
FaulTM: Error Detection and Recovery Using
Hardware Transactional Memory

Gulay Yalcin1,2 Osman Unsal1 Adrian Cristal1
1Barcelona Supercomputing Center

2Universitat Politecnica de Catalunya
Email: {gulay.yalcin, osman.unsal, adrian.cristal }@bsc.es

Abstract—Reliability is an essential concern for processor
designers due to increasing transient and permanent fault rates.
Executing instruction streams redundantly in chip multi pro-
cessors (CMP) provides high reliability since it can detect both
transient and permanent faults. Additionally, it also minimizes
the Silent Data Corruption rate. However, comparing the results
of the instruction streams, checkpointing the entire system and
recovering from the detected errors might lead to substantial
performance degradation. In this study we propose FaulTM,
an error detection and recovery schema utilizing Hardware
Transactional Memory (HTM) in order to reduce these perfor-
mance degradations. We show how a minimally modified HTM
that features lazy conflict detection and lazy data versioning
can provide low-cost reliability in addition to HTM’s intended
purpose of supporting optimistic concurrency. Compared with
lockstepping, FaulTM reduces the performance degradation by
2.5X for SPEC2006 benchmark.

I. INTRODUCTION

Reliability is a first-class design constraint for processor de-
signers, especially in mission-critical domain (e.g. automotive
cruise-control systems or financial applications), since it is
foreseen that technology trends will increase the transient and
permanent fault rates in future processors [3], [2]. To tolerate
hardware faults, a reliable system requires the inclusion of two
key capabilities: 1) error detection and 2) error recovery.

Error detection is the process of discovering that an error
has occurred. To satisfy the strict reliability requirements of
mission-critical systems, various redundancy-based error de-
tection solutions have been proposed [7], [14], [20], [22], [21],
[26]. In particular, lockstepping is a popular hardware based
error detection scheme and is widely implemented in systems
requiring high-reliability such as the IBM S/390 G5 [20] or the
HP NonStop servers [26]. Lockstepping executes an instruction
stream redundantly in two synchronized and lockstepped pro-
cessors and checks if both produce identical results. However,
the comparison of execution results in order to detect divergent
execution causes synchronization and comparison overheads in
execution time especially if the inter-processor communication
channel has a limited bandwidth.

Error recovery is the process of restoring the system’s
integrity after the occurrence of an error. Global check-
pointing, a well-known recovery scheme, recovers detected
errors by rolling back all processors to an earlier validated
state [16], [23]. However, it will not be scalable as we move
towards many-core systems, due to two main reasons: First,

global checkpointing schemes should implement synchroniza-
tion mechanisms (either at checkpoint creation or checkpoint
validation) to guarantee that all structures (e.g. cores) rollback
to the same state in case of an error. Second, when an error
is detected in one core, all the processors (faulty or not)
have to roll back since errors could have propagated to the
error-free cores through shared variables. Thus, assuming that
error rate will be higher for higher core counts, it is foreseen
that in future many-core processors, global checkpointing may
take even more time than the execution of the application
itself [15]. Moreover, many error detection proposals depend
upon external error recovery mechanisms, thus they require
additional integration effort.

In addition to the performance degradation in the error-free
execution, reliability schemes require supplementary hardware
and design of this extra hardware dedicated only for reliability
(e.g buffers to save checkpoints). These structures increase
system implementation and test complexity. Thus, most of
the academic reliability proposals have not been implemented
in real hardware. To the best of our knowledge, lockstepping
is one of the few redundancy-based error detection proposals
with a real implementation. Although software based reliability
schemes have been proposed in order to avoid new hardware
design, these schemes are not capable of detecting permanent
faults. Also, they require recompilation of the source code.

