
978-3-9810801-7-9/DATE11/ c©2011 EDAA

An Approach for Dynamic Selection of Synthesis
Transformations based on Markov Decision Processes

Tobias Welp1 Andreas Kuehlmann1,2

1 University of California at Berkeley, CA, USA
2 Coverity, Inc., San Francisco, CA, USA

Abstract

Modern logic synthesis systems apply a sequence of loosely-related

function-preserving transformations to gradually improve the cir-

cuit with respect to certain criteria such as area, performance,

power, etc. For the quality of a complete synthesis run, the ap-

plication order of the transformations for the individual steps are

critical as they can produce vastly different outcomes. In practice,

the transformation sequences is encoded in synthesis scripts which

are derived manually based on experience and intuition of the tool

developer. These scripts are static in the sense that transforma-

tions are applied independently of the result of previous transfor-

mations or the current status of the design. Despite the importance

of obtaining high quality scripts, there are only a few attempts to

optimize them. In this paper, we present a novel method to select

transformations dynamically during the synthesis run leveraging

the theory of Markov Decision Processes. The decision to select a

particular transformation is based on transition probabilities, the

history of the applied synthesis steps, and expectations for future

steps. We report experimental results obtained from an implemen-

tation of the approach using the logic synthesis system ABC.

1 Introduction

Logic synthesis systems offer a range of equivalence-preserving

transformations targeting the gradual improvement of circuits. Ex-

amples for these transformations are SAT-sweeping [1] and circuit

rewriting [2]. A complete synthesis flow is composed of a sequence

of these transformations.

The composition of a good synthesis sequence is complex be-

cause of three problems: (1) Even though the impacts of sin-

gle transformations are most often well understood and analyzed,

the interactions between different transformations are mostly un-

known. (2) There is no universally good sequence, i.e., a good

transformation sequence for one circuit is often suboptimal for

other circuits [3]. (3) The quality of a sequence is dependent on

optimization criteria targeted by the designer. In different situa-

tions, the designer will be interested in a different synthesis flow.

The traditional solution of this problem are synthesis scripts,

which are manually created by the tool developers based on exper-

iments and domain experience. This is an unsatisfactory solution

for designers: Firstly, the generic goals for the design of a synthesis

script are mostly unknown, hence the designers have no possibility

to evaluate the suitability of a given script for their purposes. Sec-

ondly, even if the script is suitable in terms of the underlying opti-

mization goal, it likely leads to suboptimal results due to problem

(2) described above. Designers usually lack sufficient domain ex-

pertise to manually generate or update scripts of satisfactory quality

on their own.

This paper proposes a novel approach based on Markov De-

cision Processes (MDPs) to generate synthesis scripts dynamically

during the actual synthesis run. The framework attempts to solve all

three problems reported above: Firstly, it captures the interactions

between different transformations probabilistically using knowl-

edge from a large set of experimental synthesis runs. Secondly,

it selects the next synthesis transformation dynamically after hav-

ing analyzed the response of the circuit to the application of previ-

ous transformations rather than statically fixing all transformations

upfront. This allows the algorithm to accommodate the specific

behaviour of a circuit. Thirdly, our framework allows the spec-

ification of optimization targets in the form of reward functions,

enabling designers to generate good scripts with respect to their

individual demands automatically without expert knowledge about

the idiosyncrasies of individual synthesis transformations and their

interactions.

2 Prior Art

2.1 Synthesis Script Optimization

Historically, synthesis scripts are tuned manually using experimen-

tation and domain experience [4]. This process is time consuming

and is unlikely to yield good results as the interaction of different

synthesis procedures are generally not well understood.

A first automated process for the generation of synthesis scripts

was presented in [3]. In this work, the space of all possible syn-

thesis scripts is represented as a formal grammar and a genetic al-

gorithm is used for optimization. In contrast to this work, our ap-

proach is dynamic, i.e. the decision for a synthesis transformation

is dependent on the design responses to previously applied synthe-

sis transformations.

