
A UML 2-based Hardware-Software Co-Design
Framework for Body Sensor Network Applications

Zhenxin Sun∗, Chi-Tsai Yeh†‡, Weng-Fai Wong∗
∗Department of Computer Science, National University of Singapore, Singapore 117417

Email: sunzhenx@comp.nus.edu.sg;wongwf@comp.nus.edu.sg
†Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.

‡Department of Information Management Shih Chien University, Kaohsiung, Taiwan, R.O.C.

Abstract—This paper proposes a unified framework for the
hardware/software codesign of body sensor network applications
that aims to enhance both modularity and reusability. The
proposed framework consists of a Unified Modeling Language
(UML) 2 profile for TinyOS applications and a corresponding
simulator. The UML profile allows for the description of the
low-level details of the hardware simulator, thereby providing a
higher level of abstraction for application developers to visually
design, document and maintain their systems that consist of
both hardware and software components. With the aid of a
predefined component repository, minimum TinyOS knowledge
is needed to construct a body sensor network system. A novel
feature of our framework is that we have modeled not only
software applications but the simulator platform in UML. A
new instance of the simulator can be automatically generated
whenever hardware changes are made. Key design issues, such
as timing and energy consumption can be tested by simulating
the generated software implementation on the automatically
customized simulator. The framework ensures a separation of
software and hardware development while maintaining a close
connection between them. This paper describes the concepts and
implementation of the proposed framework, and presents how
the framework is used in the development of nesC-TinyOS based
body sensor network applications. Two actual case studies are
used to show how the proposed framework can quickly and
automatically adapt the software implementation to efficiently
accommodate hardware changes.

I. INTRODUCTION

Body sensor networks (BSNs) are wireless sensor networks
(WSNs) that are widely used in health care and biomonitoring
systems [1]. These systems continuously monitor human vital
signs, detect critical conditions, and alert care-givers or med-
ical professionals accordingly. In such systems, hardware and
software often need to be co-designed and co-optimized. The
unique features of BSN bring the following three challenges
to their designers.

The first challenge is that the level of abstraction is low
in the current practice of BSN application development. A
number of BSN applications are currently implemented in
nesC [2], a dialect of the C language, and deployed on the
TinyOS [3], which provides low-level libraries for basic
functionalities such as sensor reading and node-to-node com-
munication. While nesC and TinyOS do hide some amount

978-3-9810801-7-9/DATE11/ c©2011 EDAA

of hardware-level details, the low level of abstraction does not
help developers to rapidly prototype their applications because
reusability in the design is low. The second challenge is that
any emergency or anomaly in the vital signs of a patient has
to be processed within hard real time deadline constraints.
Finally, because the BSN components are wearable and mobile
devices, there is a need to maximize battery life.

This paper proposes a new model-driven development
framework that is intended to manage the complexity of
BSN application development by addressing the above issues.
The framework consists of (1) a Unified Modeling Language
(UML) profile for TinyOS to capture the specifications of BSN
applications, and (2) a user customized simulation environ-
ment to perform validation and verification. In our framework,
both design and validation are unified under a high level
specification language, namely UML, thus yielding a complete
and holistic flow that supports the design, implementation,
simulation, and refinement cycle of rapid prototyping. Re-
finement and tuning will also benefit from the formalized
reuse model. We shall present several actual case studies
to show how TinyOS implementations were produced from
specifications and how refinement was done effectively with
the aid of simulation.

II. RELATED WORKS

Several UML profiles have been proposed to address various
design issues [4]–[7]. The main novelty of our paper is a UML
design flow specifically targeted at BSN applications. Unlike
general embedded systems or WSNs, BSN applications have
centralized control, and a fewer number of more sophisticated
motes.

Several simulators, such as OMNET++ [8], J-Sim [9],
Em* [10], have been built to analyze runtime behaviors of
TinyOS applications. However, none of these support the
cycle-accurate simulation of BSN node devices. One simulator
that has modeled both the processor and the peripherals of
sensor nodes for cycle accurate simulation is the Avrora
simulator [11]. Avrora executes standalone applications and
does not integrate into a high-level design flow like ours.

