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Abstract—Video applications are moving from Full-HD capa-

bility (1920×1080) to even higher resolutions such as Quad-
FullHD (3840×2160). The H.264 Intra-mode can be used by em-
bedded devices to trade off the better encoding efficiency of H.264 
temporal prediction (Inter-mode) against savings in area and 
power as well as saving the massive computational overhead of 
the sub-pixel motion estimation by using only spatial prediction 
(Intra-mode). Still, the H.264 Intra-mode requires a large compu-
tational effort and imposes severe challenges when targeting 
Quad-FullHD 25 fps real-time video encoding at moderate oper-
ating frequencies (we target 150 MHz) and limited area budget. 
Therefore, in this work we address the strong sequential data 
dependencies within H.264 Intra-mode that restrict the parallel-
ism and inhibit high resolution encoding by a) decoupling of DC 
and AC transform paths, b) cycle-budget aware mode prediction 
scheduling while c) being area efficient. Using our proposed tech-
niques, Quad-FullHD (3840×2160) 28 fps video encoding is 
achieved at 150 MHz, making our architecture applicable for 
high definition recording. 

I. INTRODUCTION AND CHALLENGES 
H.264 (also called AVC, MPEG-4 part 10) is an industry standard 
for video coding and is jointly developed by the MPEG group of 
ISO/IEC MPEG and the VCEG group of ITU-T [1]. H.264 is a 
hybrid video coding standard that incorporates temporal (Inter) as 
well as spatial (Intra) predictions [2]. H.264 has become popular
because of its high coding efficiency and is an integral part of 
video conferencing, HDTV, blu-ray disks etc. H.264 outperforms 
its predecessors by offering up to 60-times compression for com-
mon video content [3]. Therefore, it is the key encoding standard 
for high definition video. 

Encoding efficiency comes at the cost of high computational 
complexity (especially temporal prediction modes which now can 
be done at quarter-subpixel resolution [2]) and by including a big 
set of compressing tools in the encoding loop [4], requiring al-
ready ~ 10 billion RISC instructions per second for encoding even 
SDTV (720 480) resolution at 30 fps [5]. H.264 is a block based 
standard, dividing luma frames into blocks of 16×16 pixels and 
chroma blocks into blocks of 8×8 (termed as Macroblocks, MB). 
For real-time encoding resolutions beyond Full-HD (1920 1080), 
like Quad Full-HD (QFHD, 3840 2160), 32,400 MBs of luma 
(plus 64,800 chroma MBs) need to be processed at 25 fps result-
ing in a data processing rate of 2.32 Gbps. 

To cope with this tremendous amount of data processing, often 
sub-optimal encoding methods are used, leading to a degradation 
in encoding efficiency. Motion-compensated temporal prediction 
(Inter-mode) provides the highest compression efficiency, but it 
also comes at the highest computational cost. Therefore, for some 
applications requiring low-latency and high quality (like pocket 
cameras, digital video capturing, automotive, camcorders, movie 
backups, or high-end cinema), only in-frame spatial prediction is 
used due to its smaller computational workload and a smaller 
power footprint. Still, H.264 Intra-mode remains competitive with 
standards like Motion JPEG2000 [6]. 

A. CHALLENGES OF H.264 INTRA-ENCODING FOR HD 
A high-level architecture of an H.264 Intra-encoder with its main 
functional blocks is shown in Fig. 1. MBs of an input frame are 
processed individually. They are scanned in raster scan order and 
each MB passes through the encoding loop (marked as dashed red 
arrow). The content of each MB is predicted based upon the pixel 
values of the left, upper, and left-upper MB (Intra Prediction 
Generator in Fig. 1). The residue X(r) (i.e. the pixel-wise differ-
ence of the predicted MB X´ and the actual MB X) is sent to the 
Transform block. There, the residue is processed by the Discrete 
Cosine Transformation (DCT), Hadamard Transformation (HT), 
and Quantization (Q)) and sent to the Entropy Coding. 
Additionally, the data is locally decoded, i.e. processed by Inverse 
Quantization (IQ), Inverse DCT (IDCT), Inverse HT (IHT), and 
Reconstruct. The reconstructed MBs are required as a base for the 
next predictions. There are various data dependencies inside this 
loop and those with the highest significance for encoding perfor-
mance are explained in the following. 
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Fig. 1: H.264 Intra Processing Loop Architecture: the current input Macro-
block is labeled X, the predicted and residue MBs are labeled X´ and X(r); 

sequential data dependencies are shown by dashed arrows (  and ) 

