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Abstract—We propose a novel custom instruction (CI) selection tech-

nique for process variation and transistor aging aware instruction-set
architecture synthesis. For aggressive clocking, we select CIs based on
statistical static timing analysis (SSTA), which achieves efficient speedup
during target lifetime while mitigating degradation of timing yield (i.e.,
probability of satisfying the timing). Furthermore, we consider process
variation and aging on not only CIs but also basic instructions (BIs).
Even if basic functional units (BFUs), e.g., ALU, get slower due to
aging, only a few BIs with critical propagation delay may violate the
timing, whereas the other BIs running on the same BFU can still satisfy
the timing. We then introduce “customized BFUs”, which execute only
such aging-critical BIs. The customized BFUs, used as spare BFUs of
the aging-critical BIs, can extend lifetime of the system. Combining
the two approaches enables speedup as well as lifetime extension with
no or negligibly small area/power overhead. Experiments demonstrate
that our work outperforms conventional worst-case work (by an average
speedup of about 49%) and existing SSTA-based work (16x or more
lifetime extension with comparable speedup).

I. Introduction

Increasing diversity and complexity of applications make design
of embedded systems more and more time-consuming. For im-
proving design-productivity, embedded processors have been used
with application-specific extension, which is referred as Instruction-
Set Architecture (ISA) synthesis: only the critical computations are
performed on custom functional units (CFUs) using custom instruc-
tions (CIs), while the others are executed on basic functional units
(BFUs) by basic instructions (BIs) [1]. Various techniques on ISA
synthesis, such as [1], [2], [3], [4], [5], have been exploring speedup
(i.e., cycle reduction) with less area, power, etc. Currently, besides
such metrics, due to issues arising from nanoscale technologies,
improving manufacturing yield and lifetime of systems also needs
to be considered during ISA synthesis, especially for mass-produced
embedded systems.

Yield and lifetime of systems are particularly affected by process
variation and aging of transistors, respectively. The variation of
transistor parameters (e.g., channel length and gate-oxide thickness)
causes large variance in circuit delay, depending on the environment,
the input values, etc. Transistor aging, caused mainly by negative
and positive bias temperature instability (NBTI and PBTI), increases
the delay of transistors over time which can finally lead to a
system failure [6]. This is further complicated as aging is highly
dependent on the ambient/usage environments (e.g., temperature
and operating voltage) and process variation [7]. Conventionally,
a sufficient time-slack (i.e., guardband) has been given based on the
worst-case delay in order to guarantee that the systems always work
correctly during the expected lifetime. Obviously, this approach
is too conservative, especially for processors customized through
ISA synthesis, since CFUs achieving good speedup are likely to
have long worst-case propagation delay and contribute to (near-
)critical paths. An alternative approach is to adjust (i.e., reduce)
the clock frequency at runtime as the systems age [8]. However,
without considering the joint effects of process variation and aging,

clock adjustment may be also pessimistic. Unlike such conventional
approaches, various techniques utilizing stochastic approaches like
statistical statistic timing analysis (SSTA) have been studied at
architectural level (e.g., [9], [10]). For more efficient system designs
[11], such stochastic design approaches need to be adopted not
only at hardware level, but also at software level, e.g., during ISA
synthesis.

In the field of ISA synthesis, to the best of our knowledge, SSTA-
based CI selection has been studied only in [4], [5]. Considering
process variation, these methods preferentially select CIs which
bring high speedup for aggressive clocking (i.e., clock shorter than
the worst-case delay) as long as the required timing yield (i.e.,
probability to satisfy the timing) is satisfied at time zero (i.e., the
first time it is used). Because such CIs tend to contribute to (near-
)critical paths and be susceptible to aging, they may violate the
timing and lead to an early system failure. Moreover, these methods
do not deal with aging of BFUs, which may cause further shorter
lifetime of the system. So far, there is no technique available to
address both process variation and aging.