Gratis [12] provides a graphical design environment to
create and generate TinyOS implementation. The main aim of
Gratis is to model the structure of the TinyOS application. It
therefore does not model the behavior of the application. Our

framework captures both the structure as well as behavioral
specifications at the UML level and distinguishes itself from
others described above in enabling the reuse of both the
design and simulation components. We argue that this will
significantly reduce design and validation cost.

III. UML 2-BASED FRAMEWORK FOR TINYOS-BASED
BSN APPLICATIONS

A. UML Profile for TinyOS

Table I
UML PROFILE FOR NESC-TINYOS.

Element Keyword/Concept Purpose

Classes <<SystemDefined>> Predefined nesC module
<<UserDefined>> User-defined module

Operations <<command>> Inter-component communication
<<task>> for intra-component concurrency

Tag types sync Synchronous commands/tasks
async Asynchronous commands/tasks

Interfaces Required Requests that are made from the
class to its environment. A re-
quired interface is denoted by a
socket notation, ‘(’.

Provided Requests that are made from the
environment to the class via a
port. A provided interface is de-
noted by a lollipop notation, ‘©’.

The basic components in TinyOS programs are modules.
There are two kinds of modules in a TinyOS application:
predefined modules from the nesC library and user
defined modules. Each module is modeled as a UML
class. The stereotype <<SystemDefined>> is used to
identify predefined modules supported by the nesC library.
Similarly, the stereotype <<UserDefined>> is given to
UML classes that model user-defined modules. Commands
and tasks are modeled as operations, and they are differen-
tiated using the stereotype <<command>> and <<task>>,
respectively. Tag types sync or async, are introduced to
indicate whether a command is synchronous or asynchronous.
The module interfaces are modeled as UML ports attached to
the classes. A UML port, which is denoted by a square notation
�, defines a distinct point of interaction between a class and
the environment. The UML port takes the name of the nesC
interfaces it specifies. Table I summarizes the proposed UML
notations for TinyOS.

B. Modeling Behaviors

In TinyOS, all the components are running concurrently and
execution is preemptive. This is hard to model in a single state
machine diagram. TinyOS is a event-driven system, and all the
events have to be sent through the corresponding interfaces.
We use a combination of activity diagrams and local state
machine diagram to model system behaviors. Each struc-
ture diagram comes with a corresponding activity diagram
to capture the interactions between the components. Using
activity diagrams, the user will have a clearer picture of the
interactions in the system. To the activity diagram, the designer

can add the trigger actions to the corresponding state machine
diagram. Each action specified on the association indicates a
trigger event. The trigger actions will be specified using an
interface state machine.

C. Code generator and implementation for BSN Application

Both the basic modules and the application models are
used for code generation. Each class with the stereotype
<<UserDefined>> is transformed into two parts: a nesC
module and a configuration. The attributes and operations
defined in the model will be translated into variables, and
methods or tasks. Links will be translated as “wires”. The
operations of classes that implement interfaces will be ex-
tracted and added to its aggregate module. The implementation
of an event is derived from the corresponding state machine
diagram. Specifically, these are the actions embedded under
the trigger action.

A code generator called UML2nesC has been implemented
to produce the nesC implementations. The generators takes
UML models as input, extracts structural and behavioral
specifications and constructs an abstract syntax model for
nesC. The intermediate models are merged with our defined
nesC templates to produce the implementation code in nesC.
The interfaces were generated from the links of structural
model. Each event specified in the activity diagram maps to
an event trigger action, while the detailed implementation was
generated from the state machine diagram. The connections
of the interfaces translate to “wires” in the nesC code. For
each link in the structure diagram, a corresponding interface
connection was created.

D. Code generator and implementation for BSN Simulator

either start with a similar application from the repository or
design one from scratch using the modules in the repository as
building blocks. The nesC library provides essential components
such as timing, storage, ADC, and others. All system modules
will be modeled as UML classes with stereotype
<<SystemDefined>> and maintained in the repository
together with user-defined modules. Figure 4 shows design flow
using our proposed TinyOS repository. Designer will start to
build new application by searching the TinyOS module repository.
If a new module is required, the designer will need to build it
using UML class model of the UML profile. The newly defined
module is then added to the repository, and the search continues
until all the required modules are available in the repository. An
application is built using a structural diagram. Simple drag-and-
drops will add components into the application model. Links have
to be added to connect the ports together. TinyOS applications are
event-driven in nature. As such, the behaviors of interfaces will
be modeling in the corresponding interface state machine
associated with the UML ports. Both the module and application
models are used to generate nesC code. The generated code can
be used for simulation or mote deployment.

