
An H.264 Quad-FullHD Low-Latency Intra Video Encoder
Muhammad Usman Karim Khan, Jan Micha Borrmann, Lars Bauer, Muhammad Shafique and Jörg Henkel

Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany
{muhammad.khan, lars.bauer, muhammad.shafique, henkel}@kit.edu

Abstract—Video applications are moving from Full-HD capa-

bility (1920×1080) to even higher resolutions such as Quad-
FullHD (3840×2160). The H.264 Intra-mode can be used by em-
bedded devices to trade off the better encoding efficiency of H.264
temporal prediction (Inter-mode) against savings in area and
power as well as saving the massive computational overhead of
the sub-pixel motion estimation by using only spatial prediction
(Intra-mode). Still, the H.264 Intra-mode requires a large compu-
tational effort and imposes severe challenges when targeting
Quad-FullHD 25 fps real-time video encoding at moderate oper-
ating frequencies (we target 150 MHz) and limited area budget.
Therefore, in this work we address the strong sequential data
dependencies within H.264 Intra-mode that restrict the parallel-
ism and inhibit high resolution encoding by a) decoupling of DC
and AC transform paths, b) cycle-budget aware mode prediction
scheduling while c) being area efficient. Using our proposed tech-
niques, Quad-FullHD (3840×2160) 28 fps video encoding is
achieved at 150 MHz, making our architecture applicable for
high definition recording.

I. INTRODUCTION AND CHALLENGES
H.264 (also called AVC, MPEG-4 part 10) is an industry standard
for video coding and is jointly developed by the MPEG group of
ISO/IEC MPEG and the VCEG group of ITU-T [1]. H.264 is a
hybrid video coding standard that incorporates temporal (Inter) as
well as spatial (Intra) predictions [2]. H.264 has become popular
because of its high coding efficiency and is an integral part of
video conferencing, HDTV, blu-ray disks etc. H.264 outperforms
its predecessors by offering up to 60-times compression for com-
mon video content [3]. Therefore, it is the key encoding standard
for high definition video.

Encoding efficiency comes at the cost of high computational
complexity (especially temporal prediction modes which now can
be done at quarter-subpixel resolution [2]) and by including a big
set of compressing tools in the encoding loop [4], requiring al-
ready ~ 10 billion RISC instructions per second for encoding even
SDTV (720 480) resolution at 30 fps [5]. H.264 is a block based
standard, dividing luma frames into blocks of 16×16 pixels and
chroma blocks into blocks of 8×8 (termed as Macroblocks, MB).
For real-time encoding resolutions beyond Full-HD (1920 1080),
like Quad Full-HD (QFHD, 3840 2160), 32,400 MBs of luma
(plus 64,800 chroma MBs) need to be processed at 25 fps result-
ing in a data processing rate of 2.32 Gbps.

To cope with this tremendous amount of data processing, often
sub-optimal encoding methods are used, leading to a degradation
in encoding efficiency. Motion-compensated temporal prediction
(Inter-mode) provides the highest compression efficiency, but it
also comes at the highest computational cost. Therefore, for some
applications requiring low-latency and high quality (like pocket
cameras, digital video capturing, automotive, camcorders, movie
backups, or high-end cinema), only in-frame spatial prediction is
used due to its smaller computational workload and a smaller
power footprint. Still, H.264 Intra-mode remains competitive with
standards like Motion JPEG2000 [6].

A. CHALLENGES OF H.264 INTRA-ENCODING FOR HD
A high-level architecture of an H.264 Intra-encoder with its main
functional blocks is shown in Fig. 1. MBs of an input frame are
processed individually. They are scanned in raster scan order and
each MB passes through the encoding loop (marked as dashed red
arrow). The content of each MB is predicted based upon the pixel
values of the left, upper, and left-upper MB (Intra Prediction
Generator in Fig. 1). The residue X(r) (i.e. the pixel-wise differ-
ence of the predicted MB X´ and the actual MB X) is sent to the
Transform block. There, the residue is processed by the Discrete
Cosine Transformation (DCT), Hadamard Transformation (HT),
and Quantization (Q)) and sent to the Entropy Coding.
Additionally, the data is locally decoded, i.e. processed by Inverse
Quantization (IQ), Inverse DCT (IDCT), Inverse HT (IHT), and
Reconstruct. The reconstructed MBs are required as a base for the
next predictions. There are various data dependencies inside this
loop and those with the highest significance for encoding perfor-
mance are explained in the following.

