Timing Variation-Aware Custom Instruction
Extension Technique

Mehdi Kamal', Ali Afzali-Kusha', Massoud Pedram®
'School of Electrical and Computer Engineering, University of Tehran
’EE Department, University of Southern California
m.kamal@ece.ut.ac.ir, afzali@ut.ac.ir, pedram@usc.edu

Abstract—In this paper, we propose a technique for custom
instruction (CI) extension considering process variations. It
bridges the gap between the high level custom instruction
extension and chip fabrication in nanotechnologies. In the
proposed method, instead of using the conventional static timing
analysis (STA), statistical static timing analysis (SSTA) which in
turn results in a probabilistic approach to identifying and
selecting different parts of the CI extension is utilized. More
precisely, we use the delay Probability Density Function (PDF) of
the CIs in identification and selection phases of the CI extension.
In the identification phase, the delay of each CI is modeled by
PDF whereas the performance yield is added as a constraint.
Additionally, in the selection phase, the merit function of the
conventional approaches is modified to increase the performance
gain of the selected CIs at the price of slightly sacrificing the
design yield. Also, to make the approach computationally more
efficient, we propose a method for reducing the modeling time of
the PDF of the CIs by reducing the number of candidate ClIs
before extracting the PDF.

Keywords-component; ASIP, Custom Instruction, Process
Variation, PDF

L INTRODUCTION

The use of embedded processors in a variety of platforms
such as cell phones, health monitoring devices, automotive
applications, and many others is increasing. Similar to many
other digital systems, the computational speed and power
consumption are two critical design parameters [1]. A solution
for these issues is the application specific instruction set
processor (ASIP) methodology which can improve speed and
power consumption of the GPP technique [2][3]. In the ASIP
approach, the instruction set of a GPP is extended through
ASIC design based on the features of the specific application.
The augmented instructions are determined such that the
desired speed, power, and cost requirements are fulfilled. The
main idea behind using ASIP is to run the hotspot parts of an
application on the custom instructions (CIs) and the other parts
of the application on the ALU of the processor.

The ASIP design methodology starts by extracting the data
flow graph (DFG) of the application [1][4]. Next, in
identification phase, all the subgraphs that meet the constraints
of the parallel hardware are enumerated as CIs. The I/O ports
number and propagation delays of the subgraphs are two
common constraints in the CI enumeration. Finally, between
the candidates, the best CIs based on their merit value will be
selected. For each CI, the merit value shows the quantity of the
parameters that the ASIP intends to improve. Normally, the

978-3-9810801-7-9/DATE11/©2011 EDAA

main parameter is speedup, which shows how much
performance is obtained by using Cls in the ASIP [1][2].

In the conventional ASIP approach, the worst-case delays
of the primitives (e.g., AND, ADD, SHIFT, etc.) are used as
the reference to extract the latency of the Cls. In sub-100nm
nanotechnologies, however, complexities in the manufacturing
of the transistors with small sizes have caused significant
variations in nominal transistor parameters (such as threshold
voltage and effective channel length), which in turn has led to
uncertainties in the performance and power consumption of the
circuits [5]. As the process variation impact increases, the gap
between the high level design and fabrication may increase if
proper statistical techniques are not invoked. Designing based
on the process corners to meet the latency constraint is
inadequate [5]. The design flow of the embedded system also is
not an exception and should shift from deterministic to
probabilistic approaches. There are many published results on
modeling and mitigating the process variability at the device
and circuit levels of design abstraction. There are also some
work in high level synthesis (HLS) where techniques have been
proposed to improve the performance and reduce the hardware
cost considering process variations (see, e.g., [5]-[7]). To the
best of our knowledge, there is no report of considering the
process variability in the CI extension in the ASIP design.

In this paper, we propose to modify the design flow of
ASIP by adding the statistical approach in identification and
selection phases of the CI extension. In the identification phase,
the delay of each CI is modeled by a Probability Density
Function (PDF), and performance yield [5] is added to the
constraints set to guarantee the yield of the design. Also, the
merit function which is used in the CI selection phase is
modified based on the probability of increasing the speedup
and improving the design yield using the Cls.