Figure 4: Design a new TinyOS application using our
proposed framework

Figure 5: Structure of BSN simulator

5. BSN Node Simulator
Our simulator is an extension of our previous work [17]. The
simulator is written in SystemC, an IEEE standard system level
design language. To achieve fast and accurate simulation speed,

we have chosen the transaction level abstraction to model the
communication between components. The simulator is designed
to be a flexible simulation platform that can achieve accurate
timing and energy estimates.

To get an accurate timing analysis, our simulator is designed
to execute TinyOS program in a cycle-accurate manner. Hardware
components are modeled in detail in the simulator. Figure 5
shows the structure of our simulator. It consists of five main
components: a micro-controller module, a Chip-Con
2420(CC2420) module, a sensor module, a power monitor and a
base station. The micro-controller present in BSN mote is the
Texas Instruments MSP430. The micro-controller module
incorporates a CPU module, a clock module, RAM, Flash and
other peripherals. The power monitor is not part of the MSP430
architecture and its purpose is to monitor power consumed by
each component. Base station acts as a backend message receiver
and display the messages sent out through wireless
communication module cc2420. The connections between the
various modules in the simulator are shown in Figure 5. The
simulator currently includes only the peripherals that are used by
our BSN applications, though there is no reason why others
cannot be added.

The power monitor module collects the energy consumption
of each component at execution time in BSN mote. It is informed
each time there is a change in operating modes of any of the
components. The power monitor will obtain the simulation time
spent in the previous operating mode and compute the energy
consumed during that period. By accumulating the energy
consumed by the individual components of the BSN mote, when
the application completes execution, we obtain a breakdown of
total energy.

We extended our previous simulator using a UML profile for
SystemC. The structure diagram of the BSN simulator is shown in
Figure 10. The UML diagram mainly shows the interfaces and
communications between the hardware components, other details
such as local operations and properties are hidden for clarity.

From the UML model, SystemC implementations of the
simulator are automatically generated. A user can customize the
simulation environment by changing or replacing the components.
With exchangeable UML components, we are able to easily
change or replace the constructed hardware component in the
model. Thus it allows for re-configuration of components, or the
“plug-and-play” of new components, making it ideal as a
validation platform for the pre-integration stage.

6. CASE STUDIES
The goal of our framework is to create a high-level, user-friendly
development environment for designer to create, modify and
maintain their TinyOS-based BSN applications with the support
of reuse and rapid prototyping. In this section, we will describe
two cases studies that give evidence of achieving this.

6.1 Wheeze Detection
Our first example is a microphone array used in a wheeze
detection system. The system is a sound based health condition
monitoring system and it is designed to detect, identify and
selectively record respiratory sounds of interest (e.g. wheezes).
The system consists of three parts: a sensor array and its
preprocessor, a mote, and a PDA. The application is designed to

Figure 1. Structure of BSN simulator.

Our BSN simulator is an extension from this work [13].
The simulator is written in SystemC and can achieve accurate
timing and energy estimates. Figure 1 shows the structure
of our simulator. We extend pervious work by capturing
the simulator in SystemC UML profile. By doing so, the
simulator portion of overall design framework is unified in
our UML-based framework, and the simulator can be easily
customized and managed through high level modifications.
With exchangeable UML components, we are able to easily
change or replace the constructed hardware component in the
model. Thus it allows for re-configuration of components, or

the “plug-and-play” of new components, making it ideal as a
validation platform for the pre-integration stage.

E. Design Methodology

The TinyOS repository serves a key role in the framework.
It contains a set of UML classes formalized using our proposed
UML profile. To design a new application, designer can either
start with a similar application from the repository or design
one from scratch using the modules in the repository as build-
ing blocks. The nesC library provides essential components
such as timing, storage, analog to digital converter (ADC), and
others. All system modules will be modeled as UML classes
with stereotype <<SystemDefined>> and maintained in
the repository together with user-defined modules. Figure 2

User-defined modulesHW design using UML
for SystemC

TinyOS
Repository

HW/SW partition

BSN Application
Requirement

SW design using UML
profile for TinyOS

UML parsing Engine
(UML2nesC)

UML parsing Engine
(UML2SystemC)