Transform

AC

RO

Entropy
Coding

Residue
Calculator

Input Frame

DC

DCT HT

Q Q

IQ IHT

IDCT IQReconstruct

Intra Prediction
Generator

Best Mode
Selection

X(r)
X

X´

X´

r´u, c´l, p´ul

Mode Selection

2

1

Legend:

(I)DCT: (Inverse)
Discrete Cosine
Transformation

(I)HT: (inverse)
Hadamard
Transformation

(I)Q: (Inverse)
Quantization

RO: Reorder

Fig. 1: H.264 Intra Processing Loop Architecture: the current input Macro-
block is labeled X, the predicted and residue MBs are labeled X´ and X(r);

sequential data dependencies are shown by dashed arrows (and)

Dependency (a): The main performance degrading dependency
comes from the fact that before entering the encoding loop, the
current MB has to wait for the previous MBs in the loop to be
fully encoded (i.e. generation of a residue block which is then
processed by DCT, HT, and Q) and then locally decoded (IQ,
IDCT, IHT, and Reconstruct). This is depicted by the dashed
arrow labeled in Fig. 1.

Dependency (b): HT cannot start execution until the whole MB
is processed by DCT, but the Q and IQ blocks in the AC path
can start processing earlier than the HT block. The transform
block itself consists of two paths, one processing the AC part
of the spatial frequencies, the other processing the DC part.
The outputs from the DCT (first output is the DC output and
the other are called AC outputs) are fed both to HT in the DC
path and Q in the AC path as inputs. This dependency is
shown as arrow labeled in Fig. 1. Additionally, to compute
the IDCT, data from the DC path is required. Therefore, IDCT
has to stall and wait for data from the DC stage.

Dependency (c): Moreover, the entropy-coding module also
processes the DC output coefficients before the AC coeffi-
cients, but the DC coefficients are generated later. This adds to
the latency of the output generation. 978-3-9815370-0-0/DATE13/©2013 EDAA

In this work, we present a new approach for a high throughput and
area efficient Intra encoding loop, capable of handling QFHD
sequences at 28 fps operating at 150 MHz (see system setup in
Section IV). Instead of focusing on a single module of the encod-
ing loop, we propose a complete H.264 Intra-encoding system,
which offers low-latency and high-throughput.

Our novel contributions are:
1. decoupling of DC and AC spatial frequency path in the H.264

transform stage by eliminating their mutual dependency, thus
decreasing the latency of the transform stage,

2. an area-economical, simple, and efficient edge feature extractor
for helping the Intra-mode Decision mechanism,

3. advanced mechanisms for scheduling the calculation of differ-
ent prediction modes and the Sum of Absolute Differences to
process dimensions even larger than QFHD, and

4. implementation and functional verification of our contributions
on a cost-optimized mid-range Altera Arria II GX FPGA.

Because of Dependency (a), the encoding loop (reconstructed MB
going back to prediction) cannot be pipelined and this limits the
throughput of the whole encoder. For example, in a QFHD
(3840 2160) sequence there are 32,400 16 16 MBs per frame and
at 25 fps there are 810,000 MB/s that need to be encoded. At a
target frequency of 150 MHz we have a cycle budget of
150,000,000 cycles/s ⁄ 810,000 MB/s = 185 cycles/MB in the

loop. This cycle-budge also suggests that it is impossible to meet
this constraint using a SW-only solution.

Therefore, our novel contribution targets low latency hard-
ware modules in each stage of the encoding loop.

Vertical

r´u

c´ Horizontal

r´u

c´

DCc´

r´u

Planc´

r´up´

a)

l l

l l

ul

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

16

16

4

4
b)

Fig. 2: (a) I16MB modes, (b) 4 4 reordering (inside an MB) required by the

entropy coding

The encoding loop has two main computational hotspots, 1) trans-
form and 2) mode selection. The transform block consists of 2D
(I)DCT, 2D (I)HT, and (I)Q as shown in Fig. 1. Note that the
building blocks of transform work on 4 4 image data. The mode
selection block determines the best prediction mode for aiding
compression by computing the Sum of Absolute Difference (SAD),
or the Sum of Absolute Transformed Differences (SATD) of the
input MB X and the predicted MB X´. Intra prediction of luma
data can be done for one full 16 16 MB (I16MB mode) or for 16
individual 4 4 subblocks of one luma MB (I4MB mode) or for 4
individual 8×8 sublocks of the luma MB (I8MB mode). Chroma is
predicted at 8 8 MB size. The prediction X´ is generated from the
reconstructed MBs’ data. For an I16MB processing scheme, X and
X´ are both 16 16 and the values of X´ can be generated using
either Vertical (V), Horizontal (H), DC, or Planar (P) mode [2],
and their dependencies with upper reconstructed MB's last row ,ur
left reconstructed MB's last column lc and upper left reconstruct-
ed pixel ulp are marked in Fig. 2a. The prediction X´ (for the
current MB X) that gives the least SAD or SATD is selected as the

best prediction and is passed on to the residue generator stage to
produce the residue X(r) as shown in Eq. 1.