Dependency (a): The main performance degrading dependency 
comes from the fact that before entering the encoding loop, the 
current MB has to wait for the previous MBs in the loop to be 
fully encoded (i.e. generation of a residue block which is then 
processed by DCT, HT, and Q) and then locally decoded (IQ, 
IDCT, IHT, and Reconstruct). This is depicted by the dashed 
arrow labeled  in Fig. 1. 

Dependency (b): HT cannot start execution until the whole MB 
is processed by DCT, but the Q and IQ blocks in the AC path 
can start processing earlier than the HT block. The transform 
block itself consists of two paths, one processing the AC part 
of the spatial frequencies, the other processing the DC part. 
The outputs from the DCT (first output is the DC output and 
the other are called AC outputs) are fed both to HT in the DC 
path and Q in the AC path as inputs. This dependency is 
shown as arrow labeled  in Fig. 1. Additionally, to compute 
the IDCT, data from the DC path is required. Therefore, IDCT 
has to stall and wait for data from the DC stage. 

Dependency (c): Moreover, the entropy-coding module also 
processes the DC output coefficients before the AC coeffi-
cients, but the DC coefficients are generated later. This adds to 
the latency of the output generation. 978-3-9815370-0-0/DATE13/©2013 EDAA



In this work, we present a new approach for a high throughput and 
area efficient Intra encoding loop, capable of handling QFHD 
sequences at 28 fps operating at 150 MHz (see system setup in 
Section IV). Instead of focusing on a single module of the encod-
ing loop, we propose a complete H.264 Intra-encoding system, 
which offers low-latency and high-throughput. 

Our novel contributions are: 
1. decoupling of DC and AC spatial frequency path in the H.264 

transform stage by eliminating their mutual dependency, thus 
decreasing the latency of the transform stage, 

2. an area-economical, simple, and efficient edge feature extractor 
for helping the Intra-mode Decision mechanism, 

3. advanced mechanisms for scheduling the calculation of differ-
ent prediction modes and the Sum of Absolute Differences to 
process dimensions even larger than QFHD, and 

4. implementation and functional verification of our contributions 
on a cost-optimized mid-range Altera Arria II GX FPGA. 

Because of Dependency (a), the encoding loop (reconstructed MB 
going back to prediction) cannot be pipelined and this limits the 
throughput of the whole encoder. For example, in a QFHD 
(3840 2160) sequence there are 32,400 16 16 MBs per frame and 
at 25 fps there are 810,000 MB/s that need to be encoded. At a 
target frequency of 150 MHz we have a cycle budget of 
150,000,000 cycles/s ⁄ 810,000 MB/s  = 185 cycles/MB in the 

loop. This cycle-budge also suggests that it is impossible to meet 
this constraint using a SW-only solution. 

Therefore, our novel contribution targets low latency hard-
ware modules in each stage of the encoding loop. 
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Fig. 2: (a) I16MB modes, (b) 4 4 reordering (inside an MB) required by the 

entropy coding 

The encoding loop has two main computational hotspots, 1) trans-
form and 2) mode selection. The transform block consists of 2D 
(I)DCT, 2D (I)HT, and (I)Q as shown in Fig. 1. Note that the 
building blocks of transform work on 4 4 image data. The mode 
selection block determines the best prediction mode for aiding 
compression by computing the Sum of Absolute Difference (SAD), 
or the Sum of Absolute Transformed Differences (SATD) of the 
input MB X and the predicted MB X´. Intra prediction of luma 
data can be done for one full 16 16 MB (I16MB mode) or for 16 
individual 4 4 subblocks of one luma MB (I4MB mode) or for 4 
individual 8×8 sublocks of the luma MB (I8MB mode). Chroma is 
predicted at 8 8 MB size. The prediction X´ is generated from the 
reconstructed MBs’ data. For an I16MB processing scheme, X and 
X´ are both 16 16 and the values of X´ can be generated using 
either Vertical (V), Horizontal (H), DC, or Planar (P) mode [2], 
and their dependencies with upper reconstructed MB's last row ,ur  
left reconstructed MB's last column lc  and upper left reconstruct-
ed pixel ulp  are marked in Fig. 2a. The prediction X´ (for the 
current MB X) that gives the least SAD or SATD is selected as the 

best prediction and is passed on to the residue generator stage to 
produce the residue X(r) as shown in Eq. 1. 

