
Slack-aware Scheduling
on Coarse Grained Reconfigurable Arrays

Giovanni Ansaloni
and Laura Pozzi

Faculty of Informatics
University of Lugano

via Buffi 13
Lugano, Switzerland

Email: {giovanni.ansaloni},{laura.pozzi}@usi.ch

Kazuyuki Tanimura
and Nikil Dutt

Donald Bren School of
Information and Computer Science

University of California, Irvine
6210 Donald Bren Hall
Irvine, California USA

Email:{ktanimur},{dutt}@uci.edu

Abstract—Coarse Grained Reconfigurable Arrays (CGRAs)
are a promising class of architectures conjugating flexibility and
efficiency. Devising effective methodologies to map applications
onto CGRAs is a challenging task, due to their parallel execution
paradigm and sparse interconnection topology. In this paper we
present a scheduling framework that is able to efficiently map
operations on CGRA architectures. It leverages differences in
delays of various operations, which a reconfigurable architecture
always exhibits at run-time, to effectively route data. We call
this ability “slack-awareness”. Experimental evidence showcases
the benefit of slack-aware scheduling in a coarse-grained re-
configurable environment, as more complex applications can be
mapped for a given mesh size and more efficient schedules can
be achieved, compared to the state of the art methods.

I. INTRODUCTION

Coarse Grained Reconfigurable Arrays (CGRAs) differ from
traditional FPGAs, as they contain coarser basic elements, usu-
ally comprising one or more ALUs. In this way, CGRAs trade
off bit-level flexibility for improved efficiency, so that they can
be deployed as reconfigurable accelerators or reconfigurable
functional units to execute performance critical applications.

Application mapping on CGRAs is a complex task, and
many strategies have been proposed to accomplish it. However,
all previous efforts consider time in discrete chunks, assuming
that each operation executed on a CGRA tile consumes a full
clock cycle. Our contribution to this research field focuses
instead on exploiting slack, the difference between the clock
period and the critical path of execution of an operation, to
combinatorially chain computation and routing.

Slack exploitation has been studied in high-level synthesis
[1] and is commonly featured in FPGA placing and routing,
but has been neglected by State-of-the-Art CGRA schedulers.

The intuition behind our approach is presented in Figure 1:
if communication between cells must be registered, operation
B must be executed three cycles after operation A; on the other
hand, if cycle time allows it, and unregistered communication
is supported, B can be executed immediately after A. This
strategy presents no penalty in maximum clock frequency if
operation A, and routing data through cells, is fast enough
compared to the slowest operation performed on the mesh.

978-3-9810801-7-9/DATE11/ c©2011 EDAA

In this paper we present a novel scheduling strategy that
considers both registered and unregistered communication
among tiles, resulting in an efficient utilization of computa-
tional resources, thus allowing the mapping of more complex
kernels, and with a better execution performance, than is done
by the state of the art, slack-oblivious methodologies.

We evaluate the present mapping algorithm on the Expres-
sion Grained Reconfigurable Array [2] [3], an architectural
template of which widely different instances can be derived
parametrically, comprising heterogeneous cells and without
restrictions on their arrangement.

II. RELATED WORK

Application scheduling on CGRAs poses a novel challenge,
mainly due to their sparse interconnection topology lacking a
centralized register file.

Some research efforts, taking inspiration from FPGA plac-
ing and routing, have considered spatial mapping as a way to
maximize execution parallelism. Examples of this strategy are
SPKM [4] and SMP [5]. These works acknowledge the dual
function (computation and data routing) of CGRA cells but,
as opposed to us, neglect the opportunity to combinatorially
chain cells to speed up execution.

A modulo scheduling approach has instead been taken by
Mei [6], Hatanaka [7] and Park [8]. In these works, both
space and time dimensions are considered during mapping—
as opposed to a spatial approach—borrowing from the modulo
scheduling technique employed on VLIW architectures [9].
However, [6] – [8] also overlook critical paths issues by
assuming only registered connections between tiles, so that
each operation consumes an entire clock cycle.