SystemC
Repository

Simulator implementation
(SystemC)

Application SW
implementation (nesC)

HW/SW
Co-simulation

Simulation Results
(performance or power)

Requirement
Constraint tuning

Requirement
Constraint tuning

.xmi or .sbs text files

Figure 2. Our proposed design flow for BSN application.

shows design flow for BSN applications using our proposed
automatic UML2-based framework. Designer will start to build
new application for user requirement and then partition that
into hardware and software. If the new TinyOS modules
are required for software design, the designer will need to
construct them using proposed UML profile for TinyOS.
The newly defined modules are then added to the TinyOS
repository, and the similar flow is processed in hardware
design. Our UML parsing engines convert these UML text files
into hardware simulator (SystemC) and application software
(nesC) implementation separately. An application software is
built by using structure diagrams and state machine diagrams.
The generated nesC code can be used for deployment in the
simulator. The designers can obtain the simulation results
rapidly using our proposed framework, and then proceed to
analyze the results in order to refine the hardware/software
design.

IV. CASE STUDIES

A. Wheeze Detection

Our first case study is an audio based health monitoring
system that consists of three components: a microphone array,
preprocessors for the audio signal, a mote, and a PDA.
The application is designed to run on a TinyOS mote that

periodically samples data from the data collection module.
Features are extracted from the data and compared with
certain pre-determined thresholds. If a sequence of audio
signal is classified as a wheeze, it will be sent to PDA
for storage. We start the design by adding in a number of
predefined nesC components: SerialActiveMessageC,
ActiveMessageC, TimerMilliC, mainC, LedsC, and
MSP430ADC12P. A control module, WheezeDetection,
is then added in and marked as <<UserDefined>>. Buffers
and coefficients are entered as class properties and other
utility functions are added as class methods. UML ports are
added to the WheezeDetection module, and are connected
to corresponding UML ports of predefined modules. The
structure diagram of wheeze detection system is shown in
Figure 3.

terms of energy consumption. However, this should not be done at
the expense of failing to record true episodes of wheezing.

The initial specification of the system states that one
microphone is to be used as a sensor and it is to be connected to
an ADC for data acquisition. The wheeze detection process is
controlled by a timer with a period of 32ms. The detection results
will be indicated by the lighting up LEDs on the mote, and the
sending out of data through the wireless channel.

We start the design by adding in predefined components: a
timer (MilliTimerC), an ADC (MSP430ADC12P), a main
routine (MainC), and a LED controller (LedsC). Object
instances are created from each of the modules. A control module,
WheezeDetection, is then added in and marked using the
stereotype <<UserDefined>>. This will model the central
controller that will perform all the audio classification. Buffers
and variables are entered as class properties, and other utility
functions such detection, filtering, are added as class methods.
The implementation is in native C code. UML ports are added to
WheezeDetectionC module to the services provided by those
predefined modules, and they are connected to corresponding
UML ports of the predefined modules. The structure diagram of
Wheeze Detection system is shown in figure 7 to model the
interactions between components.

Collaboration diagram in Figure 6 is used to capture the
interaction between the modules. We need to add all the object
instances into collaboration diagram. Lines and message calls are
added if two modules have interactions. For example, the event
Boot of MainC will trigger the initialization of
WheezeDetection. The initialization code is contained in the
message call named Boot() from Main to Detector.

Our code generator next reads in both the structure and
collaboration diagrams and produces the nesC implementation. To
estimate the timing and energy consumption, the compiled nesC
code is executed on the simulator. As the hardware was not ready
at the start of this project, simulation helped us to optimize our
application. We will show our tuning process in the Section 6.3.

Figure 6: Collaboration diagram of wheeze detection application

Figure 7: Structure diagram of wheeze detection application

6.2 ECG and SpO2 Monitor
Our second example is a MEMSWear bio-monitoring application,
namely the SpO2nECG application, taken from [7]. In this
application, a single sensor mote collects data the red, infrared and
ECG readings from the attached sensor at a sampling rate of
250Hz and then sends them all to the gateway station (a PDA) for
processing. The gateway station uses these data as input to
compute the heart rate, SpO2 and blood pressure. These outputs
will be sent to the clinical department for further analysis. In of
the event of an emergency, an alarm will be raised.