 ( )
( , ) ( , ) ( , ) ,  , 1,...,16r
i j i j i jX X X i j  (1) 

Additionally, because of Dependency (b), the HT and IDCT com-
putations have to stall until the coefficients from the AC path and 
the DC path are available, respectively. 

Therefore, our novel contribution proposes an AC/DC-path 
decoupling scheme that overcomes this dependency while still 
being correct. 

Because of Dependency (c), reordering of the 4 4 blocks as 
needed for Entropy Coding, shown in Fig. 2b, should be 
incorporated in the design without adding additional latency along 
the reconstruction feedback loop. 

Thus, from the above discussion, it is clear that low-latency 
HW design of H.264 Intra-encoder requires optimizations along 
the encoding loop modules. 

B. ANALYSIS OF I4MB AND I16MB 
As already described in Section I, Intra Prediction for Luma can 
be done at 4 4 block granularity (I4MB) or 16 16 MB granularity 
(I16MB). 4 4 blocks are predicted in the order presented in 
Fig. 2b. For both modes, the data dependencies from the 
reconstructed previous block determine the overall encoding 
performance. We have noticed that sequentially testing each of the 
four I16MB prediction modes fits the tight cycle budget for 
QFHD resolutions. For I4MB prediction, the aforementioned 
dependencies at 4 4 block level limit the cycle budget for the 
traversal of one sub-block to 11 cycles when a clock frequency of 
150 MHz is used. This demands parallel mode computations and 
even more effort than I16MB. 

We implemented both prediction modes, did a thorough analy-
sis for high resolutions, and show power consumption results in 
Table I. The average power consumption of I16MB mode predic-
tion is only 35.8% of the average power consumption of I4MB 
mode prediction (i.e. using I4MB requires 2.8  more power). 
Therefore, for intra-only encoders encoding high-resolution vide-
os, it becomes attractive to implement I16MB only and we focus 
on I16MB in the following. However, our core techniques like the 
proposed AC/DC decoupling, the likely-mode prediction, and the 
prediction generator (as shown in Fig. 3 and explained in Sec-
tion III) are scalable and applicable to I4MB prediction as well. 

The rest of the paper is organized as follows. Section II dis-
cusses related work and Section III presents the details of our 
proposed H.264 Intra encoder architecture. An FPGA prototype of 
our architecture and experimental results are presented in Sec-
tion IV. Section V concludes the paper. 

TABLE I COMPARISON OF POWER AND VISUAL QUALITY TRADE-OFFS FOR 
I16MB VS. I16MB WITH I4MB; POWER VALUES OBTAINED BY ALTERA 
QUARTUS POWER ANALYZER WITH A REPORTED POWER ESTIMATION 

CONFIDENCE BETWEEN 96% AND 98% 
Test Sequence Power (16 16) [mW] Power (4 4) [mW] 

Traffic (2560 1600) 178.78 504.74 
People (2560 1600) 178.78 507.46 

Riverbed (1920 1080) 181.39 513.77 
Basketball (1920 1080) 181.39 511.71 

Shields (1280 720) 183.69 510.88 
Kimonol (1920 1080) 181.39 496,34 
Tennis (1920 1080) 181.39 487.40 

