
Dual-addressing Memory Architecture for Two-dimensional Memory Access Patterns

Yen-Hao Chen Yi-Yu Liu

Dept. of Computer Science and Engineering

Yuan Ze University, Chungli, Taiwan, R.O.C.

s971433@mail.yzu.edu.tw yyliu@saturn.yzu.edu.tw

Abstract

Cache performance is an important factor in modern com-

puting systems due to large memory access latency. To exploit

the principle of spatial locality, a requested data set and its

adjacent data sets are often loaded from memory to a cache

block simultaneously. However, the definition of adjacent data

sets is strongly correlated with the memory organization.

Commodity memory is a two-dimensional structure with two

(row and column) access phases to locate the requested

data set. Therefore, the adjacent data sets are neighbors of

the requested data set in a linear order. In this paper, we

propose a novel memory organization with dual-addressing

modes as well as orthogonal memory access mechanisms.

Our dual-addressing memory can be efficiently applied to

two-dimensional memory access patterns. Furthermore, we

propose a cache coherence protocol to tackle the cache co-

herence issue due to synonym data set of the dual-addressing

memory. For benchmark kernels with two-dimensional memory

access patterns, the dual-addressing memory achieves 60%

performance improvement as compared to conventional mem-

ory. Both cache hit rate and cache utilization are improved

after removing two-dimensional memory access patterns from

conventional memory.

I. INTRODUCTION

With the increasing latency gap between dynamic random

access memory (DRAM) and logic, DRAM has become one

of the most critical performance bottlenecks in a computing

system. Based on principle of temporal and spatial localities,

caches are integrated between processor and main memory

to provide an illusion of fast and large memory system [1].

Moreover, multiple cache levels are adopted to fulfill both

bandwidth and capacity demands in modern processor de-

signs [2]. Furthermore, high associativity is also used to

prevent data eviction from cache block competition. As a

result, the increased cache level and associativity complicate

the controller design and at the same time slow down cache

performance.

DRAM is conceptually considered as a one-dimensional

array with one serial address for each memory cell. To

maintain a feasible aspect ratio for memory chip fabrica-

tion, the DRAM organization is composed of a regular two-

This work is supported in part by the National Science Council of Taiwan
under Grant NSC-100-2221-E-155-052 and NSC-101-2221-E-155-075.

978-3-9815370-0-0/DATE13/ c©2013 EDAA

dimensional memory cell array and two orthogonal address

decoding circuits. Consequently, the serial addresses obtained

from address decoding circuits define neighborhood structure

of a DRAM. Once the neighborhood structure of DRAM is

fixed, the mapping of one requested data set and its adjacent

data sets from DRAM to one cache block is fixed as well.

However, there is no guarantee that the adjacent data sets

comply with spatial locality of the requested data set unless

the memory access patterns are in sequential address order.

To understand the effectiveness of spatial locality, cache

utilization is proposed as an evaluation metric in this work.

Furthermore, we propose a novel dual-addressing memory

organization to support two-dimensional memory access pat-

terns. Since there are two addresses for each dual-addressing

memory cell, synonym data set incurs cache coherence issue.

We propose a new cache coherence protocol - WURF to

resolve cache inconsistency between row-major and column-

major caches. We argue that using one conventional memory

for versatile data structures and algorithms is not enough in

modern computing systems. Specialized memory organiza-

tions for specific memory access patterns are imperative for

high performance computing.

The rest of this paper is organized as follows. The pre-

liminary of commodity memory organization and data place-

ment layouts for spatial locality optimization is discussed

in Section II. Section III presents a novel dual-addressing

memory organization for efficient two-dimensional memory

access patterns. In Section IV, the cache coherence protocol is

proposed to tackle the synonym effect in our dual-addressing

memory architecture. The experimental results are summa-

rized in Section V. Section VI concludes this paper and points

out important issues for future research.

II. PRELIMINARY

In this section, we give preliminary background of commod-

ity memory organization and review memory data placement

layouts for cache spatial locality optimization.