!"#$%&"'(

)*+,%%"-((

'"#$%&"'(

,.(/.(

0

)

0
(

0

)

Fig. 1. a) registered and b) unregistered routing through a CGRA mesh.

TABLE I
CRITICAL PATH DELAY OF DIFFERENT EGRA OPERATIONS.

route RAC mult membool-bool bool-sh bool-add sh-sh sh-add add-add
critical path (ns) 0.31 0.67 0.85 0.98 1.03 1.16 1.29 1.37 0.85
% of a 1.37 ns clock period 23 49 62 71 75 84 94 100 62
routing hops 3 2 1 1 1 0 0 0 1

RAC

MEM RAC MEM

MULT

RAC RAC

RAC RAC

RAC

RAC

MULT

RAC RAC RAC RAC

MEM RAC MEM RAC

Fig. 2. Example EGRA instance composed of 2 multipliers, 4 memory cells
and 14 RACs (Reconfigurable ALU Clusters).

!"#"$

%&'(#)$$

!"#"$*(#'(#)$$

+,,-./0$

,+1+$2/3$

45+6$2/3$

786$

.9:41-7;1$

0;;58+<$

Fig. 3. Structure of a 3-2 Reconfigurable ALU Cluster.

III. TARGET ARCHITECTURE

An EGRA instance is composed of a mesh of cells of
parametrically determined size, communicating with nearest
neighbour connections and local horizontal and vertical buses,
as described in Figure 2. Tiles at each location of a mesh
can be one of three basic types: multiplier, cluster of ALUs
(Reconfigurable ALU Cluster, RAC) or memory, as decided
by design parameters dictated by a machine description.

These three types of tiles can accommodate the most
used operations present in computational kernels of embedded
systems’ applications; nonetheless, different types of cells can
be integrated in the template as needed by implementing their
internal structures.

Each tile type can be customized at design time to fit
intended target applications. As an example, memory cells can
be instantiated as single or dual-port, with addressing modes
ranging from 8 to 32 bits. Multipliers can support signed,
unsigned or both types of multiplication.

Structure of RAC tiles.. RACs, depicted Figure 3, are
composed of rows of ALUs connected through switch-boxes

and supporting various operations, including if-conversion
through the usage of 1-bit flags. The number of rows in RAC,
the number of ALUs in each row and the operations supported
by ALUs are again machine description parameters; indeed,
[2] presents a design space exploration on RAC structure, from
which emerges that two-rows RACs, like the one illustrated in
Figure 3, achieve a good overall performance.

Delay of tiles. Synthesis data shown in Table I, first row,
highlights the different critical path of array tiles, depending
on their type, and (in the case of RAC tiles), on the operation
that they are configured to perform. To extract these results,
we considered RACs composed of five ALUs in two rows
(corresponding to the scheme in Figure 3), a multiplier capable
of both signed and unsigned multiplication and single-ported
1kB memory cells with 32-bits data addressing. We employed
Design Compiler from Synopsys and TSMC 90nm libraries.

Assuming a clock period equal to the critical path of the
slowest cell (the multiplier), Table I shows, in the second row,
the percentage of clock period taken by each cell performing
their supported operations. The third row of Table I shows how
many routing hops can be performed after computation and in
the same clock cycle, without violating timing constraints. For
example, a RAC configured to execute two boolean operations
can chain two routing hops before exhausting cycle time, while
a memory operation just one.

This data highlights how heterogenous computation times
can be leveraged to increase schedulability of kernels without
increasing clock period.

IV. SCHEDULING FRAMEWORK

Goal of the scheduler is to modulo map a Data Flow Graph
(DFG), representing an iteration of a computational kernel,
onto the architecture, i.e., onto a scheduling space representing
a computational mesh.