Average 180.97 505.99 
 



II. RELATED WORK AND OUR NOVEL CONTRIBUTIONS 
Encoding HD videos requires new methods and tools to adminis-
ter the necessary data processing tasks and dependencies of 
H.264. For example, authors in [5] discuss an H.264 Intra encoder 
chip operating at 54 MHz. However, it is only capable of handling 
a 720 480 4:2:0 video at 30 fps. Additionally, the authors use a 
parallel structure for computing the modes that increases silicon 
area overhead. In [7], a fast mode selection preprocessor based on 
spatial domain filtering is discussed. If a likely mode based on a 
matching edge masks is found, other modes are skipped. If no 
dominant edge can be extracted, all prediction modes are 
computed. A four-stage pipeline for edge extraction increases the 
latency of their design and processing one MB requires 416 cycles 
at a maximum possible clock rate of 66 MHz. The design in [8] 
presents a 1080p at 25 fps Intra encoder operating at 100 MHz. It 
takes about 440 cycles to compute the Intra predictions and makes 
the 16 16 mode computation independent of 4 4 by changing the 
4 4 processing order. In [9], a QFHD at 60 fps Intra prediction 
architecture is proposed that replicates hardware for high through-
put and uses out-of-order execution with the need to reorder the 
data before entropy coding, which incurs large area overhead. 
That architecture needs to execute at least at 310 MHz to achieve 
QFHD while still using sub-optimal encoding methods. Ref. [10] 
presents a low-latency 1080p at 61 fps Intra encoder architecture 
operating at 150 MHz, but it computes the modes in parallel (scar-
ifying area) and takes about 300 cycles to encode one MB. In [11], 
authors propose a fast method of selecting the best intra-prediction 
modes, based upon the texture flow. Ref. [12] presents an open 
loop (OL) method to determine the most likely mode based upon 
the original image data rather than the reconstructed data. 

Moreover, the above-mentioned designs do not adapt the H.264 
Intra computation schedule to different cycle budgets, given by 
different resolutions and frame rate requirements of the encoder 
and hence are not extensible to higher resolutions. In addition, 
either they have a large silicon footprint at high working frequen-
cies, or they exercise non-optimal coding strategies to save area. 

III. LOW LATENCY H.264 INTRA ENCODING LOOP 
The proposed architecture of the H.264 Intra Encoding loop is 
depicted in Fig. 3. Compared to the conventional Intra encoding 
loop (see Fig. 1), we mark our differences with a star symbol and 
discuss the impact of each block separately. We only discuss the 
luma path of the loop, but the discussion also applies to the chro-
ma path, as their differences are negligible. Our encoding pipeline 
is fed from DDR3 memory containing the actual video input and 
the stored reconstructed frame. Data is accessed in MB granularity 
where one line of a 16 16 MB is transferred per cycle over a 128-
bit data bus. 
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Fig. 3: Proposed encoding loop; HT is decoupled from DCT; a likely mode 

predictor works on the input data and presents its output to the predictor stage 

A. 4 4 REORDERING AND HT LOOKAHEAD 
To decrease the latency of the transform stage (Dependency (b) in 
Section I.A), we propose a method to decouple the AC path from 
the DC path in the transform block. As mentioned in Section I.A, 
the inner blocks of the transform unit require a 4 4 block as input. 
Thus, we must subdivide the residue 16 16 block into 16 4 4 
blocks using the 4 4 reorder stage (RO). Our residue generator 
stage provides one line of ( )rX  (16 pixels in 1 cycle, ith line of the 
MB given by ( )r

iX ). Whenever four ( )r
iX  are accumulated in the 

input registers of the 4 4 RO stage, the RO generates four 4 4 
blocks and pushes them to the input FIFO of the 2D-DCT stage. 
As mentioned in Section I.A, HT cannot commence until all 4 4 
blocks are processed by the DCT. However, by simplifying the 
DCT formula (the DCT used by H.264 is not an actual discrete 
cosine transform but a derived one with similar characteris-
tics [2]), we observe that the nth output DC value (which is the nth 
HT input value n

inHT ) obtained from the DCT by processing the 
nth 4 4 residue block ( )r nX  can be calculated by Eq. 2. 
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Fig. 4: HT Lookahead buffer filler responsible for HT precomputations 

That shows that n
inHT can be generated by adding all the entries in 

the 4 4 block. Thus, we generate the DC outputs at the RO stage 
instead of the DCT stage, effectively decoupling DCT from HT. 
This process is shown in Fig. 4. A residue line can add to the cur-
rent accumulators (shown as registers R) of the look-ahead HT 
memory or it can trigger a new DC coefficient generation, con-
trolled by the counter administering the MUXes M. 