In this study, we have two main goals in designing a
highly reliable hardware: (1) to minimize the implementation
complexity by utilizing existing hardware with minor changes,
(2) to reduce the performance degradation. For these pur-
poses, we introduce FaulTM1, an error detection and recovery
proposal based on Hardware Transactional Memory (HTM)
which provides an ideal base for reliability. FaulTM does
not propose a completely proprietary design, which would be
complex to implement and test, but instead builds on HTM.
In this study, we are motivated by the fact that HTM will
soon be implemented in mainstream processors and available
from large system integrators [5], [9], [17]. In this paper, we
explain how a generic HTM could be minimally modified
so that it can also support reliability in addition to HTM’s
intended purpose of supporting optimistic concurrency. To the
best of our knowledge, this is the first design which utilizes
HTM to provide a highly reliable system.

HTM2 simplifies parallel programming by executing trans-
actions atomically meaning that all the instructions in a

1The first draft of our idea has been appeared in a previous event [27].
2The reader is encouraged to refer to [11] and [10] for explanation of HTM

fundamentals.978-3-9815370-0-0/DATE13/ c©2013 EDAA



transaction either commit as a whole, or abort and roll back
their changes. Transactions record their tentative reads and
writes in a read-set and write-set respectively. FaulTM executes
applications in two redundant threads (i.e it creates a backup
thread) and in special-purpose reliable transactions (From now
on, we will call these reliable transactions as reliTX in order
to avoid any confusion with regular TM transactions). FaulTM
classifies any mismatch between the write-sets and register
files of reliTX pairs (i.e. original reliTX and backup reliTX)
as a hardware error (transient or permanent), and aborts both
reliTXs, which are then restarted. In the case of a complete
match, original reliTX commits the changes to the shared
memory. Note that FaulTM utilizes an HTM which detects
conflicts at the end of transactions (lazy conflict detection)
and commits the validated version of the data at the end of
the transactions (lazy data versioning).

The major contributions of this paper are as follows:

• We propose FaulTM, a reliability scheme based on
existing HTM implementations with appropriate mod-
ifications for reliability.

• We detail the FaulTM design which has low error
detection and recovery overhead.

• FaulTM is a self-contained reliability proposal in
which error detection and recovery is integrated with-
out requiring any external mechanism.

We integrated the FaulTM design in a substantially mod-
ified version of the M5 simulator [4] modeling an HTM [8].
Compared with lockstepping, FaulTM reduces the performance
degradation by 2.5X for SPEC2006 benchmark. With the
inclusion of register file comparison, FaulTM can recover
100% of the injected faults in our fault injection simulation.

II. FUNDAMENTALS OF FAULTM

FaulTM tolerates transient and permanent faults. A transient
fault is a bit flip due to radiation events or power supply
noise. Permanent faults are irreversible physical changes in the
semiconductor devices. Error is the manifestation of a fault.
Fault is benign if it does not harm an application.

A. Basic Design of FaulTM

FaulTM provides high reliability based on 4 steps (Figure.1):

Creating reliTXs: At the beginning of the execution,
FaulTM creates a backup thread which executes the identical
instruction stream to the original thread. Then the original and
backup threads are executed as two separate reliTXs.

Executing reliTXs: Original and backup reliTXs are exe-
cuted atomically and in isolation. Each reliTX independently
sends load request to shared memory or read-sets. In FaulTM,
there are no conflicts between the original and the backup
reliTXs, because the backup reliTX is only for validation of
error-free execution and it does not modify shared memory.

Ending reliTXs: Since both threads have identical instruc-
tions in the absence of a fault, their read-/write-sets have to
be identical as well. Original and backup reliTXs wait for
each other (spin) to reach the commit stage. Then, the reliTX
pair compare their write-sets and register files through the

Fig. 1. Design of FaulTM for Sequential Codes

comparators in the backup reliTX. (From now on we call this
operation as validation). If they match, the original reliTX
commits its changes to memory, and the backup reliTX is
cleared as if it aborts and it does not re-execute. Mismatch
means an error due to a hardware fault in one of the reliTX
that starts the recovery.

Error Recovery: If either write-sets or register files do
not match at validation, both the original and backup reliTXs
abort and they restart execution. If they match in the second
execution, that means that there was a transient fault either in
one of the cores or in the comparators in the first execution.
Two successive mismatch signals between the same original
and backup reliTXs signify that either one of the cores or the
comparators has a permanent fault. FaulTM executes the re-
liTX in a third core to detect the source of the permanent fault
by comparing the results with this third core’s comparators as
similar to TBFD [13].