A. Conventional Memory Organization

Commodity DRAM utilizes one transistor and one capacitor

for one data bit storage. To maintain the DRAM chip form

factor as well as decoding circuit efficiency, memory address

is partitioned into row address and column address. Conven-

tionally, the higher address bits are denoted as row address and

the lower address bits are denoted as column address. Each

memory access requires both row and column access phases.



Address

m+n

m

n

R
o
w
d
ec
o
d
er

Sense amplifier

Column decoder

I/O BUF

Data

Capacitor

Transistor

Word line

Bit line

Fig. 1. Conventional memory organization.

Figure 1 draws the organization of a conventional memory.

Once the memory address is ready, the row decoder decodes

the row address and asserts a corresponding word line. The

memory data sets on the word line, refer to a page, are then

ready to be processed in the column access phase. According

to the column address, sense amplifier and column decoder are

activated to detect and select the corresponding memory data

set of the page, respectively [3]. In the memory organization

drawn in Figure 1, data sets within the same page can be

directly accessed by column address decodings only with short

access time while data sets from different pages require the

assertions of different word lines followed by column address

decodings with long access time. Therefore, the sequence of

row access followed by column access explicitly defines the

horizontal neighborhood structure of a DRAM. The horizontal

neighborhood structure favors one-dimensional data array and

multi-dimensional data array with row-major memory access

patterns.

B. Spatial Locality and Cache Block Utilization

The spatial locality is a phenomenon that once a memory

data address is accessed, the adjacent data addresses could

be accessed in near future. Hence, a cache with larger block

size could accommodate multiple adjacent data sets to exploit

the spatial locality. Owing to the aforementioned horizontal

neighborhood structure of a commodity DRAM, cache blocks

often store consecutive data sets within one memory page. If

the memory access patterns of a program is not in a sequential

manner, the adjacent data sets stored in a cache block may

not be accessed before cache eviction. Therefore, we formally

define cache block utilization Ucb as follows. In Equation 1,

A represents the number of data sets being accessed within

a cache block and S represents the total number of data sets

within a cache block.

Ucb =
A

S
(1)

Assume that there are four data sets in each cache block.

If each of the four data sets is accessed at least once before

the cache block being evicted, the cache block utilization is

4
4

= 100%. Higher cache block utilization indicates that the
neighborhood structure corresponds with the memory access

pattern. Hence, a cache system with larger cache block size

achieves better hit rate owing to the principle of spatial

locality. In contrast, if only one data set is accessed before

the cache block being evicted, the cache block utilization is
1
4

= 25%. It is unnecessary to load adjacent data sets into
a cache block since the cache block utilization is low. The

average cache block utilization Ūcb is defined in Equation 2,

where Ai is the number of data sets being accessed within

the i-th cache block transfer from memory and N is the total

number of cache block transfers due to cache misses. We will

use this equation as the metric to evaluate spatial localities of

different memory architectures.

Ūcb =

N

∑
i=1

Ai

S

N
=

N

∑
i=1

Ai

N ·S
(2)

C. Previous Works

Many different data placement layouts are proposed in

previous works for cache hit rate improvement. For appli-

cations with column-major memory access patterns, matrix

transposition is an effective pre-processing to greatly make

use of row-major neighborhood structure in DRAM. However,

large matrix transposition results in poor cache performance

due to poor temporal and spatial localities [4]. Square block

data layout collects planar adjacent data sets for tile-based tex-

ture loadings and rendering operations in computer graphics

applications [5]. Specialized texture memory combines push

and pull memory architectures to balance both bandwidth and

capacity requirements [6]. Space-filling curves can be used to

specify the adjacent data sets on a two-dimensional plane [7].

Morton data layout is a z-order space-filling curve, which

recursively defines adjacent data sets in both row and column

directions [8]. The overall two-dimensional memory access

performance of Morton data layout is in general consistent

in various data sizes as compared to the row-major data

layout [9]. However, compiler support is imperative to handle

array indices of new Morton data layout without interfering

programmers [10]. Park et al. evaluate two-dimensional tiled-

based operations with several data placement layouts and

conclude that the block data layout achieves best perfor-

mance among others [11]. Stride pre-fetching is an aggres-

sive approach to predict and pre-load data sets into cache

for upcoming memory access [12]. Dahlgren and Stenstrom

point out that both spatial locality and stride distance are

important factors for pre-fetching [13]. Therefore, a high

performance memory system should take both neighborhood

structure (spatial locality) and regular memory access patterns

(stride distance) into account. These observations motivate us

to design a new memory organization for two-dimensional

memory access patterns.

