,” in DSN, 2004, pp. 93–101.

[9] S. P. Skorobogatov, “Semi-invasive attacks – A new approach
to hardware security analysis,” University of Cambridge,
Tech. Rep. UCAM-CL-TR-630, 2005. [Online]. Available:
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf

[10] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

[11] J. H. Patel and L. Y. Fung, “Concurrent error detection in
ALU’s by recomputing with shifted operands,” IEEE Trans.
Comput., vol. 31, pp. 589–595, July 1982. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1311065.1311154

[12] M. Rela, H. Madeira, and J. Silva, “Experimental evaluation of the fail-
silent behaviour in programs with consistency checks,” Fault-Tolerant
Computing, International Symposium on, vol. 0, p. 394, 1996.

[13] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE TRANSACTIONS ON RELIABILITY, vol. 51,
pp. 111–122, 2002.

[14] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in In Proceedings of
the 3rd International Symposium on Code Generation and Optimization,
2005, pp. 243–254.

[15] J. Blömer, M. Otto, and J.-P. Seifert, “A new CRT-RSA algorithm
secure against bellcore attacks,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS 2003).
ACM Press, 2003, pp. 311–320. [Online]. Available: http://www.cs.uni-
paderborn.de/uploads/tx sibibtex/SecureCRT.pdf

[16] C. H. Kim and J.-J. Quisquater, “How can we overcome both side
channel analysis and fault attacks on RSA-CRT?” in FDTC, 2007, pp.
21–29.

[17] F. Bao, R. H. Deng, Y. Han, A. B. Jeng, A. D. Narasimhalu,
and T.-H. Ngair, “Breaking public key cryptosystems on tamper
resistant devices in the presence of transient faults,” in Proceedings of
the 5th International Workshop on Security Protocols. London,
UK: Springer-Verlag, 1998, pp. 115–124. [Online]. Available:
http://portal.acm.org/citation.cfm?id=647215.720385

[18] EMVCo, www.emvco.com.
[19] M. Joye and M. Tunstall, Eds., Fault Analysis in

Cryptography. Springer Berlin Heidelberg, 2012. [Online]. Available:
http://ebooks.ub.uni-muenchen.de/30229/

[20] K. J. Kulikowski, M. G. Karpovsky, and A. Taubin, “Fault attack re-
sistant cryptographic hardware with uniform error detection,” in FDTC,
2006, pp. 185–195.

[21] T. G. Malkin, F.-X. St, and M. Yung, “A comparative cost/security
analysis of fault attack countermeasures,” in In Second Workshop on
Fault Detection and Tolerance in Cryptography (FDTC 2005, 2005, pp.
109–123.

[22] B. Nicolescu, Y. Savaria, and R. Velazco, “Software detection mech-
anisms providing full coverage against single bit-flip faults,” Nuclear
Science, IEEE Transactions on, vol. 51, no. 6, pp. 3510 – 3518, 12
2004.

[23] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, “Low-cost
on-line fault detection using control flow assertions,” On-Line Testing
Symposium, IEEE International, vol. 0, p. 137, 2003.