The entropy coding requires the arrival of 4 4 blocks in a 
Z-fashion, as shown in Fig. 2b. Our RO unit generates the 4 4 
blocks for the 2D-DCT unit as required by the entropy coding on 
the fly, eliminating the need for an extra RO unit in front of entro-
py coding, further reducing the latency of the whole encoder (ad-
dressing Dependency (c) from Section I.A). 

B. MODE DECISION 
The Mode Decision unit has to select one mode out of the four 
available modes (i.e. V, H, DC, and P). It can apply full search to 
select the best mode (i.e. the best X´) using either SATD or just 
SAD between X and X´. The Best Mode Decision is rather slow if 
the generation of X´ and the cost calculation for every mode is 
computed sequentially using one hardware unit. On the other 
extreme, the parallel implementation of all four modes would 
demand a significant amount of hardware. Therefore, we propose 
that only 16 adders/subtractors need to be used and thus, SAD of a 



full luma MB can be generated in 16 cycles. The V mode can start 
executing immediately for the current MB because ur  is always 
available (except the top row of the image that does not have a V 
mode) in the reconstruct buffers as the scanning order of the MBs 
is raster scan. This is also useful for DC and P mode where some 
computations depend upon ur . However, the H, DC, and P modes 
have to wait until all pixels in lc  are available. A full-
reconstructed 16 16 MB is available from the reconstruction 
block (generating one reconstructed MB line) after 20 cycles. 
Hence, the V mode of MB Xn can be computed in parallel to Xn-1 
in the encoding loop, because it does not depend upon lc . There-
fore, implementing all SAD units in parallel does not result in 
proportional performance gain. 

Fig. 5 shows our Mode Decision block. FIFOXi contains X and 
this data is then written to a shared on-chip memory that stores 
line-by-line. The pipelined Edge Detector (discussed in Sec-
tion III.C) unit predicts the order of modes to test by finding the 
most-dominant edge for X. Using this order, predictions X´ are 
generated by the prediction generator (utilizing ur , lc , and ulp ) 
and the residual data ( )rX  is evaluated by calculating the SAD 
and stored in the same on-chip buffer as X at distinct address 
space. The residue calculator generates ( )r

iX  and passes it to both 
the SAD unit and the residue memory block. After all residues are 
stored into this memory, the residue resulting in the lowest SAD 
value is written to the 4 4 RO stage. Note that if the amount of 
cycles needed for encoding does not comply to the resolution and 
framerate requirements, our SAD unit can be configured to use the 
down-sampled version of the current MB for residual calculation, 
where the down-sampling factor denoted by ds means that every 
ds line of X is used for the SAD computation. When ds > 1, then 
the number of cycles for one SAD computation decreases. For 
example, for one luma MB with ds = 2, it takes 8 cycles for the 
SAD computation rather than 16 with ds = 1. However, if ds is 
larger than 1, then ( )rX  is also down-sampled and thus it must be 
updated with the full residue after final mode selection. 
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Fig. 5: Mode Decision unit for Intra 16 16

C. EDGE BASED MODE PREDICTION 
If the encoding loop cycle latency does not comply with the allot-
ted budget, it becomes necessary to sacrifice some encoding effi-
ciency to meet the performance goals. As the transform loop is 
essential to the encoding process, usually less cycles of the overall 
budget are available to the Mode Decision block. Unlikely predic-
tions are not selected as candidates for residue generation by using 
a preprocessing stage. This procedure is not required for parallel 
SAD implementations but it is useful for a sequential mode decid-
er. Various algorithms are proposed in literature for mode predic-
tion and elimination of unlikely modes [7, 11] where texture-
based edge extraction information is used to determine the proba-
ble modes. Once the reconstructed data is available, the most 