 ()
(,) (,) (,) , , 1,...,16r
i j i j i jX X X i j (1)

Additionally, because of Dependency (b), the HT and IDCT com-
putations have to stall until the coefficients from the AC path and
the DC path are available, respectively.

Therefore, our novel contribution proposes an AC/DC-path
decoupling scheme that overcomes this dependency while still
being correct.

Because of Dependency (c), reordering of the 4 4 blocks as
needed for Entropy Coding, shown in Fig. 2b, should be
incorporated in the design without adding additional latency along
the reconstruction feedback loop.

Thus, from the above discussion, it is clear that low-latency
HW design of H.264 Intra-encoder requires optimizations along
the encoding loop modules.

B. ANALYSIS OF I4MB AND I16MB
As already described in Section I, Intra Prediction for Luma can
be done at 4 4 block granularity (I4MB) or 16 16 MB granularity
(I16MB). 4 4 blocks are predicted in the order presented in
Fig. 2b. For both modes, the data dependencies from the
reconstructed previous block determine the overall encoding
performance. We have noticed that sequentially testing each of the
four I16MB prediction modes fits the tight cycle budget for
QFHD resolutions. For I4MB prediction, the aforementioned
dependencies at 4 4 block level limit the cycle budget for the
traversal of one sub-block to 11 cycles when a clock frequency of
150 MHz is used. This demands parallel mode computations and
even more effort than I16MB.

We implemented both prediction modes, did a thorough analy-
sis for high resolutions, and show power consumption results in
Table I. The average power consumption of I16MB mode predic-
tion is only 35.8% of the average power consumption of I4MB
mode prediction (i.e. using I4MB requires 2.8 more power).
Therefore, for intra-only encoders encoding high-resolution vide-
os, it becomes attractive to implement I16MB only and we focus
on I16MB in the following. However, our core techniques like the
proposed AC/DC decoupling, the likely-mode prediction, and the
prediction generator (as shown in Fig. 3 and explained in Sec-
tion III) are scalable and applicable to I4MB prediction as well.

The rest of the paper is organized as follows. Section II dis-
cusses related work and Section III presents the details of our
proposed H.264 Intra encoder architecture. An FPGA prototype of
our architecture and experimental results are presented in Sec-
tion IV. Section V concludes the paper.

TABLE I COMPARISON OF POWER AND VISUAL QUALITY TRADE-OFFS FOR
I16MB VS. I16MB WITH I4MB; POWER VALUES OBTAINED BY ALTERA
QUARTUS POWER ANALYZER WITH A REPORTED POWER ESTIMATION

CONFIDENCE BETWEEN 96% AND 98%
Test Sequence Power (16 16) [mW] Power (4 4) [mW]

Traffic (2560 1600) 178.78 504.74
People (2560 1600) 178.78 507.46

Riverbed (1920 1080) 181.39 513.77
Basketball (1920 1080) 181.39 511.71

Shields (1280 720) 183.69 510.88
Kimonol (1920 1080) 181.39 496,34
Tennis (1920 1080) 181.39 487.40

Average 180.97 505.99

II. RELATED WORK AND OUR NOVEL CONTRIBUTIONS
Encoding HD videos requires new methods and tools to adminis-
ter the necessary data processing tasks and dependencies of
H.264. For example, authors in [5] discuss an H.264 Intra encoder
chip operating at 54 MHz. However, it is only capable of handling
a 720 480 4:2:0 video at 30 fps. Additionally, the authors use a
parallel structure for computing the modes that increases silicon
area overhead. In [7], a fast mode selection preprocessor based on
spatial domain filtering is discussed. If a likely mode based on a
matching edge masks is found, other modes are skipped. If no
dominant edge can be extracted, all prediction modes are
computed. A four-stage pipeline for edge extraction increases the
latency of their design and processing one MB requires 416 cycles
at a maximum possible clock rate of 66 MHz. The design in [8]
presents a 1080p at 25 fps Intra encoder operating at 100 MHz. It
takes about 440 cycles to compute the Intra predictions and makes
the 16 16 mode computation independent of 4 4 by changing the
4 4 processing order. In [9], a QFHD at 60 fps Intra prediction
architecture is proposed that replicates hardware for high through-
put and uses out-of-order execution with the need to reorder the
data before entropy coding, which incurs large area overhead.
That architecture needs to execute at least at 310 MHz to achieve
QFHD while still using sub-optimal encoding methods. Ref. [10]
presents a low-latency 1080p at 61 fps Intra encoder architecture
operating at 150 MHz, but it computes the modes in parallel (scar-
ifying area) and takes about 300 cycles to encode one MB. In [11],
authors propose a fast method of selecting the best intra-prediction
modes, based upon the texture flow. Ref. [12] presents an open
loop (OL) method to determine the most likely mode based upon
the original image data rather than the reconstructed data.