 Radio:ActiveMessageC
<<SystemDefined>>

timer0 : TimerMilliC

itsMainC : mainC :

AM:SerialActiveMessageC
<<SystemDefined>>

<<SystemDefined>>

<<SystemDefined>>

itsLedsC : LedsC
<<SystemDefined>>

<<SystemDefined>>
ADCM:MSP430ADC12P

Detector:WheezeDetection
<<UserDefined>>

BUFFER : int[]
Coeff : int[] :

AverageFilter():void

WheezeDection():void

Received():void

Detector:WheezeDetection
<<UserDefined>>

BUFFER : int[]
Coeff : int[] :

AverageFilter():void

WheezeDection():void

Receved():void
ADC

MSP430ADC12PMultiChannel

receive
Receiv

AMSen
AMsend

SplitControl
Control

BooBoo

Led
Led

Timer
Timer

 Radio:ActiveMessageC
<<SystemDefined>>

AMSend AMSend

SplitControl SplitControl

timer0 : TimerMilliC

TimerMilliC

Timer
Timer

StdControl
StdControl

itsMainC : mainC :

BootBoot

StdControl StdControl

itsLedsC : LedsC

Leds Leds

StdControl

AM:SerialActiveMessage
<<SystemDefined>

receive

Receive

MSP430ADC12MultiChannel

dataready

<<SystemDefined>>

<<SystemDefined>>

<<SystemDefined>>

<<SystemDefined>>
ADCM:MSP430ADC12P

Radio:ActiveMessageC

itsMainC:mainC timer0:TimerMilliC

Detector:WheezeDetection

 Boot.Boot()

T
im

er.fired()

AMSend.SendDone()

ADCM:MSP430ADC12P

dataready.DataReady()

Figure 3. Structure diagram of wheeze detection application.

The activity diagram in Figure 4 is used to capture the
interaction between the modules. We need to add all the
object instances into activity diagram. Lines and message calls
are added if two modules have interactions. For example,
the event Boot() of interface Boot will trigger the initial-
ization of WheezeDetection module. After the initiliza-
tion, WheezeDetection will start to process the data col-
lected from other modules. Each DataReady() event from
MSP430ADC12P will trigger WheezeDetection to store
the incoming data in a buffer, and when TimerMilliC fires
every 32ms by the fired() event, WheezeDetection
will process the stored data within next 32ms and send a
message through ActiveMessageC, and then wait for the
SendDone() event to indicate the message is sent so that it
can continue in next processing cycle.

run on a TinyOS mote that periodically samples data from the
data collection module. Data features are extracted and compared
with certain given thresholds. If a sound clip is classified as a
wheeze, it will be sent to PDA for storage. One of the design
goals is to minimize this communication as it will be expensive in
terms of energy consumption. However, this should not be done at
the expense of failing to record true episodes of wheezing.

The initial specification of the system states that one
microphone is to be used as a sensor and it is to be connected to
an ADC for data acquisition. The wheeze detection process is
controlled by a timer with a period of 32ms. The detection results
will be indicated by the lighting up LEDs on the mote, and the
sending out of data through the wireless channel.

We start the design by adding in predefined components: a
timer (MilliTimerC), an ADC (MSP430ADC12P), a main
routine (MainC), and a LED controller (LedsC). Object
instances are created from each of the modules. A control module,
WheezeDetection, is then added in and marked using the
stereotype <<UserDefined>>. This will model the central
controller that will perform all the audio classification. Buffers
and variables are entered as class properties, and other utility
functions such detection, filtering, are added as class methods.
The implementation is in native C code. UML ports are added to
WheezeDetectionC module to the services provided by those
predefined modules, and they are connected to corresponding
UML ports of the predefined modules. The structure diagram of
Wheeze Detection system is shown in figure 7 to model the
interactions between components.

Collaboration diagram in Figure 6 is used to capture the
interaction between the modules. We need to add all the object
instances into collaboration diagram. Lines and message calls are
added if two modules have interactions. For example, the event
Boot of MainC will trigger the initialization of
WheezeDetection. The initialization code is contained in the
message call named Boot() from Main to Detector.

Our code generator next reads in both the structure and
collaboration diagrams and produces the nesC implementation. To
estimate the timing and energy consumption, the compiled nesC
code is executed on the simulator. As the hardware was not ready
at the start of this project, simulation helped us to optimize our
application. We will show our tuning process in the Section 6.3.