B. Architecture of FaulTM

FaulTM extends a popular lazy-lazy HTM design [8] with
minor modifications.

Splitting the reliTXs: In HTMs with lazy data versioning,
local log buffers can emerge as a bottleneck for large transac-
tions. Therefore, it is infeasible to execute the entire applica-
tion in one reliTX. Fortunately, we can split reliTXs since they
are for reliability not for parallelism. FaulTM starts validation
processes when the write-set size reaches the transactional
log size. Therefore, in run-time, the whole application is split
into finer grained back-to-back reliTXs with constant-size log
buffers. When the whole write-set is committed, a new reliTX
starts by clearing the write-set. Splitting reliTXs allows us
using a very small fully associative special transactional cache
which holds the write-set and read-set of the whole reliTX.

Microarchitecture Extensions for FaulTM implementation:
We need a simple controller having the list of processors in
order to manage reliTXs. Besides coreIDs, we add several bits
per core to this list such as isReliable, isOriginal, peerCPU,
wasFaulty and controlCore bits, to account for mechanisms
to deal with reliable execution. We may have additional TM
applications running concurrently with our reliability-critical
applications. Therefore, we use the isReliable bit to distin-
guish between the transactions and reliTXs. This bit is also sent



(a) Processor Executing Original reliTX (b) Processor Executing Backup reliTX

(c) Data Sent to the Interconnect During Comparison

Fig. 2. The Validation Mechanism of FaulTM (Modified Structures are Shown in Grey)

together with the write-set at validation. If isOriginal bit
is set, it indicates that the reliTX is the original one otherwise
it is the backup reliTX. reliTX pairs have to be aware of each
other to compare their results. The peerCPU bits point to the
processor that has the peer reliTX of the reliTX that runs in the
current processor. wasFaulty bit records if the core had a
fault at the last time it executed a reliTX, hence it distinguishes
if there might be a permanent fault. The wasFaulty bit is
reset every time the core executes an error-free reliTX. When
FaulTM detects two consecutive mismatches, it allocates a new
core to recover from a permanent fault. The controlCore
bit is set in the allocated core.

Adapting Conflict Detection for Error Detection In Fig-
ure 2, we demonstrate the paired processors running original
and backup reliTX as well as the interconnect during error
detection. Lazy-lazy TM systems compare the store addresses
in both read-sets and write-sets for conflict detection. FaulTM
compares store addresses as well as store data values in write-
sets to detect if an error has manifested itself either in the
address or in the data. Only reliTXs that set the isReliable
bit send store data to their peer reliTX. Therefore, normal
parallelism purposed transactions are not affected by this
overhead. Note that reliability purposed comparison can be
performed as in-order buffer comparison without requiring the
associative address search of HTM.

Watchdog Mechanism: Assuming that an error in one reliTX
leads to an incorrect execution path (i.e. an infinite loop), the
reliTX may not reach the write-set limit or end of the applica-
tion. FaulTM employs a watchdog mechanism which records
the time since the last reliTX validation in the processor in
order to enforce the reliTXs to validate and commit if the
watchdog threshold has been exceeded.

Handling Input/Output Operations: In reliable systems, only
error-free data can be communicated outside of the sphere
which is called output commit problem. For example, the

system can not print unvalidated data to the user screen.
Also, input commit presents problem in reliability since input
messages should be replayed after recovery. In FaulTM, we
adopt the practical solution of both TM and checkpointing
in which output values are deferred until validation (end of
reliTXs in our case), and input values are logged to replay after
recovery. Note that the size of the reliTXs are small enough
for output delay.

Fatal Trap Exceptions: If one reliTX raises a hardware
exception while its pair reliTX comes to commit, the recovery
process starts and both reliTXs abort and restart execution.

C. Benefits of FaulTM

FaulTM presents five main benefits.