2.2 Markov Decision Processes

MDPs were originally introduced in [5] to solve the following prob-

lem: We are given a set of states S and a set of actions A. In each

state s ∈ S, an action a ∈ A is chosen. Upon execution of this ac-

tion, the state changes. However, the actual state transitions are

non-deterministic. Given we are in state s and choose action a, the

probability for a transition to state s′ is given by p(s′|a,s). With

each transition, we associate a reward R : (s,a,s′)→ R. Given a

policy π : s→ a, which maps each state s to an action a, we can

calculate the expected overall reward Ro of the infinite sequence of

transitions from an initial state s(0) ∈ S as

Ro

(

s(0)
)

= E

{

∞

∑
t=0

γ tR
(

s(t),a(t),s(t+1)
)

|a(t) = π(s(t))

}

The constant γ ∈ (0,1) is a discount factor which weights immedi-

ate rewards higher than those in the future.

Our objective is to find the optimal policy π∗ among all policies

such that the expected overall reward Ro(s
(0)) is maximized, i.e.

π∗ = argmax
π

Ro

(

s(0)
)

To solve this problem, we associate a utilityU(s) with each state s

which corresponds to the expected overall reward when starting at

s and choosing actions according to the optimal policy π∗. Assum-

ing that we have calculated these utilities, it is possible to determine

the optimal policy π∗(s) in state s: We choose action awhich maxi-

mizes the sum of expected immediate reward and discounted utility

of the expected next state. Formally, we have

π∗(s) = argmax
a

∑
s′
p(s′|a,s)

(

R(s,a,s′)+ γ U(s′)
)

The utilities U(s) can be described by the following system of re-

currences

U(s) = max
a

∑
s′
p(s′|a,s)

(

R(s,a,s′)+ γ U(s′)
)

∀s (1)

The intuition behind these formulae is the following: In state s, the

optimal policy π∗ will select action a with highest sum of expected

immediate reward and discounted utility of the next state. Hence,

the utility of the state is the value associated with this action.

To solve the system of nonlinear equations (1), several methods

have been proposed, among them value iteration [5], policy itera-

tion [6], and an approach based on linear programming [7].

Assuming the Markov Property, i.e. that the probability

p(s′|a,s) of the next state given the current state and the chosen

action does not depend on the past states, π∗ as defined above can

be proved to be the solution to the given optimization problem [5].

3 Dynamic Selection of Transformations

We consider a sequence of synthesis transformations t(1),t(2), . . .
where t(i) is the transformation executed at step i. While ex-

ecuting a transformation t(i), we can observe a relative change

δ (i) = (δ
(i)
a ,δ

(i)
d

,δ
(i)
p) to the circuit, where δ

(i)
a is the relative

change in area, δ
(i)
d

the relative change in delay, and δ
(i)
p the relative

change in power consumption of the circuit. We assume that we

are given probabilities such as p(δ (i)|t(1), . . . ,t(i),δ (1), . . . ,δ (i−1))
which is the probability that δ (i) is observed assuming that trans-

formation t(i) is executed and that we previously executed the se-

quence of transformations t(1), . . . ,t(i−1) and observed the changes

δ (1), . . . ,δ (i−1). Additionally, we define a reward function R :

(t,δ)→ R, which maps a reward to executing transformation t and

observing change δ of the circuit.