Moreover, the above-mentioned designs do not adapt the H.264
Intra computation schedule to different cycle budgets, given by
different resolutions and frame rate requirements of the encoder
and hence are not extensible to higher resolutions. In addition,
either they have a large silicon footprint at high working frequen-
cies, or they exercise non-optimal coding strategies to save area.

III. LOW LATENCY H.264 INTRA ENCODING LOOP
The proposed architecture of the H.264 Intra Encoding loop is
depicted in Fig. 3. Compared to the conventional Intra encoding
loop (see Fig. 1), we mark our differences with a star symbol and
discuss the impact of each block separately. We only discuss the
luma path of the loop, but the discussion also applies to the chro-
ma path, as their differences are negligible. Our encoding pipeline
is fed from DDR3 memory containing the actual video input and
the stored reconstructed frame. Data is accessed in MB granularity
where one line of a 16 16 MB is transferred per cycle over a 128-
bit data bus.

Altera SDRAM
Controller

Altera NIOS II
Embedded CPU

Frame-based
control of
EncoderDDR3

SDRAM
Input

Frame

On-Chip
BRAM
Data &
Code

Context
Adaptive
Entropy
Coding

ALTERA Arria II
GX FPGA

GigE

4x4 RO

DCT

HT

Q

IQ

IHT

IHT BuffIDCT

Q

IQ

Prediction-,
SAD-, and
Residue-
Generator

AC/DC decoupling

16x16
4x44x4

4x4
Reconstruct

16x16

Likely
Mode

Prediction
& Control

Proposed Encoding Loop

Control

Xi
(r)Xi

Xi

DDR3 Read
Master

To DVI
Frame Buffer

D
D

R
3

W
rit

e
M

as
te

r

Video Input

600 Mbyte/s
Avalon MM,
600 MByte/s

Fig. 3: Proposed encoding loop; HT is decoupled from DCT; a likely mode

predictor works on the input data and presents its output to the predictor stage

A. 4 4 REORDERING AND HT LOOKAHEAD
To decrease the latency of the transform stage (Dependency (b) in
Section I.A), we propose a method to decouple the AC path from
the DC path in the transform block. As mentioned in Section I.A,
the inner blocks of the transform unit require a 4 4 block as input.
Thus, we must subdivide the residue 16 16 block into 16 4 4
blocks using the 4 4 reorder stage (RO). Our residue generator
stage provides one line of ()rX (16 pixels in 1 cycle, ith line of the
MB given by ()r

iX). Whenever four ()r
iX are accumulated in the

input registers of the 4 4 RO stage, the RO generates four 4 4
blocks and pushes them to the input FIFO of the 2D-DCT stage.
As mentioned in Section I.A, HT cannot commence until all 4 4
blocks are processed by the DCT. However, by simplifying the
DCT formula (the DCT used by H.264 is not an actual discrete
cosine transform but a derived one with similar characteris-
tics [2]), we observe that the nth output DC value (which is the nth
HT input value n

inHT) obtained from the DCT by processing the
nth 4 4 residue block ()r nX can be calculated by Eq. 2.

4 4

()
,

1 1
, 1,...,16n r n

in i j
i j

HT X n (2)

M

R

M

R

M

R

M

R

Counter Address
Counter

CLK

MB Residue line Xi
(r)

HT look-
ahead
buffer

HT n
Intermediate

registers
in

Fig. 4: HT Lookahead buffer filler responsible for HT precomputations

That shows that n
inHT can be generated by adding all the entries in

the 4 4 block. Thus, we generate the DC outputs at the RO stage
instead of the DCT stage, effectively decoupling DCT from HT.
This process is shown in Fig. 4. A residue line can add to the cur-
rent accumulators (shown as registers R) of the look-ahead HT
memory or it can trigger a new DC coefficient generation, con-
trolled by the counter administering the MUXes M.

The entropy coding requires the arrival of 4 4 blocks in a
Z-fashion, as shown in Fig. 2b. Our RO unit generates the 4 4
blocks for the 2D-DCT unit as required by the entropy coding on
the fly, eliminating the need for an extra RO unit in front of entro-
py coding, further reducing the latency of the whole encoder (ad-
dressing Dependency (c) from Section I.A).

B. MODE DECISION
The Mode Decision unit has to select one mode out of the four
available modes (i.e. V, H, DC, and P). It can apply full search to
select the best mode (i.e. the best X´) using either SATD or just
SAD between X and X´. The Best Mode Decision is rather slow if
the generation of X´ and the cost calculation for every mode is
computed sequentially using one hardware unit. On the other
extreme, the parallel implementation of all four modes would
demand a significant amount of hardware. Therefore, we propose
that only 16 adders/subtractors need to be used and thus, SAD of a

full luma MB can be generated in 16 cycles. The V mode can start
executing immediately for the current MB because ur is always
available (except the top row of the image that does not have a V
mode) in the reconstruct buffers as the scanning order of the MBs
is raster scan. This is also useful for DC and P mode where some
computations depend upon ur . However, the H, DC, and P modes
have to wait until all pixels in lc are available. A full-
reconstructed 16 16 MB is available from the reconstruction
block (generating one reconstructed MB line) after 20 cycles.
Hence, the V mode of MB Xn can be computed in parallel to Xn-1
in the encoding loop, because it does not depend upon lc . There-
fore, implementing all SAD units in parallel does not result in
proportional performance gain.