Less Comparison Overhead FaulTM reduces the comparison
overhead compared to the previous redundancy-based fault-
detection schemes [14], [7] due to two reasons. First, it
compares the write-sets (instead of each store values) which
have a fewer amount of entries than the total number of store
instructions due to multiple stores to the same address. Second,
register file comparison is done only at the commit stage
of reliTXs (instead of after each instruction). Furthermore,
comparison only at the commit point reduces the probability
of detecting benign faults; because if a fault is masked within
the reliTX, its effect is eliminated before the end of the reliTX.
The comparison overhead of FaulTM can be reduced further
by comparing hash-based signatures of write-sets and register
files of reliTX pairs (We call this mechanism as FaulTM-sig in
order to separate it from the base design). This mechanism is
similar to Fingerprinting [21] in which a cumulative signature
of the execution trace is generated after every instruction
instead of after every reliTX.

Lightweight Checkpointing with TM FaulTM recovers from
errors using the abort mechanism of TM which rolls back to
the beginning of the reliTX in the erroneous core. We argue



Fig. 3. Total entries in write-sets normalized according to the total number
of store instructions in FaulTM.

that this is a simpler method than system-wide checkpoint-
ing [16], [23] that requires complex synchronization mecha-
nisms to guarantee that all structures rollback to the same state.
Moreover, system-wide checkpointing requires long recovery
time due to its long checkpoint interval. FaulTM flushes the
local log area and loads back the checkpointed register file
for recovery only in the faulty core which has a negligible
overhead. FaulTM does not require extra hardware resources,
while reliTX sizes are very short compared to system-wide
checkpointing.

Full-state Comparison Redundancy based reliability methods
detect errors by comparing either only the results of store
instructions [14], [18] or results of all instructions [7], [21],
[24] by assuming that a fault is benign unless it propagates the
architectural state. However, only full-state comparison (e.g.
checking the register file) guarantees the error-free operation
since the last validation. FaulTM provides full-state compari-
son at commit point with acceptable performance degradation.

Eliminating the requirement of separate input replication
mechanisms Previous redundancy based methods [7], [14]
require input replication mechanisms such as a load value
queue, because a value can be changed by another thread
in the system between the time it is read by the first thread
and it is read by the second thread. In FaulTM, the conflict
detection mechanism of TM guarantees that there would not
be any modifications in the loaded values by other threads.

D. Overheads and Limitations

Core and Energy Overhead During the execution of a
sequential application in a multi-core architecture, only one
core is occupied and the others stay idle. FaulTM leverages one
of the idle cores for the reliability purpose which supplies the
capability of detecting both transient and permanent errors with
100% core overhead as previous redundancy based reliability
schemes on CMPs [14], [7], [22], [21].

ReliTX Creation Overhead In a lazy-lazy HTM, creating
a transaction means starting to write the values to the local
log area instead of writing to the shared memory. Therefore,
FaulTM does not have a reliTX creation overhead. However,
the backup reliTX is obliged to copy the register file and TLBs
from the original thread to be able to produce the same results.
Fortunately, this copy operation does not need to be done when
the transactions are back-to-back.

Fig. 4. The Error Detection Overhead of FaulTM vs Lockstepping in the
Execution Time

Spinning Overhead Whenever a reliTX reaches the end point,
it spins, waiting for its pair to reach the same point. This
overhead is higher in the previous schemes since they spin at
every store instructions.

Comparison Overhead Validation of the execution is done by
comparing the write-sets and register files of paired reliTXs by
the core responsible for the backup reliTX.

Limitations and Potential Solutions First, in FaulTM, out-of-
order memory operations may cause false positives. Although
we detail FaulTM for in-order executions, a straightforward
solution for out-of-order cores is storing only retired instruc-
tions to writesets. Second, there are several challenges in
redundantly executing multithreaded applications (lock-based
or transactional) such as handling instructions dedicated to
maintaining synchronization (e.g. locks, barriers or create/join
threads). Thus, they require a more detail design. We dedicate
this first paper only for explaining the fundamentals of FaulTM
in sequential applications. We leave the multi-threaded appli-
cations for the future work Third, the implementation in this
paper does not support non-deterministic applications.