In this paper, we propose a novel CI selection technique based
on SSTA, considering the joint effects of process variation and
aging on both BFUs and CFUs. Our work selects CIs for aggressive
clocking so that speedup can be maximized while mitigating timing
yield degradation all over the target lifetime. Furthermore, we
introduce customized BFUs, which can execute only BIs with
critical propagation delay, and use them as spare BFUs. This can
effectively extend lifetime of the system with no or negligibly small
area/power overhead. The combination of our CI selection and
customized-BFU approaches provides greater speedup than conven-
tional deterministic worst-case techniques, and longer lifetime than
aging-unaware techniques (such as [4], [5]) with no or negligibly
small performance overhead.

The rest of this paper is organized as follows. First, Section II
reviews process variation and aging effects. Next, Section III gives a
motivational example, and Section IV presents our process variation
and aging-aware ISA synthesis method. Then, Section V demon-
strates the effectiveness of our method compared with existing
methods. Finally, Section VI concludes this paper.

II. Preliminaries

Process variation and transistor aging, which are interdependent,
significantly impact yield and lifetime of systems. Although aging
has been conventionally treated uniformly, it actually depends on the
environment, process variation, etc. In this section, we first briefly
review these two phenomena, and explain how we handle them in
this work.

A. BTI Model
NBTI is a source of aging which affects PMOS transistors. PBTI

is a corresponding effect on NMOS transistor which has emerged
as a major reliability concern with the introduction of high-κ metal-
gate technologies. NBTI (PBTI) in general has two phases which978-3-9815370-0-0/DATE13/ c© 2013 EDAA



are called stress and recovery. In the stress phase, when PMOS
(NMOS) transistors are negatively (positively) biased, interface traps
are generated at the interface of Si-dielectric, resulting in an increase
in the threshold voltage of transistors. In the recovery mode, when
the negative (positive) Vgs is removed, some of the generated traps
are recovered. Since all the traps cannot be recovered during the
recovery time, the transistor threshold voltage increases gradually
during its lifetime. Since NBTI and PBTI are similar effects, we
use the model introduced in [12] for both phenomena.

ΔVth−NBT I(t) =

⎛⎜⎜⎜⎜⎜⎝
√

Kv
2αTclk

1 − βm
1/2n

⎞⎟⎟⎟⎟⎟⎠
2n

(1)

where Tclk is the clock cycle, α is the duty cycle (the ratio between
the stress time and the total time), n is a fabrication process
constant and βm is the fraction parameter of the recovery. The other
parameters are described in [12].

B. Process Variation
After the circuit is fabricated, the parameters of fabricated devices

and interconnects are different from die to die and within a particular
die. The uncertainty in devices and interconnects, which is called
process variation, causes variance in the performance of circuits.
According to [13], the variation of Physical Parameters (PPs)
such as effective gate length (ΔL) from the nominal value can be
represented by the following equation:

ΔPPtotal = ΔPPd2d + ΔPPwd

ΔPPwd = ΔPPcor + ΔPPrand (2)

where ΔPPd2d represents die-to-die variation, ΔPPwd is within-
die (intra-die) variation, ΔPPcor represents the spatially-correlated
variation and ΔPPrand denotes the independent random variations.
Since process variation affects the timing of the circuits, traditional
static timing analysis has to be adopted in order to consider these
effects. SSTA is used as a method for timing analysis in the presence
of process variation.

C. Aging-aware SSTA
BTI-induced threshold voltage shift is affected by ambient/usage

environments (duty cycle, temperature, etc) as well as process
parameters (such as original threshold voltage and oxide thickness)
which vary by process variation [7].−−→

PP = [L,Vth, ...] (3)

The post-aging gate delay can be expressed as follows:

d(
−−→
PP, t) = d0(

−−→
PP) + Δd(

−−→
PP,T, α, t) (4)

where d(
−−→
PP, t) is the post-aging gate delay, d0(

−−→
PP) is the initial

gate delay after chip fabrication, and Δd(
−−→
PP,T, α, t) is the BTI-

induced delay degradation considering process variation. For the
full discussion of SSTA which is used here, the reader should refer
to [7].

III. Motivational Example
CI selection is an essential procedure in ISA synthesis. In

conventional CI selection methods, a sufficient target clock (i.e.,
worst-case clock Tw) including a guardband (e.g., 20% of the clock)
has been set at design time so that any instructions (both BIs and
CIs) can always satisfy the timing (i.e., timing yield is 1.0) during
target lifetime. Recently, SSTA-based CI selection methods [4], [5]
have been proposed for an aggressive clock, Ta, which is shorter
than Tw. In [4], CIs providing high speedup are selected amongst
ones satisfying the designer-given constraint of timing yield, and in
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Fig. 1. A motivational example

[5], based on the work [4], an additional cycle is given only to CIs
whose timing yield is less than 1.0 in order to mitigate timing yield
degradation.

