System-Level Modeling of a Mixed-Signal System
on Chip for Wireless Sensor Networks

Gilmar S. Beserra, Jose Edil G. de Medeiros, Arthur M. Sampaio, Jose Camargo da Costa
Department of Electrical Engineering, Faculty of Technology
University of Brasilia, Brasilia, Brazil
E-mail: {gbeserra,joseedil,camargo} @unb.br

Abstract—Due to the increasing advance on wireless communi-
cation and sensors, Wireless Sensor Networks (WSN) have been
widely used in several fields, such as medicine, science, industrial
automation and security. A possible solution is to use CMOS Sys-
tem on Chip (SoC) sensor nodes as hardware platforms due to its
extremely low power, sensing, computation and communication
capabilities. This work presents the modeling of a mixed-signal
SoC for WSN using a system-level approach. The digital section
was modeled using SystemC Transaction Level Modeling (TLM)
and consists of a 32-bit RISC microprocessor, memory, interrupt
controller and serial interface. The analog block consists of an
Analog-to-Digital Converter (ADC) described in SystemC-AMS.
An application was implemented to test the correctness of the
model and perform the communication between the SoC and a
functional level node model.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is typically composed
by a large number of multi-functional sensor nodes that are
deployed in a region of interest or very close to it. The
nodes are small in size, but have sensing, data processing
and communicating capabilities. They can communicate over
a short distance and collaborate to accomplish a common task,
such as environmental monitoring or industrial process control
(11, [2].

A common challenge is the requirement for low energy
consumption [3]. System on Chip (SoC) implementation of
such nodes can provide both energy efficiency and adequate
performance to meet the long deployment lifetimes and burst
of computation that characterize WSN applications [4].

This work is part of a project that consists mainly of the
design and implementation of a SoC for WSN applications.
The main application of this project is to monitor environmen-
tal parameters at tropical forests, such as temperature and gas
concentration. In order to develop and validate applications for
the WSN before having a hardware platform available, a high-
level modeling approach is needed. To raise the abstraction
level is a commonly-accepted solution to increase the simula-
tion speed by hiding low-level details of the architecture.

Transaction Level Modeling (TLM) is a high abstraction
level in which modules can communicate with each other
using transactions, a data structure (C++ object) that uses
function calls, allowing a fast simulation. It is used for early
development of the embedded software and also to validate
the system functionality. It is based on SystemC, a C++

1978-3-9810801-7-9/DATE11/©2011 EDAA

library used for the description of systems at different levels
of abstraction [5].

The native SystemC simulation kernel does not allow the
description and simulation of analog, continuous-time systems,
which can be modeled using hardware description languages,
such as VHDL-AMS [6] and Verilog-AMS [7]. A possible
solution is to perform a co-simulation of mixed-signal systems
using SystemC and Verilog/VHDL-AMS. However, there are
some disadvantages related to simulation performance [8]. Be-
cause of that, SystemC-AMS extensions are being introduced
to provide a framework for functional modeling, architectural
exploration, integration, validation, and virtual prototyping of
mixed-signal embedded systems [9]. AMS extensions fill a gap
in the design ecosystem by inserting the missing abstraction
at the architectural level. With AMS 1.0 and SystemC, it is
possible to perform hardware/software (HW/SW) co-design of
the system with all of the elements in place [10].

This work presents the SystemC TLM and SystemC-AMS
modeling of a mixed-signal SoC for WSN using a system-level
approach. The simulations involve the integration of TLM
blocks with a SystemC-AMS module resulting in a mixed-
signal virtual platform in which the software application can be
developed and tested before having the hardware available. To
validate the WSN application concept, the SystemC Network
Simulation Library (SCNSL) [11] was used to allow the
communication between a node composed by a SoC model and
a functional level node model. With this methodology, a library
with open-source high level models of the separated blocks
was also generated for the design of new applications. In
addition, more accurate analog models in VHDL and VHDL-
AMS, for example, can be developed later from the high level
models, as well as models in VHDL, Verilog or System Verilog
for the digital modules.

The paper is organized as follows. Section II shows some
related work. Section III presents the methodology adopted
during the system modeling. In Section IV, the SoC modules
are presented, the modeling of the digital and analog parts are
described, and the system integration is explained. Section V
shows the results and discussions. Finally, Section VI presents
the conclusions and future work.

II. RELATED WORK

In literature, several system-level modeling approaches have
been used to simulate embedded systems with network ca-

pabilities at very early stages in the design process. One
approach is to model system components using SystemC and
combine them in the network environment using NS-2, a well-
known network simulation. Although this approach combines
the best characteristics of each tool, it also introduces a lot
of complexity in the modeling task. Both SystemC and NS-
2 simulation kernels have to be modified in order to allow
the interaction between different simulators. This approach
was used in [12], where a HW/SW/network co-simulation and
co-design methodology is presented, based on the integration
of SystemC and NS-2. In [13], the same approach is used
to simulate both HW and SW parts, and also the network
topology and communication infrastructures.

A model of WSN nodes with SystemC-AMS approach
is simulated in [8]. Model refinements and simulation im-
provements are also presented. The WSN system consist of
two nodes (N1, N2) that exchange information through a 2.4
GHz communication channel. Their focus is on evaluating
the RF transceiver operation, showing that the advantages of
SystemC-AMS are the capacity of interoperability and multi-
frequency simulations.