III. EVALUATION

A. Simulation Setup

We use the M5 full-system simulator [4] with an imple-
mentation of a HTM system using lazy data versioning and
lazy conflict detection [8]. We evaluate FaulTM using spec
cpu2006 [12] benchmark suite with test data-set by executing
either 2 billion instructions or until application termination.
We evaluate FaulTM in the context of a CMP with 4 in-order
Alpha 21264 cores [1] running at 1GHz with private L1D and
L1I caches and a unified L2 cache. Each L1 cache is 64KB
with four-way set associativity, and a two-cycle hit latency.
The L2 cache is 2MB with eight-way set associativity, and
10 cycles of hit latency. All caches are write-back with a line
size of 64B. Main memory latency is 100 cycles. We use fault
injection to measure the reliability performance of FaulTM. We
inject the faults to five different structures in a core; instruction
opcodes, program counter, integer register file, special pur-
posed register file and arithmetic logic unit. Note that, in-order
cores do not have some complex structures required for out-
of-order execution such as reorder buffer or issue queue. We
inject 100 faults per structure in each application to a random
location in each structure at a random time after warming up



Fig. 5. Register File Comparison Overhead

200M instructions by performing one injection per simulation.
While we flip the chosen bit for transient fault injection, we
use stuck-at-0 and stuck-at-1 models for permanent faults. We
simulate 10M cycles after fault injection to observe the effect
of the injected fault.

B. Evaluation of FaulTM

We compare FaulTM against lockstepping in which after every
store instruction, two threads synchronize and the results of
the store are compared. Note that, validation of store values is
common in several recent redundancy-based error detection
techniques [7], [14], [18]. FaulTM compares the write-sets
which have fewer amount of entries than total number of store
instructions. In Figure 3 we present the normalized value of the
total amount of entries in write-sets according to total number
of store instructions in each application on different write-
set sizes: 16, 32 and 64 entries. We find that, on average,
total number of entries is 35% less than total number of store
instructions when write-set size is 64.

In Figure 4, we compare the performance overhead of
FaulTM (WS with 64 entries) with lockstepping including
comparison and spin overheads. We assume that each compar-
ison (e.g. comparison of a store value or an entry in either WS)
can be accomplished in one cycle on an idealized bus where
collisions are not modeled. This favors lockstepping since
lockstepping is penalized more when the latency of the bus is
higher. Spin overhead is, on average, 1 cycle for lockstepping
and 4 cycles for FaulTM according to our simulation results.
Compared with lockstepping, FaulTM reduces the performance
degradation by 2.5X for SPEC2006 benchmarks. FaulTM-sig
shows the performance degradation of FaulTM when hash-
based signatures are compared instead of the entire write-
sets. Note that, error coverage of signature comparison is not
100%. In Figure 5, we present the comparison overhead of the
entire register file in FaulTM (13%) in order to guarantee the
error-free execution since the last validation. Register value
comparison after each instruction in lockstepping would cause
extremely high overhead (not included in the evaluations here).
Note that the register file can also be included in the signature
value in FaulTM-sig.

Figure 6 presents the reliability performance of FaulTM.
According to fault injection experiments, FaulTM provides
100% error coverage for both transient and permanent faults
with the comparison of entire write-set and register file. In
case of comparing signatures instead of comparing entire
write-sets, 5 transient errors (among 155000 transient fault
injection) are not detected in FaulTM-sig (not in the graph),
thus, in extremely high reliability requiring systems, signature
usage might not be appropriate. FaulTM, also, avoids detecting
benign faults. We find that 4% of transient faults (not in the

graph) are treated as error in Fingerprintig [21] while FaulTM
does not try to recover these benign faults and it does not
cause a false positive signal since they are masked before the
end of reliTXs. Watchdog and Exception are explained
in Section II-B.

For error recovery, reliable systems require additional
checkpointing mechanism which presents checkpoint creation
and recovery overhead. Comparatively, FaulTM has a negli-
gible transaction creation and abort overhead. The average
number of instructions in reliTXs are generally less than
10K instructions which is very low compared to system-wide
checkpointing mechanisms (10M instructions) [16], [23] that
reduces the re-execution overhead of the instructions from
the beginning of the reliTX for the error recovery. Moreover,
smaller checkpoint interval is essential to support I/O opera-
tions [21].