Fig. 5 shows our Mode Decision block. FIFOXi contains X and
this data is then written to a shared on-chip memory that stores
line-by-line. The pipelined Edge Detector (discussed in Sec-
tion III.C) unit predicts the order of modes to test by finding the
most-dominant edge for X. Using this order, predictions X´ are
generated by the prediction generator (utilizing ur , lc , and ulp)
and the residual data ()rX is evaluated by calculating the SAD
and stored in the same on-chip buffer as X at distinct address
space. The residue calculator generates ()r

iX and passes it to both
the SAD unit and the residue memory block. After all residues are
stored into this memory, the residue resulting in the lowest SAD
value is written to the 4 4 RO stage. Note that if the amount of
cycles needed for encoding does not comply to the resolution and
framerate requirements, our SAD unit can be configured to use the
down-sampled version of the current MB for residual calculation,
where the down-sampling factor denoted by ds means that every
ds line of X is used for the SAD computation. When ds > 1, then
the number of cycles for one SAD computation decreases. For
example, for one luma MB with ds = 2, it takes 8 cycles for the
SAD computation rather than 16 with ds = 1. However, if ds is
larger than 1, then ()rX is also down-sampled and thus it must be
updated with the full residue after final mode selection.

Residue

Prediction Generator

X
X(1), X(2), X(3), X(4)

SAD
Mode

Decision
& Ctrl

X row-by-row

FIFO
Xi

(r) to 4x4 RO

Rec. input
r´u, c´l, p´ul

Xi
(r)

Xi

()

Edge Detector
Dom. edge

Addr.

Xi

Xi

X´i

Fig. 5: Mode Decision unit for Intra 16 16

C. EDGE BASED MODE PREDICTION
If the encoding loop cycle latency does not comply with the allot-
ted budget, it becomes necessary to sacrifice some encoding effi-
ciency to meet the performance goals. As the transform loop is
essential to the encoding process, usually less cycles of the overall
budget are available to the Mode Decision block. Unlikely predic-
tions are not selected as candidates for residue generation by using
a preprocessing stage. This procedure is not required for parallel
SAD implementations but it is useful for a sequential mode decid-
er. Various algorithms are proposed in literature for mode predic-
tion and elimination of unlikely modes [7, 11] where texture-
based edge extraction information is used to determine the proba-
ble modes. Once the reconstructed data is available, the most

suitable modes are applied first and the other modes are either
delayed or even skipped. However, an edge extraction procedures
for a 16 16 block will require 256 iterations (requiring a tan-1
function and a divider) plus dominant mode search cycles. There-
fore, it cannot be embedded as a stage in the encoding loop or
parallel to the encoding loop for QFHD sequences (encoding loop
must finish within 182 cycles for 150 MHz at 25 fps). It can, how-
ever, be implemented as a separate pipeline stage outside the en-
coding loop. This introduces latency and limits the throughput of
the encoding process. In addition, the area overhead might be-
come too large if parallel edge extractors are employed. Moreo-
ver, the edge-threshold is decided at design time but it is not ap-
plicable to every video scene. In contrast to this approach, we
propose a lightweight and efficient mode prediction process that
uses a modified version of edge extraction procedures, but can
still extract the dominant edge information from the input MB and
does not require an edge-threshold, which would have to be
adapted to the scene conditions.

V H

DC DC

1

4

2

3

a

b c5s 6

d
Fig. 6: Our strongest edge detection approach

For the current MB Xn, the proposed method can run in parallel
with the residue calculator and transform stage and can generate
the likely modes before the reconstructed previous MB Xn-1 is
available for the prediction generation stage. The crux of the
method involves the estimation of edge pixels at the borders of the
MBs by computing a sequential running-difference rd. This means
that we use only one subtractor and one ABS (absolute) unit for
both the top and bottom borders, and one subtractor and one ABS
unit each for the left and right borders to detect the dominant edge
direction. For example, at the vertical border b or c of the MB in
Fig. 6, we compute rdi as shown in Eq. 3.