We attempt to solve the problem of finding a sequence of trans-

formations t(1),t(2), . . . such that the expected value of the overall

reward Ro = R(t(1),δ (1)) + R(t(2),δ (2)) + . . . is maximized. For

this purpose, we propose to use MDPs to chose at each step i the

best next transformation t(i). In this setup, the transformations take

the role of the actions. As states we use the most recent k transfor-

mations with their respective impact on the quality of the circuit

s
(i)
k

=
(

t(i−k), . . . ,t(i),δ (i−k), . . . ,δ (i)
)

Using this mapping, we obtain the following equations for our

MDP

U(s
(i)
k

) = max
t

∑
δ

p(δ |t,s
(i)
k

)
(

R(t,δ)+U(s
(i+1)
k

)
)

(2)

t(i+1) = argmax
t

∑
δ

p(δ |t,s
(i)
k

)
(

R(t,δ)+U(s
(i+1)
k

)
)

(3)

The parameter k controls how much of the synthesis history is

taken into account. For k→ ∞, we consider the complete synthe-

sis history. Then, the Markov property holds which implies that the

chosen synthesis transformations will be the optimal ones given the

available information. Note, however, that this approach is infea-

sible as the statespace would grow exponentially with the length

of the synthesis sequence. A finite k reduces the state space by

merging states with equal recent synthesis history. This violates

the Markov property, invalidating the optimality result of MDPs.

To alleviate this problem, we augment the state with easily cap-

tured context information from the circuit under synthesis, such as

the current area of the circuit relative to the initial circuit size.

2

6

5

4

step
Synthesis

7
8

9

3

1

90%−

100%

80%−

90%

70%−

80%
Area level

ta,+

ta,−

tb,+

tb,+

tb,+

ta,+ta,−

tb,−

tb,+

ta,−

tb,+

ta,+

ta,+

tb,+

i i+1 i+3 i+4 i+5i+2

ta,+

tb,+

tb,+

ta,+

Figure 1: Illustration of applied state space reduction.

To illustrate these ideas, consider the example in Figure 1,

which depicts a tree of possible synthesis flows starting at step i.

Herein, we assume that k = 2 and that there are only two synthesis

transformations ta,tb which can either improve (+) or deteriorate

(−) the quality of the circuit. We augmented the state with the area

level quantized in 10% steps. In this example, states 6,9 would be

merged, as they have equal recent history of transformations and as-

sociated changes (ta,+),(tb,+) and because they are on the same

area levels.

Even when we augment the k-state with context information,

the bounded approach is not guaranteed to deliver optimal results.

However, we conjecture that the last k steps combined with con-

text information capture the most relevant information and that the

solution of the problem on the reduced state space gives a good ap-

proximation for the optimal solution. Our experimental results in

Section 5 validate this conjecture.

4 Description of Prototype Implementation
To test the applicability of the described theory in a real synthe-

sis framework, we implemented a prototype into the synthesis tool

ABC [8]. The implementation requires three phases: Firstly, we es-

timate the transition probabilities p(δ |t,sk). Secondly, we calculate
the utilities U(sk). Thirdly, we execute the actual logic synthesis

choosing transformations adhering to the optimal policy π∗. In the
following, we describe the implementation details of each phase.

4.1 Estimation of Transition Probabilities

We use a Monte Carlo approach for the estimation of the probabili-

ties p(δ |t,sk). Therefore, we exercise designs with transformations

selected uniformly at random. After the application of a transfor-

mation, we record its impact on the circuit along with the sequence

of past transformations. Denoting the number of times change δ is

observed running transformation t in state sk with c(δ |t,sk), prob-
ability p(δ |t,sk) can be estimated by using

p̂(δ |t,s) =
c(δ |t,sk)

∑i c(δi|t,sk)
(4)

where the sum in the denominator iterates over all possible

changes. The total number of probabilities to be estimated is

bounded by |T |k+1|D|k+1|C|, where T is the set of possible trans-

formations, D the set containing all possible changes, andC the set

of possible contexts the circuit can be in.

For our prototype implementation, we selected 6 technol-

ogy independent transformations offered by ABC. Further, we

quantized area δa and delay changes δd into five bins each

{++,+,+−,−,−−}, ++ standing for big improvement (≥
1.5%), − for a small improvement (≥ 0.5%), +− for basically no

change (< 0.5%),− for a small deterioration (≥ 0.5%) and −− for

a big deterioration (≥ 1.5%) We chose not to consider δp as ABC

lacks a suitable way of measuring the power consumption. Conse-

quently, D has 5×5 = 25 elements. We augmented the state with

the current area/delay relative to the initial area/delay of the circuit,

quantized into 20 bins each. Hence, C contains 202 elements.