Let us consider a case where for Ta, only one of three CIs (CI1,
CI2, and CI3 which have speedup of 4, 4, and 2 per execution,
and are accessed 5, 4, and 7 times, respectively1) can be selected
in [4], [5]. The delay distribution and timing yield of the CIs are
depicted in Figs. 1(a) and 1(b), respectively. In this example, under
the yield constraint of 0.95, CI1 and CI2 are selected in [4] and
[5], respectively. The speedup by these methods is summarized in
Fig. 1(c). Thanks to adoption of aggressive clocking as Ta, these
methods bring significant speedup compared with the conventional
one (adopting Tw), as shown in the left of Fig. 1(d).

However, systems designed by aging-unaware methods, such as
[4] and [5], may degrade quickly and end up failing within target
lifetime (specified as “F” in Fig. 1(c)) because these methods do not
consider that the delay distribution may transition by aging, as the
dotted lines in Fig. 1(a). The more the selected CIs are critical in
propagation delay (i.e., susceptible to aging), the shorter the lifetime
would be. Furthermore, no consideration of process variation or
aging of BFUs, even though BFUs are under stress longer and may
suffer aging more than CFUs, would cause considerable overesti-
mation of lifetime, leading to unexpectedly short lifetime. Namely,
as illustrated in Fig. 1(d), aging-unaware methods will achieve large
speedup over conventional methods at time zero, but may result in
poor lifetime.

Considering both process variation and aging, our method max-
imizes speedup such that systems can be alive (i.e., the required
timing yield can be satisfied) during target lifetime. In this example,
our method selects CI3, which has smaller speedup but satisfies the
timing yield constraint all over the target lifetime, unlike CI1 and
CI2. Our method may not maximize the speedup at time zero, but
provides much higher speedup than the conventional one, without
unexpectedly failing as aging-unaware ones. Moreover, our method
handles process variation and aging of BFUs, which can achieve
further speedup and prolong lifetime with minimum area overhead,
as will be explained in the next section.

1The total speedup of a CI is obtained by its speedup per execution
multiplied by the number of times being accessed.



IV. Process Variation and Aging Aware ISA synthesis

A. Overall Approach

We propose a novel CI selection method which considers the joint
effects of process variation and aging. For aggressive clocking, we
select CIs to maximize speedup while mitigating degradation of
timing yield during target lifetime. Unlike existing aging-unaware
methods, which adopt powerful but aging-susceptible CIs, leading
to high speedup at time zero but reduced lifetime, our method can
achieve as high speedup as existing ones while maintaining the
required timing yield all over the target lifetime.

Moreover, we present further improvement of performance and
lifetime by considering process variation and aging of BFUs (e.g.,
ALU and multiplier), which are frequently accessed and thus suffer
more aging than CFUs. Because the timing yield of BIs is different2,
we introduce an additional set of candidate CIs, “customized BFUs”,
which can execute only aging-critical BIs, i.e., those with particu-
larly longer delays than the other BIs3. Since only a small subset
of BIs is aging-critical, the area/power overhead of customized
BFUs is small. By introducing customized BFUs, the scheduler can
dynamically switch execution of such aging-critical BIs between
the original BFUs and the customized BFUs, which can mitigate
the aging and extend lifetime [14].

Combining these two approaches (i.e., process variation- and
aging-aware CI selection and customized-BFUs), we aim at pro-
viding speedup and lifetime extension at the same time.

Note that in this paper, we define violation of timing yield
constraints as a system failure. In other words, the longer the timing
yield constraint is satisfied, the longer the lifetime is.

B. Cost Function of CI Selection

Here we formulate our cost function of CI selection. Table I
summarizes notations and their definitions used in the formulation.
Parameters of each BI/CI are obtained through our framework which
will be explained in Section IV-C.