suitable modes are applied first and the other modes are either 
delayed or even skipped. However, an edge extraction procedures 
for a 16 16 block will require 256 iterations (requiring a tan-1 
function and a divider) plus dominant mode search cycles. There-
fore, it cannot be embedded as a stage in the encoding loop or 
parallel to the encoding loop for QFHD sequences (encoding loop 
must finish within 182 cycles for 150 MHz at 25 fps). It can, how-
ever, be implemented as a separate pipeline stage outside the en-
coding loop. This introduces latency and limits the throughput of 
the encoding process. In addition, the area overhead might be-
come too large if parallel edge extractors are employed. Moreo-
ver, the edge-threshold is decided at design time but it is not ap-
plicable to every video scene. In contrast to this approach, we 
propose a lightweight and efficient mode prediction process that 
uses a modified version of edge extraction procedures, but can 
still extract the dominant edge information from the input MB and 
does not require an edge-threshold, which would have to be 
adapted to the scene conditions. 
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For the current MB Xn, the proposed method can run in parallel 
with the residue calculator and transform stage and can generate 
the likely modes before the reconstructed previous MB Xn-1 is 
available for the prediction generation stage. The crux of the 
method involves the estimation of edge pixels at the borders of the 
MBs by computing a sequential running-difference rd. This means 
that we use only one subtractor and one ABS (absolute) unit for 
both the top and bottom borders, and one subtractor and one ABS 
unit each for the left and right borders to detect the dominant edge 
direction. For example, at the vertical border b or c of the MB in 
Fig. 6, we compute rdi as shown in Eq. 3. 

 , 1, ,  1,...,15,  {1,  16}i i j i jrd X X i j  (3) 

The pixel location i where rdi is maximum is declared as the point 
where the edge passed. Let Eb=i be the location of the edge pass-
ing through b at i, generating the maximum rdi given by rdb. Simi-
larly, we find edge E and running-difference rd at each border and 
declare the edge passing the two borders with maximum rd. We 
come up with six distinct possibilities, as shown in Fig. 6 where 
only one edge out of the six can occur. Using this edge detection 
approach, we computed the probabilities of modes for every line 
for various HD sequences and we devise Algorithm 1 for selecting 
the precedence order m of prediction generation. When the differ-
ence between all rdi are less than some threshold (we keep it at 
constant 5 as we could not observe dependencies on the input 
data), we conclude that there was no edge and hence the algorithm 
detects Line0, or no line. Note that the hardware works on a single 
line of input, i.e. Xi. In addition, in our Algorithm 1, the P mode is 
never selected first and intermediate values for P can be generated 
in parallel to the other modes preceding it, therefore, P mode pre-
diction/residue computations take the same amount of cycles as 
the other modes. We define Depth D of the prediction as the num-
ber of allowable SAD computations. The value of D can be altered 
to compute SADs for the most likely modes, in order to meet the 
cycle budget of the encoding loop. With D = 1, there is no need of 
SAD computations and the most probable mode is used to gener-



ate prediction and its residue is forwarded directly to the transform 
stage. For 1 < D ≤ 4, we start with the most probable mode and 
compute SADs. 

IV. PROTOTYPE AND EXPERIMENTAL RESULTS 

Our Intra encoder was developed using a Matlab/C and Modelsim 
co-simulation framework and it was prototyped on an Altera 
DK-DEV-2AGX260N FPGA Development Kit containing a cost-
effective Arria II GX EP2AGX260 FPGA. For functional verifica-
tion, we feed video data from an SD camera to our HD pipeline 
and the output bit-stream (generated by CAVLC [1]) is passed to 
the output node as AVB packets [13] via Gigabit Ethernet. The 
camera is connected to the FPGA prototyping board as shown in 
Fig. 7. The whole encoder uses a single clock domain of 150 
MHz, the DDR3 SDRAM is clocked at 300 MHz. All hardware 
blocks are written in VHDL. An Altera NIOS-II embedded CPU 
is used for frame-by-frame control signaling and for future exten-
sions of the prototype. 

The total time taken by the transform loop is 56 cycles. Each X´ 
generation requires 17 cycles, including the P prediction mode. 
The area usage and maximum frequency of the modules of our 
encoding loop implementation are given in Table III. The M9K 
embedded SRAM block memories are used as FIFOs to connect 
the encoding stages and the total amount of area of the encoding 
loop also includes these FIFOs. 