III. DUAL-ADDRESSING MEMORY

In this section, we propose a novel memory organization

to support two-dimensional memory access patterns. Figure 2



Address

m+n

mm

n

n

R
o
w
-m
aj
o
r
ro
w
d
ec
o
d
er

Row-major sense amplifier

Row-major column decoder

Column-major row decoder

C
o
lu
m
n
-m
aj
o
r
se
n
se
am
p
li
fi
er

C
o
lu
m
n
-m
aj
o
r
co
lu
m
n
d
ec
o
d
er

I/O BUF

Data

Capacitor

Transistor

Word line

Bit line

Enrow

Enrow

Fig. 2. Dual-addressing memory organization.

depicts the organization of our dual-addressing memory. There

are two transistors and one capacitor for one data bit storage.

Unlike the dual-ported memory which supports two consecu-

tive memory accesses from the same address decoding archi-

tecture [14], the dual-addressing memory utilizes two address

decoding architectures. In Figure 2, two word lines and two

bit lines are orthogonal to each other, respectively. Hence,

there are two pairs of decoding and sensing circuits in dual-

addressing memory. The address decoding scheme, which is

the same to conventional memory drawn in Figure 1, is de-

noted as row-major decoding. The address decoding scheme,

which is orthogonal to conventional row-major decoding, is

denoted as column-major decoding. As drawn in Figure 2,

there are m+n address bits with enable signal Enrow to select
one decoding scheme. The row-major decoding decodes the

upper m bits and asserts a corresponding horizontal word line

before multiplexing vertical bit lines by the lower n bits.

The column-major decoding decodes the lower n bits and

asserts a corresponding vertical word line before multiplexing

horizontal bit lines by the upper m bits. Notice that the upper

and lower address bits can be the same (m= n) in practice such
that the decoder and sense amplifier can be shared by both

addressing schemes. Without loss of generality, we assume

m 6= n in this paper.

To utilize the dual-addressing memory, programmers are

required to specifically declare a dual-addressable (two-

dimensional and multi-dimensional) data structure. The data

structure will then be bound to the dual-addressing memory

after compilation. There are four types of new instructions

required to support dual-addressing memory access. These in-

struction types are row-major read, row-major write, column-

major read, and column-major write. The row-major read and

write instructions behave as read and write instructions for

conventional memory, respectively. The column-major read

and write instructions swap the upper and lower address bits

P
ro
ce
ss
o
r

1D access

2D access

L1C LLC

Row L1C

Column L1C

Row LLC

Column LLC

1D MEM

2D MEM

Cache coherence

Fig. 3. Proposed memory system architecture.

before performing column-major word line decoding and bit

line multiplexing.

Table I lists row-major and column-major decoding results

with m= 2 and n= 3. The first line in each entry represents
the decoded address of row-major decoding (colored in red).

The second line in each entry represents the decoded address

of column-major decoding (colored in blue). From Table I, it

is clear that each memory data set has row-major and column-

major addresses for row-major and column-major memory ac-

cesses, respectively. Consequently, row-major memory access

favors horizontal neighborhood structure while column-major

memory access favors vertical neighborhood structure. There-

fore, our dual-addressing memory is capable of maintaining

spatial locality in two-dimensional memory access patterns.

IV. CACHE COHERENCE FOR SYNONYM ADDRESSINGS

Conventionally, cache coherence issue occurs in a system

with multiple processors. However, cache coherence is an

important dual-addressing memory system design issue even

in a single-core processor system. Since two decoded (row-

major and column-major) addresses are associated with one

dual-addressing memory data set, this is so-called synonym

addressings. The synonym addressing results in two copies

of cache data from the same memory data set. Hence, cache

coherence is required between the two caches. Figure 3 depicts

a memory system hierarchy with both conventional memory

and dual-addressing memory denoted as “1D MEM” and “2D

MEM”, respectively. Cache coherence must be maintained

between row-major and column-major caches in Figure 3.