Preliminaries: The timing yield (i.e., probability to satisfy the
timing) of BIi/CIi at time t (years later) for target clock T (ns) is
given as follow, with its mean delay (μi,t) and variance (σi,t) at time
t:

yi,t(T ) =
1

2
+

1

2
er f (

T − μi,t

σi,t
√

2
) (5)

er f (z) =
2√
π

∫ z

0

e−z2

dz (6)

where Equation (6) represents the Gauss error function.

Constraints: CIis need to satisfy Constraint (7) during target
lifetime to become selectable, whereas BIis need the minimum
number (bi ≥ 0) of customized BFUi such that Constraint (8) can
be satisfied during target lifetime. For example, bi = 0 represents
no customized BFUs are necessary. If bi = 1, it is considered the
aging of the full BFUi and the added customized-BFUi will be
halved by using them interchangeably. In other words, the lifetime
can be doubled. Actually, this is a conservative prediction since
aging-aware scheduling can extend lifetime efficiently (2.3-3.9x)

2As BFUs age, only a few BIs passing through long paths may violate
the timing, whereas the other BIs can still satisfy the timing.

3It is also applicable to CFUs, but the effect may be smaller since only
one or a few similar CIs are performed on the same CFUs.

TABLE I Definition of Notations

T Target clock period
Constyield The designer-given constraint on timing yield
Constarea The designer-given constraint on area
Constpower The designer-given constraint on power
B A set of BIs
C A set of CIs
Si A sequence of assembly code by BIs

which is equivalent to the behavior of CIi
D A set of critical BIs whose timing yield may become

lower than Constyield during target lifetime
yi,t Timing yield of BFUi/CFUi at time t
ps

i,t Static (i.e., leakage) power of BFUi/CFUi per
unit at time t

pd
i,t Dynamic power of BFUi/CFUi per access at time t

pi,t Total power of BFUi/CFUi at time t
li Latency of BIi/CIi
ai Area of BFUi/CFUi
bi The minimum number of additional customized BFUi
ci 1 if CIi is selected, otherwise 0.
si Speedup by CIi (per access)
ei The number of time that CIi is executed

[15], i.e., the lifetime would become more than double. Note that the
appropriate bi can be automatically determined by Constraint (8).

yi,t(T ) ≥ constyield,CIi ∈ C,∀t (7)

yi,t/(bi+1)(T ) ≥ constyield,∀BIi ∈ B,∀t (8)

CIs also need to satisfy area and power constraints:∑
CIi

ai · ci +
∑

BI j∈D
aj · bj ≤ constarea (9)

∑
CIi

pi,t · ci ≤ constpower,∀t (10)

where the total power overhead of CFUi at time t (pi,t) can be
obtained as the summation of its static and dynamic power con-
sumption, by Equation (11). Note that as shown in Constraint (10),
employing customized BFUs does not introduce power overhead
since the scheduler dynamically switches execution of aging-critical
BIs between the original BFUs and the customized BFUs, and
inactive original/customized BFUs are power-gated. To obtain the
dynamic power overhead of CFUi, the total dynamic power of
BI j ∈ S i should be subtracted as expressed in the second term of
Equation (11).

pi,t = ps
i,t + (pd

i,t −
∑

BI j∈Si

pd
j,t) · ei,t (11)

Power consumption may be also affected by process variation and
aging, which can be handled similarly as Constraint (7) with small
extension. We assume that the designers do not mind the area and
power overhead by the introduced CFUs as long as Constraints (9)
and (10) are satisfied.

Speedup: Speedup provided by CIi is obtained as performance
improvement (i.e., latency reduction against the execution by BIs
only) per execution multiplied by the number of times being
executed.

si = (
∑

BI j∈Si

l j − li) · ei (12)

Cost function: Our objective is to maximize speedup by selecting
CIs which satisfy Constraints (7)-(10):

Max :
∑
CIi

si · ci
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C. The Overview of Our Framework

The overall flow of our framework is depicted in Fig. 2, where
rectangles and circles represent processes and inputs/outputs, re-
spectively. The framework consists of four stages: We first obtain
execution profiles of a target application and extract candidate CIs
(at CI Profiling). Then, we analyze delay distribution of each CI
under process variation and aging effects (at AA-SSTA). Based on
the profiles and delay distribution, our CI selection is performed (at
CI Selection). Finally, the speedup and timing yield of the target
application customized with CIs is evaluated (at Evaluation). The
following gives more detailed explanations about each stage. Note
that our framework is not restricted to the tools, models, and etc.
used below.