In our experimentation, we selected k = 2, which means that

the number of probabilities to be calculated is at most 1.35G. This,

however, is a vast over-approximation. Many probabilities are

known or can be conjectured to be zero. For instance, we know

that the probability of improvement by repetitive, subsequent ap-

plication of SAT-sweeping is zero. [1]. We also validated this re-

sult in our experimentation: After generating about 8M samples,

we found that less than 140k probabilities have been nonzero. This

sparsity has two fortunate consequences: It reduces the storage re-

quirements dramatically and speeds up the convergence of the esti-

mator (4).

4.2 Calculation of State Utilities

The values of the utilities depend on the transition probabilities

and the reward function R(t,δ). In the following, we first describe

guidelines for the definition of reward functions and then the actual

utility calculation via value iteration.

4.2.1 Definition of Reward Function

The reward functions allow designers to specify their requirements

towards synthesis. Depending on context, they will be interested in

defining the reward function differently: For instance, in the early

design phase when synthesis is used to obtain rough area and delay

estimates, designers will be interested in running fast synthesis runs

without thorough optimization. Later, when the design is synthe-

sized for manufacturing, focus will be on quality of results (QOR)

even if the synthesis takes substantially longer.

Our synthesis framework allows designers to freely specify the

reward function according to their needs. The class of reward func-

tions which has been utilized in our experimentation is a weighted

sum of the factors area change δa, delay change δd , and running

time r(t) of operation t:

R(t,δ) = faδa + fdδd− ft r(t) (5)

The constants fa, fd , ft are the weighting factors for area, delay,

and running time, respectively.

4.2.2 Calculation of State Utilities

For the calculation of the utilities, we use value iteration as coded in

Algorithm 1. The function NEXTSTATE(sk,t,δ) predicts the next

state contingent on the current state sk, the chosen transformation

t, and the change in area and delay δ . Note that this cannot be

calculated exactly due to the applied quantification. In our imple-

mentation, we assumed that a small/big change in area/delay leads

to 1%/2% change of the area/delay of the circuit. In our experi-

mentation, this prediction turned out sufficiently precise.

Algorithm 1 VALUEITERATION

initialize allU ′(sk) = 0

repeat

for all sk do

U(sk)←U ′(sk)
for all sk do

U ′(sk)←maxt ∑δ p(δ |t,sk)
×(R(t,δ))+ γ U(NEXTSTATE(sk,t,δ))

d̃← |U(sk)−U
′(sk)|

if d̃ > d then

d = d̃

until d < ε(1− γ)/γ

With Rmax being the maximum possible reward of a transition,

Algorithm 1 is guaranteed to terminate after

N =

⌈(

log
2Rmax

ε(1− γ)

)

(

log(γ −1)
)−1

⌉

steps with an error bound of |U(sk)−U∗(sk)| < ε for all states sk
whereU∗(sk) is the exact utility of state sk [5].

In practice, value iteration has the appealing property that it can

be interrupted at any time in order to obtain approximate results. In

our experimentation, we were able to obtain approximations which

led to good synthesis results after few iterations (< 30).

4.3 Running Logic Synthesis based on MDPs

The procedure describing the actual synthesis process is given in

Algorithm 2. At each step, transformation t with highest value v is

selected depending on sk using formulae (2) and (3). In case the

selected transformation t has positive value v and no cycle was de-

tected, the transformation will be executed, otherwise the algorithm

terminates.

Cycle detection is required to assure termination of the algo-

rithm. Otherwise, speciously promising transformations can be

repetitively selected infinitely often. Futile transformations can ap-

pear promising because of the applied state space reduction and im-

precisely estimated probabilities. In our implementation, a cycle is

detected if a state with no recent improvement is visited twice. With

the help of this necessary criterion for a cycle, the implemented al-

gorithm is guaranteed to terminate as there is only a finite number

of states and the circuit cannot improve infinitely often without de-

teriorating eventually. In this case, cycle detection will interrupt the

loop.