 , 1, , 1,...,15, {1, 16}i i j i jrd X X i j (3)

The pixel location i where rdi is maximum is declared as the point
where the edge passed. Let Eb=i be the location of the edge pass-
ing through b at i, generating the maximum rdi given by rdb. Simi-
larly, we find edge E and running-difference rd at each border and
declare the edge passing the two borders with maximum rd. We
come up with six distinct possibilities, as shown in Fig. 6 where
only one edge out of the six can occur. Using this edge detection
approach, we computed the probabilities of modes for every line
for various HD sequences and we devise Algorithm 1 for selecting
the precedence order m of prediction generation. When the differ-
ence between all rdi are less than some threshold (we keep it at
constant 5 as we could not observe dependencies on the input
data), we conclude that there was no edge and hence the algorithm
detects Line0, or no line. Note that the hardware works on a single
line of input, i.e. Xi. In addition, in our Algorithm 1, the P mode is
never selected first and intermediate values for P can be generated
in parallel to the other modes preceding it, therefore, P mode pre-
diction/residue computations take the same amount of cycles as
the other modes. We define Depth D of the prediction as the num-
ber of allowable SAD computations. The value of D can be altered
to compute SADs for the most likely modes, in order to meet the
cycle budget of the encoding loop. With D = 1, there is no need of
SAD computations and the most probable mode is used to gener-

ate prediction and its residue is forwarded directly to the transform
stage. For 1 < D ≤ 4, we start with the most probable mode and
compute SADs.

IV. PROTOTYPE AND EXPERIMENTAL RESULTS

Our Intra encoder was developed using a Matlab/C and Modelsim
co-simulation framework and it was prototyped on an Altera
DK-DEV-2AGX260N FPGA Development Kit containing a cost-
effective Arria II GX EP2AGX260 FPGA. For functional verifica-
tion, we feed video data from an SD camera to our HD pipeline
and the output bit-stream (generated by CAVLC [1]) is passed to
the output node as AVB packets [13] via Gigabit Ethernet. The
camera is connected to the FPGA prototyping board as shown in
Fig. 7. The whole encoder uses a single clock domain of 150
MHz, the DDR3 SDRAM is clocked at 300 MHz. All hardware
blocks are written in VHDL. An Altera NIOS-II embedded CPU
is used for frame-by-frame control signaling and for future exten-
sions of the prototype.

The total time taken by the transform loop is 56 cycles. Each X´
generation requires 17 cycles, including the P prediction mode.
The area usage and maximum frequency of the modules of our
encoding loop implementation are given in Table III. The M9K
embedded SRAM block memories are used as FIFOs to connect
the encoding stages and the total amount of area of the encoding
loop also includes these FIFOs.

For evaluating the encoding quality, we present a plot of Peak
Signal to Noise Ratio (PSNR) in decibels (dB) against the Bitrate
at depth D = 1 for various sequences shown in Fig. 8. These
curves also suggest that the likely mode predictions PSNR curve
matches the full search Intra mode (also called Closed Loop (CL))
selection process closely. As a comparison to the likely mode
selection procedure presented in this paper, the Open Loop (OL)
algorithm [12] PSNR curve for D = 1 is also plotted and is outper-
formed by our proposed scheme. The percentage change in PSNR
and bitrate with different encoder configurations is given in
Table II. Comparison of the proposed scheme with state-of-the-art
Intra encoders is given in Table IV.

TABLE II AVERAGE PSNR AND MBPS CHANGES IN PERCENTAGE FOR VARIOUS CONFIGURATIONS OF THE PROPOSED ENCODER VS.
OPEN LOOP (OL) [12]; EACH VALUE REPRESENTS THE AVERAGE RESULTS FOR QP SWEEPS FROM 18 TO 32 (STEP SIZE = 2)

 Average PSNR [%] (QP 18...32 average, step size = 2) Average Mbps [%] (QP 18…32 average, step size = 2)

Sequence ds = 2 D = 3 D = 2 D = 1 OL = 1 ds = 2 D = 3 D = 2 D = 1 OL = 1
Traffic (2560 1600) -0.002 -0.005 -0.002 0.06 -0.96 0.15 0.18 0.82 2.2 12.74
People (2560 1600) 0.0002 -0.002 0.01 0.12 0.005 0.1 0.05 0.65 0.73 4.6

Riverbed (1920 1080) -0.002 0.002 0.004 -0.016 -0.39 0.07 0.1 1.01 3.82 8.29
Basketball (1920 1080) 0.002 0.002 -1.01 -1.02 -0.19 0.36 0.37 1.48 4.2 15.76