The remainder of this paper is organized as follow. The
problem statement is described in Section II with the overall
approach is given in Section III. The experimental setup and
the results are described in Section IV. Finally, the paper is
concluded in Section V.

II. PROBLEM STATEMENT

In the selection phase of the ISA extension, the best Cls
whose speedup is more than the other ones will be selected.
Also, the selected Cls typically have to meet other predefined
constraints such as the number of I/O ports and layout
area [1][8][9]. While the I/O ports are usually considered in the
identification phase, the area constraint is considered in the
selection phase. To consider process variations, we specify a
performance yield which shows the probability of the

manufactured chip meet the clock period constraint (CPC).
This constraint means that the performance yield of the i”
selected CI (PY)) given by

cpC
PY;, = CDF(CI;) = f PDF(CI;) 2)

0
must be large than a predefined value. The PDF(CI) and
CDF(CI,) show the Probability and Cumulative Density
Function of the i CI, respectively. To simplify the analysis, we
assume that the PDF of the CIs have a normal distribution

Therefore, the problem is formulized as
#Selected CIs

Maximize Speedup; 3)
i=1
Vi:C; € Selected;, PY; > PY,onst 4)

where the PY,,,: is the predefined value for the performance
yield constraint, and PY;is the performance yield of the i™ CI
Also, the Selected;is the set of the selected Cls.

III. PROPOSED APPROACH

The proposed probabilistic consists of the identification and
selection phases of Cls. The identification part obtains the
DFGs of the application and generates all the CIs that meet the
predefined constraints. The output of this phase is a set of
identified CIs. In the deterministic approach, the critical path
delay of the ClIs is compared with CPC where Cls with longer
critical path are removed from the CIs set. In the probabilistic
approach, based on the performance yield, some Cls are
eliminated. For pruning the CI set, the PDFs of the Cls should
be modeled.

There are two methods for extracting the PDFs which are
Monte Carlo and SSTA [10]. While the accuracy of the Monte
Carlo is better than SSTA, its runtime is much higher. In the
identification phase, there are a large number of enumerated
CIs, and hence, finding the PDF of all the CIs is not feasible.
To reduce the runtime, one can use less accurate techniques to
guess the Cls that are not able to meet the performance yield
constraint without finding their PDFs. Here, we propose an
expression for this when the delay variation can be modeled by
a normal distribution. Note that for the cases where the delay
distributions of the CIs may not be described by a normal
distribution, the framework used for calculating the expression
in the normal distribution case is still valid. In these cases, only
the expressions which will be modified based on the
distributions. For the normal distribution case, we only need
the nominal and worst-case delay of the Cls. The CIs whose
U+ kyo values are smaller than the CPC may be removed
from the set. To determine p and o, we need to find the PDF
for the CI which we wish to avoid in this stage. To overcome
the problem, we approximate p by the nominal value of the
delay (T,.m)- Also, we suggest using another constraint
(independent of o) instead of u+ kio0 < CPC. For this
purpose, we need the worst-case delay which may is given by

Delay,,. = u+ 30 (5)-a
Also, our original constraint is
U+ ko <CPC (5)-b

Combining (5)-a and (5)-b, one obtains

- Delay,,. — CPC

- 3_k1
Dela —CPC
u < CPC— 3(,ifwck) (5)-c
S|

The coefficient k; can be extracted from a normal
distribution table or calculated using

k
erf (\/_%) > 2PY onse — 1 (6)

where PYc,, is the minimum performance yield constraint.
Substituting p with the nominal delay of the CIs one may write

Dela — CPC
Toom < (cpc -3 (%)) X err)
—

The coefficient err which has a value larger than one has been
included to minimize the error of using 7, instead of p. This
error can be determined using experimental or analytical
methods. If the constraint in (7) is not satisfied, it is assured
that the performance yield of the CI is smaller than the PYc,q.
If the constraint is satisfied, then using the PDF of the CI, one
should determine if the performance yield is greater than the
PYcous. Using (7), the set of the enumerated Cls may be
pruned. Having reduced the number of ClIs, the PDF and CDF
of the remained Cls are calculated and the Cls with the
performance yield smaller than PY,, are removed. The
extracted PDFs will also be used in the selection phase. The
last part of the ISA extension is the CI selection phase in which
the best Cls are selected based on the merit value.