Figure 6: Collaboration diagram of wheeze detection application

Figure 7: Structure diagram of wheeze detection application

6.2 ECG and SpO2 Monitor
Our second example is a MEMSWear bio-monitoring application,
namely the SpO2nECG application, taken from [7]. In this
application, a single sensor mote collects data the red, infrared
and ECG readings from the attached sensor at a sampling rate of
250Hz and then sends them all to the gateway station (a PDA) for
processing. The gateway station uses these data as input to
compute the heart rate, SpO2 and blood pressure. These outputs

Detector:WheezeDetection
<<UserDefined>>

BUFFER : int[]
Coeff : int[] :

AverageFilter():void

WheezeDection():void
Receved():void

ADC

MSP430ADC12PMultiChannel

receive
Receive

AMSend
AMsend

SplitControl
Control

BootBoot

Leds
Leds

Timer
Timer

 Radio:ActiveMessageC
<<SystemDefined>>

AMSend AMSend

SplitControl SplitControl

timer0 : TimerMilliC
Timer

Timer

itsMainC : mainC :
Boot Boot

itsLedsC : LedsC

Leds Leds

AM:SerialActiveMessageC
<<SystemDefined>>

receive

Receive

MSP430ADC12MultiChannel

dataready

<<SystemDefined>>

<<SystemDefined>>

<<SystemDefined>>

<<SystemDefined>>
ADCM:MSP430ADC12P

Detector:WheezeDetection
<<UserDefined>>

BUFFER : int[]
Coeff : int[] :

AverageFilter():void

WheezeDection():void
Receved():void

ADC

MSP430ADC12PMultiChannel

receiv
Receive

AMSen
AMsen

SplitControl
Control

BootBoot

Leds
Leds

Time
Time

 Radio:ActiveMessageC
<<SystemDefined>>

AMSend AMSend

SplitControl SplitControl

timer0 : TimerMilliC

TimerMilliC

Time
Timer

StdControl
StdControl

itsMainC : mainC :
BootBoot

StdControl StdControl

itsLedsC : LedsC

Leds Leds

StdControl

AM:SerialActiveMessageC
<<SystemDefined>>

receive

Receive

MSP430ADC12MultiChannel

dataready

<<SystemDefined>>

<<SystemDefined>>

<<SystemDefined>>

<<SystemDefined>>
ADCM:MSP430ADC12P

Radio:ActiveMessageC

itsMainC:mainC timer0:TimerMilliC

Detector:WheezeDetection

 Boot.Boot()

Tim
er.fired()

AMSend.SendDone()

ADCM:MSP430ADC12P

dataready.DataReady()

Figure 4. Activity diagram of wheeze detection application.

B. ECG and SpO2 Monitor

The second case study is a MEMSWear bio-monitoring ap-
plication, namely the SpO2nECG application taken from [14].
In this application, a single sensor mote collects data from the
attached sensor at a sampling rate of 250Hz and then sends
them all to the gateway station (a PDA) for processing. The
gateway station uses these data as input to compute the heart
rate, SpO2 and blood pressure. These outputs will be sent to
the clinical department for further analysis. In the event of an
emergency, an alarm will be raised.

As the ECG and SpO2 sensors and their ADC were not
available in the repository, we have to model them first. The
module provides an interface named PpgSensor. After con-
structing the ppgSensorC module, we have all the necessary
modules. We then use a UML profile for TinyOS to construct
the ECGnSpO2 application.

V. EXPERIMENT RESULTS

For both our case studies, we drew the UML diagrams
using IBM Rhapsody. UML2nesC, a Java program, per-
forms the generation of the BSN application in of nesC and
UML2SystemC generates the SystemC based BSN simula-
tor. The generated nesC code was successfully deployed on
the BSN motes from Imperial College [15] as well as the
generated BSN simulator. The simulator is cycle-accurate and
therefore, models the real system closely. Table II shows the
application size and execution time of the nesC code gener-
ator. In our designs, existing UML models were reused. For
example, when we designed the ECGnSpO2 application, part
of the structure model was taken from the wheeze detection
application.

Table II
CODE SIZE AND EXECUTION TIME OF OUR AUTOMATIC CODE GENERATOR.