Notice that there is no coherence issue between conventional

cache and dual-addressing cache since the memory data is

disjoined after compilation.

We use a dual-addressing memory with m = 2 and n = 3
(Table I) as an example to illustrate the cache coherence issue.

Figure 4 lists the statuses of row-major and column-major

caches. Assume that each cache block accommodates four data

sets. The row-major cache contains two blocks with memory

addresses {12, 13, 14, 15} and {20, 21, 22, 23}. The column-
major cache contains one block with memory address {24,
25, 26, 27}. According to Table I, there are two synonym
data sets {14, 25} and {22, 26}. The two synonym data sets
bring out the cache coherence issue. For example, if there

is a row-major write on address 14, a cache hit occurs in

row-major cache. Nevertheless, the cache block with column-

major address 25 must be simultaneously updated to maintain



TABLE I

ROW-MAJOR AND COLUMN-MAJOR DECODINGS

000 001 010 011 100 101 110 111

00
0 (00000) 1 (00001) 2 (00010) 3 (00011) 4 (00100) 5 (00101) 6 (00110) 7 (00111)

0 (00000) 4 (00100) 8 (01000) 12 (01100) 16 (10000) 20 (10100) 24 (11000) 28 (11100)

01
8 (01000) 9 (01001) 10 (01010) 11 (01011) 12 (01100) 13 (01101) 14 (01110) 15 (01111)

1 (00001) 5 (00101) 9 (01001) 13 (01101) 17 (10001) 21 (10101) 25 (11001) 29 (11101)

10
16 (10000) 17 (10001) 18 (10010) 19 (10011) 20 (10100) 21 (10101) 22 (10110) 23 (10111)

2 (00010) 6 (00110) 10 (01010) 14 (01110) 18 (10010) 22 (10110) 26 (11010) 30 (11110)

11
24 (11000) 25 (11001) 26 (11010) 27 (11011) 28 (11100) 29 (11101) 30 (11110) 31 (11111)

3 (00011) 7 (00111) 11 (01011) 15 (01111) 19 (10011) 23 (10111) 27 (11011) 31 (11111)

Valid Dirty Cache data address

1 0 12 13 14 15

1 0 20 21 22 23

(a) Row-major cache.

Valid Dirty Cache data address

1 0 24 25 26 27

0 - - - - -

(b) Column-major cache.

Fig. 4. Cache coherence example.

cache coherence. Similarly, if there is a column-major read

on address 18, a cache miss occurs in column-major cache.

However, the synonym data can be forwarded from row-major

cache with address 20.

To remedy the cache coherence issue, a cache protocol

is required for dual-addressing memory. MESI (modified,

exclusive, shared, and invalid) is one of the most widely used

cache coherence protocol implemented on many processor

systems [15]. Applying the MESI protocol ensures cache

invalidation before a write operation on shared data in both

row-major and column-major caches. However, the cache

invalidation overhead is pretty high owing to the orthogonal

neighborhood structures in two different caches. For example

in Figure 4, if there is a write operation on column-major

cache {24, 25, 26, 27}, the row-major cache blocks {12, 13,
14, 15} and {20, 21, 22, 23} are inevitably invalidated. There-
fore, the MESI protocol on a dual-addressing cache system is

relatively costly as compared to that on a conventional cache

system with multiple processors.

In this paper, in stead of using classical MESI protocol, we

propose a new cache protocol for dual-addressing memory.