IV. RELATED WORK

In the following sections, we cover previous work.

Error Detection: To protect processor logic from transient
faults, some studies utilize Simultaneous Multi-threading by
executing two identical threads in the same core and comparing
their results [18], [19], [24]. However, they are not suitable to
detect permanent faults. In recent work, researchers leveraged
chip multiprocessing (CMP) for error detection by pairing
cores for redundant execution and checking their results [7],
[14], [20], [26]. In lockstepping [20], [26], a classical re-
liability technique that is used by systems integrators, two
synchronized and lockstepped processors run two identical
instruction streams by receiving the same input and, comparing
the output of the processors for every store instruction. Lock-
stepping requires tightly coupled processor pairs driven by the
same clock signal which becomes an increasing burden as
device scaling continues. CRT [14] validates only the memory
values assuming that a fault is benign unless it propagates
to the memory. However, full-state comparison is essential to
guarantee the error-free execution since the last validation.
For this issue, CRTR [7] compares the results of register
instructions together with memory values which makes the
comparison overhead very high. Fingerprinting [21] strives
to compare the result of all instructions with a very low
comparison overhead by producing the signature of execution
history. However, the fault coverage of Fingerprinting is not
100% while it treats benign faults and errors equally.

FaulTM provides full state comparison (register file and
store values) with a low overhead. It also avoids the detection
of benign faults, thus minimizes false positives. In FaulTM,
detection and recovery is integrated, whereas in most other
techniques, recovery requires external mechanisms.

In order to avoid the redundancy overhead, researchers
propose symptom-based error detection schemes [13], [25],
[28], which monitor error symptoms (e.g. fatal traps, miss-
predictions) for error detection. However, their error coverage
is limited which causes higher SDC rate [6]. Shoestring [6]
partially replicates the instruction stream to reduce the SDC
rate. FaulTM is orthogonal to Shoestring that it can reduce the
comparison overhead of the replicated part if the replication is
done in the hardware.

Error Recovery: ReVive [16] and SafetyNet [23] are well-
known global checkpointing mechanisms that create system-



Fig. 6. Error Recovery Performance of FaulTM

wide checkpoints periodically. ReVive is only feasible in
coarse granularity due to its large checkpoint size. However,
I/O operations can only be supported in small checkpointing
intervals [21]. Also, large checkpoints suffer from long recov-
ery times. System-wide checkpointing schemes present several
difficulties. First, they typically implement relatively complex
synchronization mechanisms to guarantee that all structures
(e.g. cores) rollback to the same state in case of an error.
For instance, in SafetyNet, late synchronization causes several
unvalidated checkpoints to be saved in the system which leads
to an area overhead. Second, global checkpointing rollbacks
all processors during recovery which causes a loss of error-
free operations. FaulTM recovers from errors by leveraging the
abort mechanism of lazy-lazy TM which keeps the invalidated
data in the local log area of each core and writes only error-free
data to shared memory. Therefore, FaulTM ensures that error
does not propagate to shared memory and recovery is done
internally in the core. Also, it eliminates the requirement of an
additional synchronization mechanism to agree on a consistent
recovery point.

V. CONCLUSIONS AND FUTURE WORK

We introduce FaulTM, an error detection and recovery ap-
proach leveraging a lazy-lazy hardware transactional memory
(HTM) system for both transient and permanent faults. FaulTM
provides an efficient error recovery mechanism by utilizing the
local checkpointing mechanism of TM. Also, it reduces the
comparison overhead significantly by comparing the redundant
execution streams at the end of the transactions instead of
after every store instruction while avoiding error propagation
to the whole system by utilizing the isolation property of
transactions. Leveraging other HTM designs (i.e. HTMs with
eager data versioning and/or eager conflict detection) for
reliability presents other opportunities and challenges which
will be tackled in future work.