A. PDF Determination

For finding the PDFs of Cls, we need the PDF of primitives
such as adder, multiplier. When the primitive PDFs are
available, the CI PDFs could be calculated using Monte Carlo
or SSTA approaches. We developed a library that contains the
PDFs of the primitives using the method explained here. First,
we need the PDFs of the gates used in the design synthesis.
These PDFs were extracted using their HSPICE model using its
Monte Carlo analysis. In HSPICE, different types of variation
sources are modeled. The delay PDFs obtained using HSPICE
are put in a library. They are used to find the PDFs of complex
circuits such as a 32-bits Adder. For finding the delay PDF of
complex circuit, the HDL model of the circuit, which is
synthesized based on the technology file, is needed. Using the
model and either SSTA or Monte Carlo method the circuit PDF
is determined.

B. Merit Function

Without considering the process variation, the value
function is typically defined to be the number of clock cycle
reduction (speedup) in the application runtime due to the CI
extension. This function captures the speedup of the CI. The
merit function may be expressed as

M; = #lteration * (CI,-.SW — 10;. Penalty

Clock Period

where M, is the merit value of the i CI, #Iteration is the
number of times that the basic block to which the i/ CI belongs

. (CIL-. CriticalPathDelay)) ®
-c

is repeated, the CI;. SW shows the runtime of the i™ CI on the
base processor. The /0. Penalty is the number of extra accesses
to the register file for reading data to/writing data from CI, and
the last part of this equation is the number of clocks that the CI
needs to find the result. If the I/O port number of the CI is
equal to the read and write port number of the register file,
1Openairy 1s equal to 0.

By considering the process variation, we expect that the
performance yield of the selected Cls will be larger than the
predefined minimum performance yield and also the selected
CIs reduce the application runtime more than other Cls. Also,
we want the performance yield of the selected Cls are near the
100%. In the presence of process variation, we can modify the
merit function such that it includes the performance yield as
well. Hence, the merit function may be modified as

CY; = af (PY;) + Speedup; ©)
where CY; shows the merit function of the i™ CI when the
performance yield is also considered, o is a coefficient that
determines the weight of the performance yield in the merit
function of the CI, and f{PY) is a function obtained by a linear
mapping of PY;, which maps the smallest PY (equal to PYcyy)
to zero and the largest PY (100%) to one, given by

PYi _ PYConst
1- PYConst 1- PYConst

The Speedup; is equal to M; given by (8).

FPY) =

(10)

IV. EVALUATION RESULTS

A. Experimental Setup

To assess the performance of the proposed technique, we
used applications from mibench [11], PacketBench [12], and
SNR-RT benchmark suits [13]. The [PSec and MDS5 were
selected from PacketBench, Ims from SNR-RT, and
G72l1encoder, G721decoder, and bitcounter from mibench suit.
The identification phase was performed based on the work
described in [1]. We modified the method such that the clock
period constraint could be included. Also, to implement the
selection phase we used a greedy approach [2].

In this work, we considered the timing variation only due to
the threshold voltage variation. To extract the threshold
variability induced by process variations, the HSPICE model of
the 45nm PDK technology gates [14] was simulated assuming
10% of variation for the threshold voltages of PMOS (V) and
NMOS (V,;,) For this analysis, we used Monte Carlo analysis
implemented in HSPICE. To extract the PDF of the primitives,
we developed a tool which takes the gate PDFs and the gate
level implementation of the primitives as the input and use
Monte Carlo method to find the primitive PDFs.

B. Experimental Results

First, the impact of the process variation in the
identification phase was studied. As mentioned before, by
estimating the performance yield of a CI before finding its
PDF, the time for extracting the PDF of the Cls is reduced.
Figure 1 shows the percentage of the enumerated Cls which are
removed from the Cls set before finding the PDFs. The results
are for three benchmarks under two different performance yield
constraints and four different clock period constraints. As
observed from Figure 1, by increasing the CPC, the number of
removed Cls is decreased and more Cls may satisfy the timing

constraint. For example, in /ms the removing percentage is
decreased from 97% to 36%. Since in /ms, the average delay of
the identified CIs is 4.2ns compared to 3.6ns in G721encode,
the number of the removed Cls in /ms is more than that of
G721encode. The removed items in /ms are about 36% while
this value for G721encode is about 4% for a CPC of 5ns.