In a nutshell, the proposed scheduling algorithm starts from
an initial mapping that is high performance but possibly
invalid, and iterates in search of a valid solution via a simulated
annealing strategy. If a valid solution is not found with the
currently sought high performance, the performance is lowered
and the iteration starts again. Each step of the proposed
algorithm will now be explained.

Expansion of the input DFG. To account for the dual use
of CGRA cells (computation and routing), the input DFG is
expanded by inserting routing nodes. On each edge, the num-
ber of routing nodes must be sufficient to completely traverse
the scheduling space, whose time dimension is bounded by
the maximum as-late-as-possible (ALAP) among operations
to be mapped [9], while its space dimension corresponds to
the physical size of the reconfigurable mesh. In the case of

!"

#"

$"

%&%"

'()"

'*+,&"

-."

/"

0"

1"

2"

3"

4"

!"

#"

$"

5."

1#6"

#$6"

#$6"

3/6"

#$6"

#$6"

#$6"

#$6"

1#6"

Fig. 4. Routing nodes insertion on a DFG, with the annotation of the critical
path length relative to the clock period.

the considered example, this amounts to 2 routing nodes, and
the graph is expanded accordingly (Figure 4).

Generation of an initial schedule. The scheduling space is
a three dimensional graph replicating the CGRA structure size,
cells’ types and topology max(ALAP (op)) times (3 times
in the example). The graph edges connect to both the same
time plane (representing unregistered connections) and to the
following plane (representing registered connections).

To generate an initial schedule, three steps are performed
(and illustrated in Figure 5a-b): first, operations are placed in
the scheduling space on cells that support them and respecting
their precedence constraints. Then, routing nodes are mapped
to connect such operations, by employing the A* algorithm
[10]. Finally, redundant routing nodes are deleted; routing
nodes can be redundant either because they carry the same
data of a node already scheduled on the same position (node
4 or 6, Figure 5a-b) or if they are placed at the position of their
successor operation node (node 7 and node 9, Figure 5a-b).

Figure 5c shows the mapped DFG, decorated with registers
among planes, and annotated with delays.

Calculating the cost of a schedule. A tentative schedule
can be invalid due to either timing violations or resource
overuse.

Timing violation occurs when a path from register to register
exceeds cycle time. Delays over paths are calculated, and a
table is kept that indicates the amount of violation on each
edge. In the example, see Figure 5c and 6a, the Slack Violation
Table (SVT) indicates a violation between nodes 2 and 3, as
node 2 is computed at t = 1, and its output is routed to the
cell below it without registering the result.

Resource overuse occurs when more than what can be
supported by a cell is mapped onto it. This can happen in
two cases: 1) when a cell is being used to route more than
a single value, 2) when a cell is being used to compute an
operation, and to route a different value.

Information on resource overuse is stored in the Modulo Re-
source Table (MRT). Modulo scheduling aims at maximizing
parallelism by pipelining successive iterations of kernels exe-
cution; the distance (in clock cycles) between two iterations is
defined as the Initiation Interval (II). To account for pipelining,
the scheduling space must be folded according to the II when
considering resource overuse; the resulting MRT is composed
of exactly II rows, and contains the usage of each resource
added modulo II. Figure 6b illustrates the Modulo Resource

!"#"$"

!"#"%"

!"#"&"

%

'

&

(

)

*

+

,

-

./"

%

'

(0*"

+

,

&

(0*"

+"

,"

%"

&"

'"

!"#$% &'1"

,+1"

(&1"

2/" 3/"

Fig. 5. a) Expanded DFG mapping on the scheduling space. b) After
redundant nodes deletion. c) Resulting DFG with annotation of routing times.
The combinatorial chain of nodes 2 and 8 violates the timing constraint.

!"##$%&'"($

)$ *$ +$,$ -$.$

/!!012&!3$ 4$)$)$)$!")$

/1"526/&$

&/'"$
)$ *$ +$

)$ 7$ 4$ 4$

*$ 7$ 7$ #"

+$ 7$ 7$ $"

28$ 98$

Fig. 6. a) Slack Violation Table and b) Modulo Resource Table derived from
the scheduling space in Figure 5.