CI Profiling: First, we compile a target application to generate an
original assembly code for the target processor ( in our experiments,
MIPS processor which has a multiplier, a divider, and an ALU as
BFUs). The assembly code is simulated through SimpleScalar to
obtain instruction-level profiles (e.g., the number of accesses to each
BI), and used to build a control/data flow graph (CDFG), from which
CI candidates are extracted under constraints on inputs/outputs
(corresponding to read/write accesses to the register file) [16]. Then,
conflicting CIs (i.e., CIs which are not applicable at the same
time) are investigated and the similar CIs are classified into the
same CI template in order to prune exploration space effectively.
The potential accesses of CIs are analyzed from the profiles of
the original assembly code. Finally, the RTL descriptions of CFUs
which can perform their corresponding CIs (e.g., Verilog-HDL) are
generated.

AA-SSTA: CFUs and BFUs are both synthesized by Synopsys
Design compiler and mapped to Nangate 45nm cell library [17].
Gate-level netlists, extracted from the logic synthesis tool, are given
to a logic simulator to obtain the Signal Probabilities (SPs) and
switching activity of internal nodes (gates as well as transistors
inside each gate). Switching activity factors are used to obtain
dynamic power, and SPs of each node (the probability of being
logic ‘1’) are used to obtain effective duty cycles (impacts of the
BTI) of each transistor [18]. Besides, the extracted netlists are
placed using Cadence SoC Encounter to obtain layout information.
To estimate the dynamic and static power consumption of the
CIs, each cell of the cell library is accurately characterized by
HSPICE simulation. Next, gate-level netlists, layout information
(e.g., parasitic capacitance), and profiling information (e.g., the
number of accesses to each BI and CI) are analyzed for assessing
the CI power consumption. Afterwards, extracted floorplans of the
CIs and power profiles are given to HotSpot [19] to compute the
corresponding temperature profile of the CIs. To model the spatial

correlations of intra-die process variation, the extracted CI layouts
are partitioned into several rectangular grids where the number of
grids represents the die area. For our experiments, total process
variation is set such that 3σ/μ = 20%. Considering the temperature
profiles, layout information, duty cycle of each internal transistors,
and assuming 15% BTI-induced delay degradation in 3 years, post-
aging delay distribution of each CI is calculated by using a method
presented in Section II-C.

CI Selection: Based on the parameters unique to each CI (i.e.,
area, power, and delay distribution), CIs which can bring high
speedup while satisfying the timing yield constraint during target
lifetime are selected. Selected CIs also should satisfy area and power
constraints. CI selection is performed in a greedy manner for our
experiments4. The assembly code is customized with the selected
CIs stepwisely. Finally, minimum NOP instructions are inserted
into the generated custom assembly code for preventing hazards
if necessary.

Evaluation: The assembly code customized with the selected
CIs is evaluated in terms of performance and timing yield. Only
when necessary, we extend the target processor with the minimum
number of customized BFUs such that the system can work for
target clock and lifetime. In our experiments, we evaluate timing
yield based on the delay distribution obtained from the AA-SSTA
stage, considering the effects of dynamic instruction scheduling.
During actual processor operation, processor’s aging-monitors [20]
and sensors [21] will detect the system aging, based on which
the scheduler will dynamically switch execution of aging-critical
BIs between the original and customized BFUs, as explained in
Section IV-A. Performance is evaluated through simulation for given
input vectors. Note that switching execution between the original
and customized BFUs does not affect the performance since the
controller will be updated during idle time.

V. Experiments

A. Experimental Setup
By our framework in Fig. 2, we assessed the effectiveness of our

method for the following six benchmarks, which are often used in
the literature on ISA synthesis: adpcm, aes, chenidct5, gsm, and sha
from [22], and wavelet from [23]. CIs are extracted under constraints
of two inputs and one output. Test vectors built in each benchmark
are utilized.