Besides of common read and write operations, our cache

coherence protocol has two distinct operations - update and

forward. Accordingly, there are four major operations and

states in our cache protocol: write (W), update (U), read

(R), and forward (F), denoted as WURF. Figure 5 draws

the state transitions of our WURF protocol. The superscript

and subscript indicate the cache level and row-major/column-

major access, respectively. For write operation, the data is

written into present cache on a cache hit while write operation

is performed in next level cache on a cache miss. For update

operation, there is no need to update next level cache on a

cache hit since our cache write policy is write-back while

TABLE II

SYSTEM SPECIFICATIONS

Simics target machine

CPU Ultrasparc IV+

CPU clock rate 2GHz

L1 cache 2-way, write back, write allocate, LRU

L1 cache hit latency 3 cycles

L2 cache 2-way, write back, write allocate, LRU

L2 cache hit latency 23 cycles

Memory clock rate 667MHz

Operating system SuSE7.3

DRAMsim2

DRAM type DDR3

Banks / rows / columns 8 / 8192 / 1024

Clock period 1.5 ns

Page policy Open page

update operation proceeds with next level cache to ensure

cache coherence on a cache miss. For read operation, present

cache returns requested data on a cache hit while forward

and read operations are invoked in its orthogonal cache and

next level cache, respectively, on a cache miss. For forward

operation, the synonym data can be forwarded to shorten cache

miss latency on a cache hit while the present cache returns to

ready state on a cache miss. Therefore, a write request from

processor on one addressing is simultaneously accompanied

with an update request on its orthogonal addressing throughout

all cache levels to maintain the cache coherence.

V. EXPERIMENTAL RESULTS

We evaluate our proposed memory system on a full sys-

tem simulator Simics [16]. The dual-addressing memory is

constructed based on DRAMsim2 [17]. The overall system

specifications are listed in Table II. The detailed cache param-

eters of three evaluated memory data placement layouts are

summarized in Table III. Notice that the total cache size are set

to the same size for a fair comparison. Nine benchmark kernels

with two-dimensional memory access patterns are outlined in

Table IV. All simulations are based on a 100M-instruction

warm up phase followed by a 10M-instruction sampling phase.

The overall system performance are summarized in Ta-

ble V. Columns Baseline, Morton, and DA represent com-

modity memory as the baseline, Morton data layout, and

dual-addressing memory, respectively. Columns IPC and Imp

represent instructions per cycle and performance improvement

ratio, respectively. In average, our dual-addressing memory



L1 row cache L1 column cache

Last level row cache Last level column cache

hit hit

hit

hithit

hit

hit hit

hithit

hithit

hit hit

miss

miss

miss

miss

missmiss

missmiss

miss miss

miss

miss

miss

miss

Ready1r

R1r

R1r

F1c R
2
r

Wait for L2Wait for L2

Wait for L2 Wait for L2

F1r

F1r

Data forward Data forward

U1r

U1r

U2r

W 1r

W 1r

W 2r

Ready1c

R1c

R1c

F1r R
2
c

F1c

F1c

U1c

U1c

U2c

W 1c

W 1c

W 2c

ReadyLLCr

RLLCr

RLLCr

FLLCc MEMr

Wait for MEM

Wait for MEM

Wait for MEM

Wait for MEM

FLLCr

FLLCr

ULLCr

ULLCr

WLLCr

WLLCr

MEMr

ReadyLLCc

RLLCc

RLLCc

FLLCr MEMc

Signal LLC-1 Signal LLC-1

Signal LLC-1Signal LLC-1

FLLCc

FLLCc

Data forwardData forward

ULLCc

ULLCc

WLLCc

WLLCc

MEMc

Fig. 5. State transitions of WURF protocol.

TABLE III

CACHE PARAMETERS

Baseline Morton Dual-addressing

L1 cache

Conventional 16KB, 64B cache block 16KB, 64B cache block 8KB, 64B cache block

Row-major - - 4KB, 64B cache block

Column-major - - 4KB, 64B cache block

L2 cache

Conventional 64KB, 256B cache block 64KB, 256B cache block 32KB, 256B cache block

Row-major - - 16KB, 256B cache block

Column-major - - 16KB, 256B cache block

TABLE IV

BENCHMARK KERNELS

M-Trans Matrix transposition

M-Mult Matrix multiplication

LU-Decomp LU decomposition

MCO Matrix multiplication chain order

O-BST Optimal binary search tree

RL-CHKY Right-looking cholesky factorization

LL-CHKY Left-looking cholesky factorization

HWI-Comp Haar wavelet image compression

HWI-Decomp Haar wavelet image decompression

achieves 60% and 57% performance improvement over the

baseline and Morton, respectively.