REFERENCES

[1] Alpha 21264 Microprocessor Hardware Reference Manual. Compaq
Computer Corparation, 1999.

[2] R. Anglada and A. Rubio. An Approach to Crosstalk Effect Analysis
and Avoidance Techniques in Digital CMOS VLSI circuits . Interna-
tional Journal of Electronics, 6(5):9–17, 1988.

[3] R. Baumann. Soft Errors in Advanced Computer Systems. IEEE Design
and Test of Computers, 22(3):258–266, 2005.

[4] N. L. Binkert et al. The M5 Simulator: Modeling Networked Systems.
IEEE Micro, 26:52–60, 2006.

[5] J. Chung et al. ASF: AMD64 Extension for Lock-Free Data Structures
and Transactional Memory. Micro, 0:39–50, 2010.

[6] S. Feng et al. Shoestring: Probabilistic Soft Error Reliability on the
Cheap. In Proceeding of ASPLOS, pages 385–396, 2010.

[7] M. Gomaa et al. Transient-fault Recovery for Chip Multiprocessors. In
Proceedings of ISCA, pages 98–109, 2003.

[8] L. Hammond et al. Transactional Memory Coherence and Consistency.
In Proceedings of ISCA, pages 102–113, 2004.

[9] R. Haring et al. The IBM Blue Gene/Q Compute Chip . In IEEE Micro,
pages 1–1, 2011.

[10] T. Harris, J. Larus, and R. Rajwar. Transactional Memory.
[11] T. Harris et al. Transactional memory: An overview. IEEE Micro,

27(3):8–29, 2007.
[12] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH

Computer Architecture News, 34:1–17, 2006.
[13] M. Li et al. Understanding the Propagation of Hard Errors to Software

and Implications for Resilient System Design. In Proceedings of
ASPLOS, 2008.

[14] S. S. Mukherjee et al. Detailed Design and Evaluation of Redundant
Multithreading Alternatives. In Proceedings of ISCA, pages 99–110,
2002.

[15] R. A. Oldfield et al. Modeling the Impact of Checkpoints on Next-
Generation Systems. In Proceedings of MSST, pages 30–43, 2007.

[16] M. Prvulovic et al. ReVive: Cost-Effective Architectural Support for
Rollback Recovery in Shared-Memory Multiprocessors. In Proceedings
of ISCA, pages 111–122, 2002.

[17] J. Reinders. Transactional Synchronization in Haswell, February 2012.
[18] S. K. Reinhardt et al. Transient Fault Detection via Simultaneous

Multithreading. SIGARCH Computer Architecture News, 28(2):25–36,
2000.

[19] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors. In Proceedings of FTCS, page 84, 1999.

[20] T. J. Slegel et al. IBM’s S/390 G5 Microprocessor Design. IEEE Micro,
19:12–23, 1999.

[21] J. C. Smolens et al. Fingerprinting: Bounding Soft-error Detection
Latency and Bandwidth. In ASPLOS, pages 224–234, 2004.

[22] J. C. Smolens et al. Reunion: Complexity-effective Multicore Redun-
dancy. In Proceedings of MICRO, pages 223–234, 2006.

[23] D. J. Sorin et al. SafetyNet: Improving the Availability of Shared Mem-
ory Multiprocessors with Global Checkpoint/Recovery. In Proceedings
of ISCA, pages 123–134, 2002.

[24] T. N. Vijaykumar et al. Transient-Fault Recovery Using Simultaneous
Multithreading. In Proceedings of ISCA, pages 87–98, 2002.

[25] N. J. Wang et al. ReStore: Symptom-Based Soft Error Detection in
Microprocessors. IEEE TDSC, 3:188–201, 2006.

[26] A. Wood et al. Data integrity in HP NonStop servers. In Workshop on
SELSE, 2006.

[27] G. Yalcin et al. FaulTM: Fault-Tolerance Using Hardware Transactional
Memory. In Workshop on PESPMA, 2010.

[28] G. Yalcin et al. SymptomTM: Symptom Based Error Detection and
Recovery Leveraging Hardware Transctional Memory. In Proceedings
of PACT, 2011.