Table for the initial placement in Figure 5 considering II = 1.
It can be noticed that cell 5 is overused, as it hosts node 6-4
at t = 0 and node 2 at t = 1.

This scheme can be easily extended to more complex
topologies, including shared communication links, modeled as
resources able to accommodate routing cells only. Indeed the
results presented in Section V consider local buses. Once the
MRT and the SVT are computed, a placement cost can be
derived by adding up overuse and timing violations.

Iterating in search of a valid solution. If the current
schedule is not valid, a new one is created: an operation node
is unscheduled together with its successor and predecessor
routing nodes, freeing up related resources; the operation
node is then remapped and related routing is performed to
and from the node; a new cost value is computed and the
move is accepted depending on its cost and the current (ever-
decreasing) temperature. The process is repeated until a
valid mapping is found (with placement cost = 0) or if the
maximum number of tries has been reached.

Lowering Performance. If a valid solution has not been
found after a number of iterations, a less aggressive mapping,
of lower performance, is tried. This can be obtained by either
increasing nodes mobility by augmenting their ALAP, or by
increasing the Initiation Interval. The former can be beneficial
to overcome timing violations, the latter to alleviate resource
overuse.

V. EXPERIMENTAL RESULTS

We evaluated the benefit of slack-awareness to perform
modulo scheduling of DFGs to CGRAs. To do so, we com-
pared a setting where operations consume an entire clock cycle
(slack-oblivious scheduler, as employed by Mei [6], Hatanaka
[7] and Park [8]) to one in which slack-awareness is applied
to allow for combinatorial chaining of operations.

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

(")" *" +" %!"

,
-
.
/,
0
.
"1
2
34
,
4
5
2
"1
2
6.
/-
,
7"

!"

%!"

&!"

'!"

8!"

$!"

(!"

)!"

*!"

+!"

%!!"

(")" *" +" %!" %%" %&" %'" %8" %$"

59/"

25:;7,<="

;9
<<
.
;;
"/
,
6.
">
?
@"

29AB./"5C"25D.;"

;7,<=E,F,/."

;7,<=E5B73-359;"

,@" B@"

29AB./"5C"25D.;"

Fig. 7. Slack-aware vs. slack-oblivious modulo scheduling: success rate of
test DFGs (a) and resulting Initiation Interval (b).

Experimental settings. We scheduled automatically gener-
ated DFGs on the EGRA instance presented in Figure 2, using
the two above-mentioned methodologies. DFGs ranged from
6 to 15 operation nodes, and we investigated one hundred of
them for each DFG size.

We considered DFGs with diverse shapes and characteris-
tics: nodes were set to have one or two predecessors, with
50% probability in each case; nodes’ types were randomly
assigned with a probability matching the composition of the
target mesh (10% multiplications, 20% memory operations,
70% RAC operations). The clock period was set to be equal
to 1.37ns (the time used by the slowest operation, multiplica-
tion); consequently, allowed unregistered routing for the slack-
aware scheduler followed data presented in Table I. Three
thousand simulated annealing cycles were performed before
increasing the Initiation Interval; application mapping failed
when II reached max(ALAP), a situation where loops are
not pipelined at all.

Slack-aware scheduling maps more DFGs. Data plotted
in Figure 7a shows the percentage of successful mappings
for each DFG size using slack-aware and slack-oblivious
mappings. The graph highlights the efficiency of slack aware-
ness as, for example, 90% percent of 10-nodes DFGs where
successfully mapped using slack-aware modulo scheduling,
while the same figure is around 10% for a slack-oblivious
strategy.

Slack-aware scheduling achieves better mappings. In
addition to being able to map more DFGs, slack awareness
also improves performance of mapped applications. Figure 7b
compares the average Initiation Interval of DFGs which were
successfully mapped with a slack-aware or a slack-oblivious
strategy. The slack-aware scheduler achieves on average a 33%
smaller II, corresponding to a 33% faster execution of the
mapped kernel.