Table VI compares the cache hit rates. Subscripts 1D and

2D represent the result of conventional cache and average

result of row-major and column-major cache, respectively. By

removing the two-dimensional data from commodity memory,

the 1D cache hit rate is improved even the cache size is

reduced by half. The 2D cache hit rate is high since the dual-

TABLE V

COMPARISONS ON INSTRUCTION PER CYCLE (IPC)

Baseline Morton DA

Program IPC IPC Imp (%) IPC Imp (%)

M-Trans 0.248 0.221 89.1 0.398 160.3

M-Mult 0.330 0.316 95.9 0.487 147.5

LU-Decomp 0.312 0.312 99.9 0.503 160.9

MCO 0.428 0.432 100.9 0.547 127.7

O-BST 0.307 0.309 100.5 0.527 171.6

RL-CHKY 0.304 0.298 98.0 0.489 161.0

LL-CHKY 0.432 0.482 111.5 0.505 116.9

HWI-Comp 0.209 0.233 111.4 0.455 217.2

HWI-Decomp 0.260 0.279 107.7 0.461 177.6

average 101.7 160.1

addressing memory supports both row-major and column-

major neighborhood structures.

Finally, we compare the cache utilizations defined in Sec-

tion II. From Table VII, it is clear that a memory system with

high hit rate is not guaranteed to have high cache utilization,



TABLE VI

COMPARISONS ON CACHE HIT RATE

L1 cache L2 cache

Program Baseline1D (%) Morton (%) DA1D (%) DA2D (%) Baseline1D (%) Morton (%) DA1D (%) DA2D (%)

M-Trans 61.9 50.9 78.5 93.8 27.9 60.5 76.3 83.3

M-Mult 83.5 74.6 95.7 93.7 19.7 47.7 73.9 87.2

LU-Decomp 73.5 64.6 74.9 96.9 24.1 50.2 95.6 87.2

MCO 85.9 82.0 95.4 95.8 25.8 50.5 81.7 73.9

O-BST 34.1 53.8 87.1 95.8 68.8 47.6 92.1 74.5

RL-CHKY 73.5 69.5 75.3 96.9 26.2 56.2 97.4 91.5

LL-CHKY 93.5 95.4 77.4 97.9 71.2 61.8 73.6 56.4

HWI-Comp 82.0 81.7 95.5 95.1 56.4 59.9 79.9 88.7

HWI-Decomp 92.2 84.9 95.6 93.7 57.4 59.7 77.6 85.9

average 75.6 73.0 86.1 95.5 41.9 54.9 83.1 80.9

TABLE VII

COMPARISONS ON CACHE UTILIZATION

L1 cache L2 cache

Program Baseline1D (%) Morton (%) DA1D (%) DA2D (%) Baseline1D (%) Morton (%) DA1D (%) DA2D (%)

M-Trans 15.5 12.4 28.3 100.0 30.1 49.2 85.1 100.0

M-Mult 14.3 9.3 24.5 99.8 28.9 47.6 93.7 100.0

LU-Decomp 14.2 10.6 24.5 99.3 26.5 49.4 69.6 97.4

MCO 17.8 13.9 38.3 98.6 28.0 49.2 87.7 94.2

O-BST 9.4 8.8 24.4 99.3 26.9 44.9 71.8 97.7

RL-CHKY 13.2 12.3 24.6 99.2 26.2 49.0 60.3 95.2

LL-CHKY 30.2 30.8 22.9 90.5 33.0 56.1 83.8 61.9

HWI-Comp 12.9 12.6 24.9 79.8 28.6 47.1 86.6 90.8

HWI-Decomp 21.9 11.9 31.2 59.3 37.2 48.0 76.1 53.7

average 16.6 13.6 27.1 91.7 29.5 49.0 79.4 87.9

and vice versa. A cache system with high cache utilization

indicates the system stores less unused data in its cache.

Our overall 2D cache utilizations are relatively high since the

dual-addressing memory complies with spatial locality of two-

dimensional memory access patterns.