Algorithm 2 MDPBASEDSYNTHESIS

Initialize sk
while true do

(v, t) = SELECTTRANSFORMATION(sk)
if v > 0 and not CYCLEDETECTED(sk) then

sk← RUNTRANSFORMATION(t,sk)
else

return

5 Experimental Results

We performed two experiments to evaluate our approach. Firstly,

we compare the QOR of synthesis runs using our approach with

those obtained by running the standard script delivered as part of

the ABC tool. Secondly, we show that our approach is capable of

generating synthesis scripts for specific user requirements.

Benchmark # Nodes ∆ Nodes ∆ Depths ∆ Time ∆ Ro

ac97 ctrl 10262 2.4% 0.0% 2.2% -1.24

aes core 20451 2.7% 5.0% -51.8% 3.00

des area 4413 -0.2% -3.7% -30.9% 2.26

des perf 74453 0.7% 0.0% -37.3% 0.75

ethernet 56206 0.6% -3.7% 172.6% 5.09

i2c 936 -3.5% 9.1% 12.5% 3.21

mem ctrl 8564 -16.4% 3.6% 23.6% 0.71

pci bridge 16407 0.4% 18.2% 14.0% -0.44

pci conf 84 2.4% 0.0% -20.0% 3.43

pci spoci 821 -6.2% -6.7% 65.4% 3.17

sasc 552 2.2% 0.0% -28.6% 6.75

simple spi 758 1.3% 0.0% -20.5% 8.5

spi 3214 -1.1% 7.1% 10.5% 0.84

ss pcm 394 1.0% 16.7% -26.7% 0.88

stepper 155 -1.3% 0.0% -4.6% 0.36

systemcaes 9930 -3.4% -7.9% 43.2% 2.89

systemcdes 2446 -4.0% 4.4% -10.9% 0.95

tv80 7264 -3.1% 7.3% 9.1% 1.49

usb funct 13332 -0.3% 17.4% 26.0% -10.29

usb phy 357 0.3% -11.1% 0.0% 0.64

vga lcd 88818 0.2% -5.6% 143.8% 4.74

wb conmax 40522 -4.4% 0.0% -34.7% 8.14

Table 1: Change in QOR of MDP-based synthesis over resyn2.
.

5.1 Comparison with Standard Script in ABC

Herein, we compare the performance of synthesis sequences gener-

ated by our tool (MDP) with that of the ABC standard script resyn2

on the designs in the subset of the IWLS benchmark set [9] orig-

inating from the OpenCores repository. We estimated the proba-

bilities using a set of roughly 8M samples, generated by an equal

number of random walks as discussed in Section 4.1 on each of the

available benchmark circuits. As reward function, we used tem-

plate (5) with parameters fa = fd = ft = 1. Intuitively, this means

that area and delay improvements are weighted equally and that a

small improvement (+) in area or delay justifies the running time of

a transformation with effort comparable to that of a rewrite opera-

tion. After calculating the utilities, we synthesized each benchmark

using resyn2 and our tool.

The results are listed in Table 1. Column 2 gives the sizes of

the respective benchmark listed in column 1 and columns 3, 4, and

5 contain the changes in QOR and running time of using our ap-

proach instead of using resyn2. For instance, the entry in column 3

for ac97 ctrl means that synthesizing the design with our approach

yields a design with 2.4% larger area than using resyn2. The last

column contains the absolute difference in terms of the defined re-

ward function by using our approach instead of resyn2.

Comparing the respective results in terms of area, delay, and

running time, one can observe that the synthesis sequence gener-

ated by our tool has similar performance as resyn2. A direct com-

parison is difficult because a better result of one approach in one

category (e.g. area) is often accompanied with a worse result in an-

other category (e.g. running time). In terms of the total reward Ro

(column 4), our approach yields better results in almost all cases.