For evaluating the encoding quality, we present a plot of Peak 
Signal to Noise Ratio (PSNR) in decibels (dB) against the Bitrate 
at depth D = 1 for various sequences shown in Fig. 8. These 
curves also suggest that the likely mode predictions PSNR curve 
matches the full search Intra mode (also called Closed Loop (CL)) 
selection process closely. As a comparison to the likely mode 
selection procedure presented in this paper, the Open Loop (OL) 
algorithm [12] PSNR curve for D = 1 is also plotted and is outper-
formed by our proposed scheme. The percentage change in PSNR 
and bitrate with different encoder configurations is given in 
Table II. Comparison of the proposed scheme with state-of-the-art 
Intra encoders is given in Table IV. 

TABLE II AVERAGE PSNR AND MBPS CHANGES IN PERCENTAGE FOR VARIOUS CONFIGURATIONS OF THE PROPOSED ENCODER VS. 
OPEN LOOP (OL) [12]; EACH VALUE REPRESENTS THE AVERAGE RESULTS FOR QP SWEEPS FROM 18 TO 32 (STEP SIZE = 2) 

 Average PSNR [%] (QP 18...32 average, step size = 2) Average Mbps [%] (QP 18…32 average, step size = 2) 

Sequence ds = 2 D = 3 D = 2 D = 1 OL = 1 ds = 2 D = 3 D = 2 D = 1 OL = 1 
Traffic (2560 1600) -0.002 -0.005 -0.002 0.06 -0.96 0.15 0.18 0.82 2.2 12.74 
People (2560 1600) 0.0002 -0.002 0.01 0.12 0.005 0.1 0.05 0.65 0.73 4.6 

Riverbed (1920 1080) -0.002 0.002 0.004 -0.016 -0.39 0.07 0.1 1.01 3.82 8.29 
Basketball (1920 1080) 0.002 0.002 -1.01 -1.02 -0.19 0.36 0.37 1.48 4.2 15.76 

Shields (1280 720) -0.0012 0.0009 0.0041 0.012 -0.134 0.204 0.026 0.25 2.31 7.58 
Kimonol (1920 1080) -0.004 -0.004 -0.009 -0.003 -0.57 0.11 0.11 1.1 3.4 14.13 
Tennis (1920 1080) -0.004 0.0003 -0.028 -0.075 -0.503 0.303 0.92 3.84 9.45 20.22 

 
input: Current MB X , size s 
output: Dominant modes m 
1. ,  w wd E  ← EdgeFeature ,   ,  ,  ,  X w a b c d  
2. Lineout ← DominantLine ,  w wd E  
3. switch Lineout do  // Note: there is an implicit ‘break’ after each case 
4.  case Line0 
5.   m ← (DC, P, H, V) // No edges found 
6.  case Line1 
7.   if / 2a bE E s then m ← (DC, H, P, V) 
8.   elseif a bE E then m ← (DC, P, H, V) 
9.   elseif / 2b aE E s then m ← (DC, P, V, H) 
10.   else m ← (DC, V, P, H) 
11.  case Line2 
12.   if / 2a cE E s then m ← (H, DC, P, V) 
13.   elseif a cE E then m ← (DC, H, P, V) 
14.   elseif / 2c aE E s then m ← (DC, P, H, V) 
15.   else m ← (DC, P, V, H) 
16.  case Line3 
17.   if / 2b dE E s then m ← (V, DC, P, H) 
18.   elseif b dE E then m ← (DC, V, P, H) 
19.   elseif / 4b dE E s then m ← (DC, P, V, H) 
20.   else m ← (DC, P, H, V) 
21.  case Line4 
22.   if 3 / 4c dE E s then m ← (DC, V, P, H) 
23.   elseif c dE E then m ← (DC, P, V, H) 
24.   elseif 3 / 4d cE E s then m ← (DC, P, V, H) 
25.   else m ← (DC, H, P, V) 
26.  case Line5 
27.   m ← (V, DC, P, H) 
28.  case Line6 
29.   m ← (H, DC, P, V) 