To show the accuracy of (7), we extract the number of Cls
that are kept for the PDF calculation stage phase but their
performance yield does not meet the PY,,,. Figure 2 depicts
the percentage of number of Cls which are passed to the
selection phase (after their PDF and performance yield were
calculated) to the number of CIs which were initially predicted
to remain for the selection phase. As the charts show, although
the proposed prediction model lowers the number of Cls that
their PDFs should be calculated, the number of Cls that are
eliminated when the PDFs are obtained increases as the CPC
decreases, especially when the CPC has a value smaller than
the delay average of the application. For example, the number
of removed ClIs in /P-Sec is not decreased as much as the other
benchmarks when the CPC is decreased to 2ns. Increasing the
number of removed ClIs in the PDF check stage originates from
decreasing the difference between the nominal and worst-case
delay. Thereby, the err value must be reduced for the ClIs with
smaller delays.

G721decode

HIms B G72lencode

100% -
S 80%
°
2 60%
£
g 40%
2
Z 20%
o
£ 0%
I
2 3 4 2 3 4 5
95% PY ot tpc (As) “goo PY,,.

Figure 1. Percentage of the removed Cls in the identifcation phase due to the
performance yield befor extarcting the CI PDFs.

M bitcounter M IP-Sec MD5

100%
°
2 2 80%
@ @©
Q c
o S 60%
O 0
S E 40%
-
29 20%
£e
£ ™
o + I
ES 2 2.5 3 3. 2 .5 3 3.5
95% PY cpc (ns) "85% Pyc,

const

Figure 2. The percentage of number of CIs which are passed to the selection
phase (after their PDF and performance yield were calculated) to the number
of CIs which were initially predicted to remain for the selection phase.

Because of the process variation, a number of Cls are
removed in the identification phase. This has some impacts on
the overall performance gain of the ISA extension. On the other
hand, because of the probabilistic nature of performance yield,
some of the Cls that their worst-case delays do not meet the
CPC, have a chance to remain and be selected as a CI. Hence,
we expect that by reducing PYc,,, the performance

improvement of the selected Cls increases. In the other word,
this behavior is due to the fact that while the Cls with more
nodes usually have more speedup, the probability that their
delays are smaller than CPC is low. Figure 3 depicts the
performance improvement of the benchmarks for different
performance yields. In this figure the worst-case delay is based
on equation (5)-a. The CPC for Ims, G72lencode, and
G2ldecode was 4ns and for other benchmarks was 2.5ns. Also,
the o value in merit function was 0.5. As the chart shows, by
decreasing the performance yield the performance gain
increases. In IP-Sec, however, the performance gains for all
PYcons from 95% to 80% are constant. This originates from the
small delay values of the selected CIs. When considering a
PYcons 0of 95%, the performance gain is improved about 5% in
comparison with the worst-case approach. Also, note that in
Ims and bitcounter benchmarks changing the PYc,,, from 85%
to 80% does not change the performance gain. Finally, in
G72lencoder and G72l1decoder, the performance gain between
the worst-case approach and statistical approach with 95%
PY cong are about the same with a difference of about 1.5%.
Lastly, to investigate the impact of the o coefficient on the
performance gain and average of the performance yield of the
selected Cls in /ms benchmark is presented in Figure 4. The
average of the performance yield is decreased for a given
PYc,nse while it becomes larger as o increases. Also, the
performance gain decreases as o increases. This shows that the
performance yield average (performance gain) is directly
(inversely) proportional to a coefficient.
55% -
Z50%

Sas% -

o (] 2 ()) X
& > & & VQ K (a\&
&

Figure 3. The performance gain of ISA extension under different PYc,g.