The results are quite remarkable, noting that our tool generated

the synthesis sequences without any domain knowledge and that

we are comparing against a well-tuned script for this benchmark

set.

5.2 Optimization for Different Reward Functions

Next, we investigated the impact of different reward functions on

the synthesis results. Specifically, we changed the parameters of

template (5) to fa = 1 and fd = 0. This specifies that the syn-

thesis focuses only on area improvement. For ft , we ran our tool

with values 0.05,0.10,0.25,0.5,1,2,4,8,16. As explained earlier,

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
IG

 N
o
d
e
s
 (

n
o
rm

a
liz

e
d
)

Running Time (normalized)

ft=0.05

ft=16

resyn

spi

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.5 1 1.5 2 2.5 3 3.5

A
IG

 N
o
d
e
s
 (

n
o
rm

a
liz

e
d
)

Running Time (normalized)

ft=0.05

ft=16

resyn

i2c

Figure 2: Impact of reward function on QOR.

ft = 1 specifies that a small improvement in area (+) justifies the
computational effort of a transformation with running time compa-

rable to that of a rewrite operation. Other values for ft increase or

decrease this proportion linearly, e.g. ft = 2 would put a twice as

big weight on running time.

Figure 2 shows the results of the experiment for a choice of 2

benchmarks. Note that we ran the experiments for all benchmarks

in the benchmark set with similar results. Each connected point in

the plot correspond to one setting of ft . The plot is normalized with

respect to the performance of the standard script resyn (indicated by

an ×).
The plots clearly show that our tool is able to accommodate user

requests represented in the reward function.

6 Conclusions and Future Work

The composition of good synthesis sequences is complex and static

synthesis scripts are no satisfactory solution. Herein, we presented

a novel, dynamic approach based on MDPs. We implemented a

prototype of our approach into the logic synthesis system ABC and

reported results indicating that our approach performs well and ac-

commodates user requests for different optimization goals.

To improve the efficiency of the described approach, it might be

worthwhile to investigate competing approaches for the calculation

of the utilities. Our literature study suggests that we can expect an

efficiency improvement in using policy iteration or linear program-

ming instead of value iteration. Further, it would be interesting to

investigate how the MDP-based approach performs in other synthe-

sis domains. For instance, we conjecture that our approach might

also be useful in the area of layout synthesis.

References
[1] A. Kuehlmann, “Dynamic transition relation simplification for bounded property

checking,” inDigest Tech. Papers IEEE/ACM Int’l Conf. Computer-Aided Design,

(San Jose, California), pp. 50–57, Nov. 2004.

[2] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewriting: A

fresh look at combinational logic synthesis,” in Design Automation Conference,

2006 43rd ACM/IEEE, pp. 532 –535, 0-0 2006.

[3] A. Kuehlmann and L. Van Ginneken, “Grammar-based optimization of synthesis

scenarios,” in Computer Design: VLSI in Computers and Processors, 1994. ICCD

’94. Proceedings., IEEE International Conference on, pp. 20 –25, oct 1994.

[4] M. Pipponzi, “MDRIVER: A strategy generation for multiple-level optimization,”

in Proceedings of the M.C.N.C. Workshop on Logic Synthesis, April 1991.

[5] R. Bellman, Dynamic Programming. Princeton University Press, 1957.

[6] R. A. Howard, Dynamic Programming and Markov Processes. The M.I.T. Press,

1960.

[7] F. d’Epenoux, “A probabilisitic production and inventory problem,” in Manage-

ment Sciene, pp. 10:98–108, 1963.

[8] Berkeley Logic Synthesis and Verification Group, “A system for sequential syn-

thesis and verification,” Release 70930.

[9] C. Albrecht, IWLS benchmark library. http://www.iwls.org/iwls2005/bench-

marks.html, 2005.