Algorithm 1: Edge based likely mode selection 

TABLE III SYNTHESIS RESULTS FOR OUR I16MB ENCODING LOOP; NOTE THAT 
THE TOTAL AREA (LAST ROW) EXCEED THE SUM OF THE COMPONENTS, BECAUSE 

THERE IS FURTHER GLUE LOGIC BETWEEN THE COMPONENTS (E.G. FIFOS) 
Module MHz ALUT Regs Memory Size [Kbit] 

4 4 RO+HT 321.34 438 1,604 0 
Transform 167.87 7,901 3,958 0 
Mode Pred. 171.14 1,426 747 256 

Edge Detector 385.8 283 525 0 
Reconstruct 475.74 460 969 0 

Total N/A 10,583 8,088 562 
 

TABLE IV COMPARING THE PROPOSED ENCODER WITH STATE OF THE ART 
Encoder MHz Resolution FPS Modes 

[5] 54 720 480 31 Parallel 
[7] 62.21 1920 1080 30 Parallel 

[14] 140 1920 1080 30 Sequential 
[8] 100 1920 1080 25 Parallel 

[10] 150 1920 1080 61 Parallel 
Our proposed architecture 150 3840 2160 28 Sequential 

 

 
Fig. 7: Prototype implementation on an Altera Arria II GX FPGA 
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Fig. 8: PSNR vs. Bitrate plot for proposed and open loop D=1; each value 
represents the average results for QP sweeps from 18 to 32 (step size = 2) 
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Fig. 9: Hit rates in percent (avg. over QPs 18...32, step size=2) for various 

sequences; H: priority of full search within mode schedule 

In contrast to the others approaches, our proposed encoder can be 
adjusted to balance the workload and encoding methods. Moreo-
ver, hardware is saved by reusing the same structure for SAD 
computations of all the four modes and by realizing only one DCT 
folded butterfly [15] instead of 16 parallel DCTs. As compared to 
[9], our approach only uses one prediction unit (instead of two 
parallel units) at 150 MHz instead of 310 MHz. However, our 
approach can also be extended in a similar fashion and is more 
flexible because the parameters ds and D are controllable. In order 
to determine the total number of MBs mbtot that can be processed 
by the encoder, given the total cycles allocated per MB cmb in the 
loop clocked at fs MHz with a target FPS of fps, we calculate mbtot 
as shown in Eq. 4. Using mbtot, we can calculate the maximum 
image dimensions for given dimension ratios. In Table V we show 
the maximum sustainable picture dimensions at 16:9 for different 
encoder configurations. We use fs of 150 MHz at 25fps. As seen, 
the maximum dimensions supporting all 16 16 modes at 25 fps 
with no row down-sampling is 4068 2288. In Fig. 9, we report the 
average hit-rate of the proposed likely mode selection algorithm 
per frame for various sequences. H is defined as the mode priority 
of the full search mode in the ordered likely candidates m generat-
ed by our Algorithm 1 and H = 4 is the worst misprediction. 

 610s
tot

ps mb

fmb
f c

 (4) 

V. CONCLUSION 
A novel area-efficient design of likely Intra mode prediction based 
on the edge image information of input MB is presented. The 
proposed design is capable of encoding QFHD at 28 fps sequences 
at 150 MHz. By addressing the H.264 Intra-prediction standard-
inherent data dependencies, we present an I16MB encoding loop 
for encoding high definition videos, while still being area effi-
cient. We propose a Mode Decision algorithm, which yields com-
parable results to existing work at much smaller area footprint. By 
decoupling the DC path from the AC path, we reduce the latency 
of the transform stage and present a static mode-decision schedule 
together with a very simple edge detector to allow even higher 
resolutions by mode skipping. Only one DCT/IDCT block is used. 
The SAD computation unit uses only one 16-adder/subtractor unit 
and the mode selection procedure is sequential, thus saving area. 
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TABLE V DIMENSIONS SUPPORTED BY THE PROPOSED ENCODER FOR 25 FPS 
OPERATING AT 150 MHZ 

 D = 1 D = 2 D = 3 D = 4 
ds = 1 4894 2752 4564 2568 4294 2416 4068 2288 
ds = 2 4894 2752 4564 2568 4416 2484 4280 2408 

 