In Section V-B, we evaluate speedup (i.e., performance improve-
ment over the original assembly code)6 and timing yield by the

4Sophisticated algorithms, such as [1], [2], [3], can be also used.
5chenidct is a part of JPEG in CHStone [22].
60% means that the performance is exactly the same as the execution of

the original assembly code.



following four CI selection methods:

• A traditional deterministic worst-case method
(TRADITIONAL), which is applicable only when clock
T is long enough for every BI/CI to always complete
successfully. For this, a 20% guardband was given based on
the delay distribution at time zero (i.e., 0 year). The delay
degradation of CIs was on average 19.5% and up to 21.8%.
For each benchmark, the minimum clock such that every
BI/CI can complete with timing yield of 1.0 is applied.

• An existing SSTA-based method [4] (DATE11), which selects
CIs with high speedup as long as they satisfy the timing yield
constraint. Aging of BIs/CIs or process variation of BIs are not
considered.

• Another existing SSTA-based method [5] (DATE12), which
extends DATE11 so that an additional cycle is given to CIs
whose timing yield is less than 1.0 in order to mitigate timing
yield degradation. Note that the additional cycles can be given
only at time zero (i.e., 0 year). Like DATE11, aging of BIs/CIs
or process variation of BIs are not considered.

• Our SSTA-based method (PROPOSED), which considers pro-
cess variation and aging of BIs/CIs. CIs with high speedup
amongst ones satisfying the timing yield constraint during
target lifetime are selected.

For target lifetime of three years, the above four methods are
evaluated varying the parameters as follows: area constraint (2x,
3x, 4x, and ∞x the total area of BFUs), power constraint (2x, 3x,
4x, and ∞x the total power of BFUs to execute original assembly
code consisting of only BIs), timing yield constraint (0.95, 0.90, and
0.80), and target clock (6.5ns, 7.5ns, and 8.5ns, for all of which
BIs can satisfy the timing yield constraint during target lifetime,
meaning that timing yield violation is only by CIs).

Furthermore, in Section V-C, we evaluate effects of our second
contribution for lifetime extension. One instance of customized
BFUi is allowed only when BIs running on BFUi are critical in
terms of timing yield.

B. Experimental Results: CI Selection
Results of speedup and timing yield are shown in Figs. 3 and

4, respectively, for target clock of 6.5ns7, timing yield constraint
of 0.95, and area/power constraints of ∞x. As shown in Fig. 3,
speedup by TRADITIONAL is small for every benchmark, i.e., up
to by about 26% in chenidct. Conventional CI selection techniques
adopting deterministic worst-case approaches will face the clock
wall quickly as well as TRADITIONAL. The three SSTA-based
methods (i.e., DATE11, DATE12 and PROPOSED) achieve signifi-
cant speedup compared with TRADITIONAL. Speedup by DATE11
is the highest for most benchmarks, i.e., up to by 65.8% and on
average by about 50% (slightly higher than DATE12, which gives
additional cycles to some CIs). Although PROPOSED is not the
best, the overhead against DATE11 is only 1-2%, other than for
gsm, where interestingly, PROPOSED outperforms DATE11 and
DATE12. This is because CI conflict (i.e., a CI selected already
(e.g., CI1) may prevent from selecting other CIs which are a subset
of CI1) occurred in DATE11 and DATE12, but not in PROPOSED
since CI1 was unselectable by PROPOSED due to timing yield
violation. We can see from Fig. 3 that in spite of penalty by the
constraint of timing yield during target lifetime (i.e., Constraint (7)),

7Because TRADITIONAL cannot accept such aggressive clock, its results
are for achievable minimum clock in each benchmark.
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Fig. 3. Speedup (timing yield constraint 0.95 and target clock 6.5ns)

PROPOSED can provide comparable speedup as existing SSTA-
based methods.

As illustrated in Fig. 4, while timing yield of DATE11 and
DATE12 is considerably low, that of PROPOSED is kept above
0.95 for three years: DATE11 and DATE12 violate the constraint
on average at time 0.30 year and 0.41 year, which means that
PROPOSED achieves on average 10x and 7.3x lifetime extension,
respectively. In adpcm and aes, DATE11 has particularly low timing
yield since it looks at only how much speedup each CI can bring and
selects CIs with high speedup as long as they satisfy the constraint
of timing yield only at time zero, whereas timing yield degradation
of DATE12 is slower thanks to the additional cycles given at time
zero (although it also ends up violating the constraint on average at
time 0.41 year).