V. CONCLUSION

In this work, we proposed a probabilistic approach for the
design flow of the ISA extension in the presence of the process
variation. The technique, which included both identification
and selection phase, modeled the timing constraint by the
performance yield as a probabilistic timing approach. This
converted the conventional deterministic approach to a
probabilistic approach where instead of using a constant delay
value, the timing variation of the primitives were used to model
the delays of the custom instructions. Also, to improve the
runtime speed of the CI identification, an approximate method
was proposed. In the identification phase, the delay and
performance yield were used as parameters for pruning the Cls
set while the final CIs were chosen in the selection phase based
on the merit function. To study the effect of the selected Cls on

the speedup of the processor, the proposed technique was
applied to different applications. The study included the
relation between the speedup and performance yield as well as
the comparison between the worst-case (deterministic) and the
performance yield (probabilistic) approaches.

34% -
34% -
33% -
33% -
32% -+
32% -+
31% -~
31% -+
30% -

100%,,

3
100%E
99%
99%
98%
98%
97%
97%

Performance Gain
Average of Perform
Yield

0513005 100510051
const 90% o 85% 80%

PY ont=95%

Figure 4. The impacts of the a coefficient on performance gain and average
of the performance yield in /ms benchmarks. The linear chart shows the
average of the performance yield.

REFERENCES

[1] L. Pozzi, K. Atasu, and P. Ienne,“Exact and Approximate Algorithms for
the Extension of Embedded Processor Instruction Sets”, IEEE Trans.
CAD, Vol. 25, No. 7, July 2006.

[2] P. Bozini, and L. Pozzi,“Recurrence-Aware Instruction Set Selection for
Extensible Embedded Processors,” in IEEE TVLSI, Vol. 16, pp. 1259-
1267, 2008.

[3] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application specific
instruction-set extensions under microarchitectural constraints,”
International Journal of Parallel Programming, Vol. 31, pp. 411-428,
2003.

[4] N.T. Clark, H. Zhong, and S. Mahlke ,“Automated Custom Instruction

Generation for Domain-Specific Processor Acceleration,” in IEEE
Trans. on Computers, Vol. 54, pp. 1258-1270, 2005.

[5] Y. Xie, and Y. Chen, “Statistical High-Level Synthesis under Process
Variability, ““ in IEEE Transaction Design and Test Computers, Vol. 26,
2009, pp.78-87.

[6] F. Wang, Y. Xie, and A. Takach,“Variation-Aware Resource Sharing
and Binding in Behavioral Synthesis,” in Proceedings of the 2009 Asia
and South Pacific Design Automation Conference, 2009, pp. 79-84.

[71 F.Wang, G. Sun, and Y. Xie, “A Variation Aware High Level Synthesis

Framework,” in Proceedings of the conference on Design, automation
and test in Europe, 2008, pp. 1063-1068.

[8] K. Atasu, G. Dundar, and C. Ozturan.“An integer linear programming
approach for identifying instruction-set extensions,” in Proc. of
CODES+ISSS, 2005, pp. 172-177.

[91 N. Clark, A. Hormati, S. Mahlke, and S. Yehia,“Scalable subgraph
mapping for acyclic computation accelerators,” in Proc. of CASES,
2006, pp. 147-157.

[10] V. Veetil, Y. Chang, D. Sylvester, and D. Blaauw, “Efficient smart
monte carlo based SSTA on graphics processing units with improved
resource utilization,” in Proceedings of the 47th Design Automation
Conference, 2010, pp. 793-798.

[11] M. R. Guthaus et al. ,“MiBench: A free, commercially representative
embedded benchmark suite,” in Proc. of Int. workshop on workload
characterization, 2001, pp. 3-14.

[12] R. Ramaswamy and T. Wolf, “PacketBench: A tool for workload
characterization of network processing,” in Proc. of IEEE International
Workshop on Workload Characterization, October 2003, pp. 42-50.

[13] SNU-RT Real Time Benchmarks.[Online]. Available: http://archi.snu.ac.
kr/realtime/benchmark/.

[14] FreePDK, AFree OpenAccess 45nm PDK and Cell Library for
university, http:// www.eda.ncsu.edu