Shields (1280 720) -0.0012 0.0009 0.0041 0.012 -0.134 0.204 0.026 0.25 2.31 7.58
Kimonol (1920 1080) -0.004 -0.004 -0.009 -0.003 -0.57 0.11 0.11 1.1 3.4 14.13
Tennis (1920 1080) -0.004 0.0003 -0.028 -0.075 -0.503 0.303 0.92 3.84 9.45 20.22

input: Current MB X , size s
output: Dominant modes m
1. , w wd E ← EdgeFeature , , , , X w a b c d
2. Lineout ← DominantLine , w wd E
3. switch Lineout do // Note: there is an implicit ‘break’ after each case
4. case Line0
5. m ← (DC, P, H, V) // No edges found
6. case Line1
7. if / 2a bE E s then m ← (DC, H, P, V)
8. elseif a bE E then m ← (DC, P, H, V)
9. elseif / 2b aE E s then m ← (DC, P, V, H)
10. else m ← (DC, V, P, H)
11. case Line2
12. if / 2a cE E s then m ← (H, DC, P, V)
13. elseif a cE E then m ← (DC, H, P, V)
14. elseif / 2c aE E s then m ← (DC, P, H, V)
15. else m ← (DC, P, V, H)
16. case Line3
17. if / 2b dE E s then m ← (V, DC, P, H)
18. elseif b dE E then m ← (DC, V, P, H)
19. elseif / 4b dE E s then m ← (DC, P, V, H)
20. else m ← (DC, P, H, V)
21. case Line4
22. if 3 / 4c dE E s then m ← (DC, V, P, H)
23. elseif c dE E then m ← (DC, P, V, H)
24. elseif 3 / 4d cE E s then m ← (DC, P, V, H)
25. else m ← (DC, H, P, V)
26. case Line5
27. m ← (V, DC, P, H)
28. case Line6
29. m ← (H, DC, P, V)

Algorithm 1: Edge based likely mode selection

TABLE III SYNTHESIS RESULTS FOR OUR I16MB ENCODING LOOP; NOTE THAT
THE TOTAL AREA (LAST ROW) EXCEED THE SUM OF THE COMPONENTS, BECAUSE

THERE IS FURTHER GLUE LOGIC BETWEEN THE COMPONENTS (E.G. FIFOS)
Module MHz ALUT Regs Memory Size [Kbit]

4 4 RO+HT 321.34 438 1,604 0
Transform 167.87 7,901 3,958 0
Mode Pred. 171.14 1,426 747 256

Edge Detector 385.8 283 525 0
Reconstruct 475.74 460 969 0

Total N/A 10,583 8,088 562

TABLE IV COMPARING THE PROPOSED ENCODER WITH STATE OF THE ART
Encoder MHz Resolution FPS Modes

[5] 54 720 480 31 Parallel
[7] 62.21 1920 1080 30 Parallel

[14] 140 1920 1080 30 Sequential
[8] 100 1920 1080 25 Parallel

[10] 150 1920 1080 61 Parallel
Our proposed architecture 150 3840 2160 28 Sequential

Fig. 7: Prototype implementation on an Altera Arria II GX FPGA

36

38

40

42

44

30 50 70 90 110 130 150 170 190 210

PS
N

R
 [d

B
]

Bitrate [Mbps]

Closed Loop
Open Loop, D=1
Proposed, D=1

36

38

40

42

44

30 40 50 60 70 80 90 100 110

PS
N

R
 [d

B
]

Bitrate [Mbps]

Closed Loop
Open Loop, D=1
Proposed, D=1

36

38

40

42

44

60 80 100 120 140 160 180 200 220 240
PS

N
R

 [d
B

]

Bitrate [Mbps]

Closed Loop
Open Loop, D=1
Proposed, D=1

36

38

40

42

44

60 80 100 120 140 160 180 200 220 240

PS
N

R
 [d

B
]

Bitrate [Mbps]

Closed Loop
Open Loop, D=1
Proposed, D=1

Traffic People

Riverbed Basketball

Fig. 8: PSNR vs. Bitrate plot for proposed and open loop D=1; each value
represents the average results for QP sweeps from 18 to 32 (step size = 2)

0 5 10 15 20 25 30 35 40 45

Tennis
2560x1600

Kimonol
2560x1600

Shields
1920x1080
Basketball
1920x1080

Riverbed
1280x720
People

1920x1080
Traffic

1920x1080

H=1

H=2

H=3

H=4

Fig. 9: Hit rates in percent (avg. over QPs 18...32, step size=2) for various

sequences; H: priority of full search within mode schedule

In contrast to the others approaches, our proposed encoder can be
adjusted to balance the workload and encoding methods. Moreo-
ver, hardware is saved by reusing the same structure for SAD
computations of all the four modes and by realizing only one DCT
folded butterfly [15] instead of 16 parallel DCTs. As compared to
[9], our approach only uses one prediction unit (instead of two
parallel units) at 150 MHz instead of 310 MHz. However, our
approach can also be extended in a similar fashion and is more
flexible because the parameters ds and D are controllable. In order
to determine the total number of MBs mbtot that can be processed
by the encoder, given the total cycles allocated per MB cmb in the
loop clocked at fs MHz with a target FPS of fps, we calculate mbtot
as shown in Eq. 4. Using mbtot, we can calculate the maximum
image dimensions for given dimension ratios. In Table V we show
the maximum sustainable picture dimensions at 16:9 for different
encoder configurations. We use fs of 150 MHz at 25fps. As seen,
the maximum dimensions supporting all 16 16 modes at 25 fps
with no row down-sampling is 4068 2288. In Fig. 9, we report the
average hit-rate of the proposed likely mode selection algorithm
per frame for various sequences. H is defined as the mode priority
of the full search mode in the ordered likely candidates m generat-
ed by our Algorithm 1 and H = 4 is the worst misprediction.