Real benchmarks. We considered DFGs of computational
kernels extracted from the EEMBC [11] benchmark suite. We
again employed the EGRA instance described in Figure 2 and
we retained the simulated annealing parameters used for the
previous experiments; we mapped each kernel one hundred
times with different initial conditions. Table II illustrates
the size of the DFGs before and after graph expansion, the
percentage of successful mappings and the average Initiation

TABLE II
SCHEDULABILITY AND PERFORMANCE OF BENCHMARK DFG KERNELS

SCHEDULED USING DIFFERENT METHODS.

B.mark DFG Exp. DFG Scheduling Success II
nodes nodes method (%)

autocorr 5 35 slack aware 100 1.04
slack oblivious 100 1.59

conven 5 35 slack aware 100 1.00
slack oblivious 92 2.32

aifirf 6 48 slack aware 100 2.00
slack oblivious 51 2.25

mpegcorr 8 62 slack aware 100 2.66
slack oblivious 0 -

iquant 9 69 slack aware 100 2.08
slack oblivious 0 -

fbital 9 81 slack aware 100 3.22
slack oblivious 0 -

Interval achieved with a slack-aware method compared to a
slack-oblivious one.

Results are in line with the ones obtained for randomly
generated DFGs: slack-aware modulo scheduling is able to
map all six benchmarks, while a slack-oblivious strategy fails
in the three most complex kernels; when both succeed, slack-
aware scheduling results in a more performing mapping (with
a smaller II).

REFERENCES

[1] M. Sivaraman and S. Aditya, “Cycle-time aware architecture synthesis
of custom hardware accelerators,” in Proceedings of the International
Conference on Compilers, Architectures, and Synthesis for Embedded
Systems, Oct. 2002, pp. 35–42.

[2] G. Ansaloni, P. Bonzini, and L. Pozzi, “Design and architectural explo-
ration of expression-grained reconfigurable arrays,” in Proceedings of
the 6th Symposium on Application Specific Processors, Anaheim, CA,
Jun. 2008, pp. 26–33.

[3] G. Ansaloni, P. Bonzini, and L. Pozzi, “Heterogeneous coarse-grained
processing elements: a template architecture for embedded processing
acceleration,” in Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, Nice, France, Apr. 2009, pp. 542–
547.

[4] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek,
“SPKM: A novel graph-drawing based algorithm for application map-
ping onto coarse-grained reconfigurable architectures,” in Proceedings
of the Asia and South Pacific Design Automation Conference, Seoul,
South Korea, Jan. 2008.

[5] M. Ahn, J. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi, “A spa-
tial mapping algorithm for heterogeneous coarse-grained reconfigurable
architectures,” in Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition. European Design and Automation
Association 3001 Leuven, Belgium, Mar. 2006, pp. 363–368.

[6] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“DRESC: A retargetable compiler for coarse-grained reconfigurable
architectures,” in Proceedings of the IEEE International Conference on
Field-Programmable Technology, Dec. 2002, pp. 166–173.

[7] A. Hatanaka and N. Bagherzadeh, “A modulo scheduling algorithm for a
coarse-grain reconfigurable array template,” in Proceedings of the 2007
IEEE International Parallel and Distributed Processing Symposium,
2007, Mar. 2007, pp. 1–8.

[8] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo graph embedding:
Mapping applications onto coarse-grained reconfigurable architectures,”
in Proceedings of the International Conference on Compilers, Architec-
tures, and Synthesis for Embedded Systems, Oct. 2006, pp. 136–146.

[9] B. Ramakrishna Rau, “Iterative Modulo Scheduling,” International
Journal of Parallel Processing, vol. 24, no. 1, pp. 2–64, Feb. 1996.

[10] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, Jul. 1968.

[11] “EEMBC website. http://www.eembc.org/.”