Application Lines of generated
nesC code

Time taken for code
generation

WheezeDetection 361 0.59 second
ECGnSPO2 1046 1.1 second

With the aid of simulator, we are able to estimate the
timing and energy consumption without any real hardware.
The wheeze detection application has a hard real time deadline
of 32 ms to complete a detection cycle. The existing hardware
platforms could not meet this timing requirement, and a new
sensor node is currently under development with twice the
processing power. To account for this, we adjusted the clock
rate in the simulator, and the software development and tuning
continued even as the hardware was being built. Finally,
we reduce the execution time to process each data block
from 46ms to 23ms in WheezeDetection module. For the
ECGnSpO2 application, energy consumption was the main
concern. By executing our ECGnSpO2 implementation, we
were able to obtain the detailed energy profile. We found that
wireless transmission takes up more than 90% of the total
energy consumption. The original implementation consumed
39.58mW. With the proper adjustments, we could reduce the
power consumption to 30.94mW (mJ/ms) shown in Figure 5.

Figure 5. Experiment result of lower power consumption 30.94mW
(20.48mJ/662.01ms) for the ECGnSpO2 application by proper ajustment.

VI. CONCLUSIONS

In this paper, we presented a UML 2-based framework
that aims to assist designers in managing the complexity
and reusability of TinyOS-based BSN applications. Together
with our UML-modeled, automatically generated simulation
environment, we have a design flow that not only allows for the
co-design but also the co-optimization of BSN applications on
possibly as yet non-existent hardware by estimating time and
energy characteristics of the platform. Case studies of actual
BSN applications provide evidence to this claim. Furthermore,
they show the efficiency of the code produced by our generator.

REFERENCES

[1] G. Yang, Body Sensor Networks. Springer-Verlag New York, Inc, 2006.
[2] D. Gay et al., “The nesc language: A holistic approach to networked

embedded systems,” ACM SIGPLAN Notices, vol. 38, no. 5, pp. 1–11,
2003.

[3] P. Levis et al., “TinyOS: An operating system for sensor networks,”
in Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts, Eds.
Springer Berlin Heidelberg, 2005, pp. 115–148.

[4] UML profile specification. [Online]. Available:
http://www.omg.org/technology/documents/profile catalog.htm

[5] L. Lavagno, G. Martin, and B. Selic, UML for Real: Design Embedded
Real-Time Systems. Kluwer Academic Publishers, 2003.

[6] N. Kathy et al., “Model-driven SoC design: The UML-SystemC bridge,”
in UML for SOC Design, G. Martin and W. Mller, Eds. Springer US,
2005, pp. 175–197.

[7] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, “A SoC Design
Methodology Involving a UML 2.0 Profile for SystemC,” in Proc.
IEEE/ACM Design, Automation and Test in Europe Conference and
Exhibition (DATE’05), 2005, pp. 704–709.

[8] A. Varga, “The OMNeT++ discrete event simulation system,” in in
Proceedings of the European Simulation Multi conference (ESM2001),
Prague, Czech Republic, June 2001.

[9] H. Tyan, “Design, realization and evaluation of a component-based
compositional software architecture for network simulation,” Ph.D.
dissertation, Ohio State University, 2002.

[10] L. Girod et al., “Emstar: A software environment for developing
and deploying wireless sensor networks,” in in USENIX 2004 Annual
Technical Conference, 2004, p. 283296.

[11] Aurora. (2007) The AVR simulastion and analysis framework. [Online].
Available: http://compilers.cs.ucla.edu/avrora/

[12] GRATIS. [Online]. Available:
http://w3.isis.vanderbilt.edu/Projects/nest/gratis/GratisIITechOver.html

[13] I. Cutcutache et al., “BSN Simulator: Optimizing application using
system level simulation,” in Proceedings of the 6th International Work-
shop on Wearable and Implantable Body Sensor Networks (BSN 2009),
Berkeley, CA, U.S.A., June 2009, pp. 9–14.

[14] F. E. Tay, D. Guoa, L. Xua, M. Nyana, and K. Yap, “MEMSWear-
biomonitoring system for remote vital signs monitoring,” Journal of the
Franklin Institute, vol. 346, no. 6, pp. 531–542, August 2009.

[15] BSN node specification. [Online]. Available:
http://vip.doc.ic.ac.uk/bsn/index.php?article=167