VI. CONCLUSION AND FUTURE WORK

We have proposed a novel dual-addressing memory to

support two-dimensional memory access patterns. With two

orthogonal neighborhood structures, dual-addressing mem-

ory provides row-major and column-major memory accesses.

Since there are two addressing modes in dual-addressing mem-

ory, synonym data sets in row-major and column-major caches

result in cache inconsistency issue. To maintain the cache

coherence among dual-addressing caches, we propose a new

cache protocol - WURF. The experiments on two-dimensional

access patterns demonstrate that the overall performance of

dual-addressing memory is 60% and 57% higher than those of

commodity memory and Morton data layout, respectively. By

removing the two-dimensional data from commodity memory,

both cache hit rate and cache utilization are greatly improved.

We argue that using specialized memory organizations for

specific memory access patterns are imperative for high per-

formance computing. Currently, we are designing a virtual

memory system for two-dimensional address translation from

user space to physical space with variable data sizes.

REFERENCES

[1] D. A. Patterson, J. L. Hennessy, “Computer organization and design:
the hardware/software interface”, Morgan Kaufmann, 2011.

[2] G. Sun, C. J. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, Y. K. Chen,
“Moguls: a model to explore the memory hierarchy for bandwidth im-
provements”, in Proceedings of International Symposium on Computer
Architecture, pp.377-388, 2011.

[3] B. Jacob, S. Ng, D. Wang, “Memory systems: cache, dram, disk”,
Morgan Kaufmann, 2007.

[4] S. Chatterjee, S. Sen, “Cache-efficient matrix transposition”, in Proceed-
ings of High Performance Computer Architecture, pp.195-205, 2000.

[5] M. Pharr, R. Fernando, T. Sweeney, “GPU Gems 2: Programming
techniques for high-performance graphics and general-purpose compu-
tation”, Addison-Wesley, 2005.

[6] M. Cox, N. Bhandari, M. Shantz, “Multi-level texture caching for 3D
graphics hardware”, in Proceedings of International Symposium on
Computer Architecture, pp.86-97, 1998.

[7] H. Sagan, “Space-filling curves”, Springer-Verlag, 1994.
[8] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, M. Thottethodi,
“Nonlinear array layouts for hierarchical memory systems”, in Proceed-
ings of International Conference on Supercomputing, pp.444-453, 1999.

[9] J. Thiyagalingam, O. Beckmann, P. H. J. Kelly, “An exhaustive eval-
uation of row-major, column-major and Morton layouts for large two-
dimensional arrays”, in Proceedings of UK Performance Engineering
Workshop, pp.1-12, 2003.

[10] D. S. Wise, J. D. Frens, Y. Gu, G. A. Alexander, “Language support for
Morton-order matrices”, in Proceedings of ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, pp.24-33, 2001.

[11] N. Park, B. Hong, V. K. Prasanna, “Tiling, block data layout, and
memory hierarchy performance”, in IEEE Transaction on Parallel and
Distributed Systems, pp.640-654, vol.14, i.7, July 2003.

[12] J. W. C. Wu, J. H. Patel, “Data prefetching strategies for vector cache
memories”, in Proceedings of International Symposium on Computer
Architecture, pp.54-63, 1991.

[13] F. Dahlgren, P. Stenstrom, “Evaluation of hardware-based stride and
sequential prefetching in shared-memory multiprocessors”, in IEEE
Transaction on Parallel and Distributed Systems, pp.385-398, vol.7, i.4,
April 1996.

[14] N. Weste, D. Harris, “CMOS VLSI design: a circuits and systems
perspective”, Addison Wesley, 2010.

[15] M. S. Papamarcos, J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories”, in Proceedings of
International Symposium on Computer Architecture, pp.348-354, 1984.

[16] Wind River Simics, http://www.windriver.com/products/simics/.
[17] P. Rosenfeld, E. Cooper-Balis, B. Jacob, “DRAMSim2: A cycle accurate

memory system simulator”, in IEEE Computer Architecture Letters,
pp.16-19, vol.10, i.1, November 2011.