 610s
tot

ps mb

fmb
f c

 (4)

V. CONCLUSION
A novel area-efficient design of likely Intra mode prediction based
on the edge image information of input MB is presented. The
proposed design is capable of encoding QFHD at 28 fps sequences
at 150 MHz. By addressing the H.264 Intra-prediction standard-
inherent data dependencies, we present an I16MB encoding loop
for encoding high definition videos, while still being area effi-
cient. We propose a Mode Decision algorithm, which yields com-
parable results to existing work at much smaller area footprint. By
decoupling the DC path from the AC path, we reduce the latency
of the transform stage and present a static mode-decision schedule
together with a very simple edge detector to allow even higher
resolutions by mode skipping. Only one DCT/IDCT block is used.
The SAD computation unit uses only one 16-adder/subtractor unit
and the mode selection procedure is sequential, thus saving area.

ACKNOWLEDGMENT
This work was partly funded by BMWI as a ZIM project. We
want to thank Marcus Eggenberger for his help in implementation.

REFERENCES
[1] ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC),

“Advanced video coding for generic audiovisual services”, Tech. Rep.,
2005.

[2] T. Wiegand et al., “Overview of the H.264/AVC video coding
standard”, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 560–576, 2003.

[3] J. Golston, “Comparing media codecs for video content”, Embedded
Systems Conference, Texas Instruments, 2006.

[4] J. Ostermann et al., “Video coding with H.264/AVC: tools, perfor-
mance, and complexity”, IEEE Circuits and Systems Magazine,
vol. 4, no. 1, pp. 7–28, 2004.

[5] Y.-W. Huang et al., “Analysis, fast algorithm, and VLSI architecture
design for H.264/AVC intra frame coder”, IEEE Trans. on Circuits
and Systems for Video Techn., vol. 15, no. 3, pp. 378–401, 2005.

[6] D. Marpe et al., “Performance evaluation of Motion-JPEG2000 in
comparison with H.264/AVC operated in pure intra coding mode”,
in Wavelet Applications in Industrial Processing, vol. 5266, 2004,
pp. 129–137.

[7] J.-C. Wang et al., “A fast mode decision algorithm and its VLSI
design for H.264/AVC intra-prediction”, IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 17, no. 10, pp. 1414–
1422, 2007.

[8] M. Roszkowski and G. Pastuszak, “Intra prediction hardware module
for high-profile H.264/AVC encoder”, in Signal Processing Algor.,
Architectures, Arrangements, and Appl. Conf., 2010, pp. 62–67.

[9] G. He et al., “Intra prediction architecture for H.264/AVC QFHD
encoder”, in Picture Coding Symposium, 2010, pp. 450–453.

[10] C. Diniz et al., “A high throughput H.264/AVC intra-frame encoding
loop architecture for HD1080p”, in IEEE International Symposium
on Circuits and Systems (ISCAS), 2011, pp. 579–582.

[11] F. Pan et al., “Fast mode decision algorithm for intraprediction in
H.264/AVC video coding”, IEEE Trans. on Circuits and Systems for
Video Technology, vol. 15, no. 7, pp. 813––822, 2005.

[12] T. A. da Fonseca, Y. Liu, and R. L. de Queiroz, “Open-loop predic-
tion in H.264/AVC for high definition sequences”, in Simpósio
Brasileiro de Telecomunicações, 2007.

[13] A. K. Bartky, “Draft AVBTP over IEEE 802.3AVB stream data
format”, http://grouper.ieee.org/, 2007, version 0.02.

[14] Y.-k. Lin et al., “A 140-MHz 94 K gates HD1080p 30-frames/s
Intra-only profile H.264 encoder”, IEEE Transactions on Circuits
and Systems, vol. 19, no. 3, pp. 432–436, 2009.

[15] H. S. Malvar et al., “Low-complexity transform and quantization in
H.264/AVC”, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 598–603, 2003.

TABLE V DIMENSIONS SUPPORTED BY THE PROPOSED ENCODER FOR 25 FPS
OPERATING AT 150 MHZ

 D = 1 D = 2 D = 3 D = 4
ds = 1 4894 2752 4564 2568 4294 2416 4068 2288
ds = 2 4894 2752 4564 2568 4416 2484 4280 2408