Although the degree of lifetime and speedup varies depending
on the parameters of constraints, similar results as shown in Figs. 3
and 4 were also observed for different sets of parameters (their
results are omitted due to space limitation). As expected, speedup
is smaller under stricter constraints on area, power, and timing yield
for every benchmark and every method because less CIs can satisfy
the constraints. Comparing effects on speedup by target clocks
and those by timing yield constraints, the former was bigger (on
average about 35% difference between 6.5ns and 8.5ns) than the
latter (on average only 1-2% difference between 0.95 and 0.80).
More aggressive clocking lets the three SSTA-based methods bring
more speedup against TRADITIONAL although less CIs may be
selectable. In other words, in spite of having more selectable CIs,
for more relaxed target clock (such as 8.5ns), difference in speedup
between TRADITIONAL and the three SSTA-based methods is
smaller. On the contrary, in our experimental environment, ALU
is more critical than most CFUs, and CIs running on such CFUs
satisfy the timing yield constraint for the three target clocks, which
caused such small differences on speedup8.

Holistically evaluating our method (i.e., PROPOSED), it can
bring comparable speedup while providing required timing yield for
desired lifetime (i.e., about 4x-8x lifetime extension against aging-
unaware methods, at the cost of only 1-2% performance degrada-
tion). It should be noted that our method achieves such significant
benefits in spite of its straightforwardness (i.e., greediness).

C. Experimental Results: Customized BFUs

For further aggressive target clocking, even if CI selection could
be done successfully in terms of timing yield, violation of timing

8Effects of constraints and clock totally depend on the parameters of the
target device.
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Fig. 4. Timing yield (timing yield constraint 0.95 and target clock 6.5ns)
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Fig. 5. Lifetime extension by adding one customized ALU (adpcm)

yield constraints may be unavoidable even by PROPOSED due to
degradation of BFUs (e.g., ALU and multiplier). In our experi-
ments, ALU becomes critical to satisfy the timing yield constraint.
Obviously, techniques which are unaware of aging of BFUs (e.g.,
DATE11 and DATE12) have no solution to work for such aggressive
clocking. Investigating BIs running on ALU, we then found that add
was aging-critical. We thus introduced a customized ALU for add
only (i.e., add-ALU), whose cost (area and power) is only about 8%
of the full ALU. Using the full ALU and add-ALU interchangeably
(i.e., dynamic instruction scheduling), the lifetime can be further
extended.

Introducing one add-ALU could achieve 2x (more than 16x) life-
time extension9 compared with PROPOSED (DATE11/DATE1210)
at target clock of 5.8ns, 5.7ns, and 5.6ns, for timing yield constraint
of 0.95, 0.90, and 0.80, respectively. Due to space limitation, Fig. 5
depicts lifetime comparison of the four methods in Section V-B and
“PROPOSED + 1 add-ALU” in adpcm for target clock of 5.8ns,
timing yield constraint of 0.95 under ∞x area/power constraints.
Similar results were observed for the other sets of parameters and
benchmarks. There was no performance penalty compared with
PROPOSED, except for only when area/power constraints are 2x
(less than 1%). These results demonstrate that by combining our two
approaches, we can achieve speedup and further lifetime extension
at the same time, with no or negligibly small performance penalty.

VI. Conclusion

In this paper, we proposed a novel custom instruction (CI) selec-
tion technique for process variation- and aging- aware instruction-
set architecture synthesis. Our method consists of two approaches:

9As explained in Section IV-B, this is a conservative prediction.
10They violated the timing yield constraint at time 0.18 year or earlier.

(1) SSTA-based CI selection which maximizes speedup while
satisfying the timing constraint during target lifetime, and (2)
lifetime extension by extracting aging-susceptible basic instructions
(BIs) and introducing their specific functional units. Integrating
these two approaches, significant speedup and lifetime extension
can be efficiently achieved at the same time. Experimental results
demonstrated the effectiveness of our work against conventional
deterministic worst-case work (more than 49% speedup, on average)
and existing SSTA-based work (more than 16x lifetime extension
with comparable speedup).
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