Fummi presents the SCNSL in [11]. It was designed for
HW/SW/Network co-simulation and allows to model network
scenarios in which different kinds of nodes, or nodes described
at different abstraction levels, interact together. With this
simulator, devices are modeled in SystemC and their instances
are connected to a module that reproduces the behavior of
the communication channel. It also takes into account the
propagation delay, interference, collisions and path loss by
considering the spatial position of the nodes and their on-going
transmissions.

III. METHODOLOGY

System design begins by specifying the required function-
ality. After the specification stage, the functions that will be
executed in HW and SW are divided in order to optimize the
architecture. Then, a high level modeling is performed in order
to allow the concurrent software and hardware development.
The next step is to describe the digital blocks in RTL and
perform the logic and physical synthesis including DFT struc-
tures. The analog parts are implemented using the full custom
methodology, that includes schematic generation, simulation,
and layout generation. Those steps are followed by system
integration, fabrication, and test. All the verification steps were
ommitted for simplicity sake.

The contributions of this work focus on the high level
system modeling and validation stages. Figure 1 shows the
methodology used to model the components. The HW/SW
partitioning is analyzed in order to define an optimized system
architecture. After that, the connection among the modules is
defined through an interface standardization, that is crucial
to allow their compatibility and reuse in future projects. The
development of the modules is performed using SystemC
language. In this step, the analog parts can be described using
SystemC-AMS extensions in order to interact with the remain-
ing blocks. Architecture Description Languages (ADLs), such

SYSTEM ARCHITECTURE
DEFINITION

Y

INTERFACE
STANDARDIZATION

SYSTEMC
SYSTEMC-AMS
ARCHC

SCNSL

Y
AAAAAA N MODULE
P DEVELOPMENT
LIBRARY, f(
)

¥

VIRTUAL PLATFORM
(SIMULATION FRAMEWORK)

Fig. 1. Modeling design flow

as ArchC [14], can be used for the development of processor
models. In addition, the SCNSL library is used to allow the
network environment modeling. IP blocks from other libraries
or developed in previous projects can also be used in this stage.
Finally, the modules are integrated, composing a simulation
framework that can be used for both HW and SW engineers.
With this virtual platform, the former are able to monitor the
data flow and the communication among the modules in order
to identify critical issues, and the latter are allowed to develop
and test embedded software.

By achieving the simulation of analog and digital compo-
nents, the methodology can be applied again later, with fewer
restrictions on how the blocks that are being integrated are
modeled.

IV. SOC DESCRIPTION AND MODELING

Figure 2 shows the block diagram of the modeled study
case. It shows the SoC architecture, that consists of a 32-bit
RISC microprocessor, ADC, memory, an RF interface defined
for network communication and a simple bus.

The key concept in this methodology is to model enough
detail to enable most of the embedded software development.
In this level of abstraction, the focus is not on cycle-accurate
simulation but on sufficient timing information to be capable
of interrupt handling. Memory mapping correctness, register
accuracy and bit-true operations constitute a major requirement
for software development [15].

A. CPU and Bus Modules

Our intention is to obtain a low-power high-efficiency
processor, taking advantage on the MIPS existing development
tools. After the processor description, the ISS generated by
the ArchC tool was adapted and customized for the SoC. The
processor is a 32-bit RISC that implements the instruction
set and the registers of the MIPS architecture. The code was
modified to allow a more realistic timing annotation method
and also to implement a sleep mode.

The processor model also includes an interrupt target port.
All transactions directed to this port will interrupt the pro-
cessor and call and interrupt handler. The interrupt manager

PROCESSOR

MEMORY

FUNCTIONAL
LEVEL NODE

PROXY |

}

}

MODEL

i i |

SIMPLE BUS

!

ADC AMS
SystemC-AMS

RF INTERFACE

PROXY

s Dt
P | -

Fig. 2. Modeled case study

receives all the interrupts generated in the system, calls the
processor interrupt routine and stores the status registers
indicating the events that have occurred. The programmer can
implement different interrupt handling routines in software
using the information in the status register.

The modeled bus consists of an interconnection structure
that reads the address of the transactions initiated by the
processor module and routes it to the appropriate target module
based on the memory mapping addresses. All communication
between modules is implemented using TLM 1.0 instead of
TLM 2.0 in order to use the same protocol defined by ArchC
in our models.

B. Analog-to-Digital Converter (ADC)

As the SoC applications involve sensing the environment,
an ADC is included as an interface with external sensors. In
the abstract model, the ADC is described as a module that
reads an analog value and converts it into a digital word.

SystemC-AMS offers modeling in Timed Data Flow (TDF),
which allows faster simulations as the scheduling is done in
advance. The TUV AMS Library provides building blocks
that focus on the field of communication and radio fre-
quency systems, im particular on signal sources, modula-
tion/demodulation blocks, filters, measurement and observa-
tion parts. They can be subdivided into three categories: signal
sources, basic blocks for signal processing and signal analysis
units [16].

From the categories listed above, a general ADC and a
sine generator blocks were chosen and customized for being
integrated into the SoC model in order to validate the WSN
applications. An End-Of-Conversion (EOC) flag and an addi-
tional output to convert the TDF output into a DE (Discrete
Event) output were created.

C. TLM and SystemC-AMS Integration

To perform this step, some adaptations were necessary. A
wrapper was used to connect the SystemC-AMS ADC into the
TLM SoC model.

In order to connect the ADC into the simple bus, an
sc_export was created. In addition, an sc_port was added
and connected into the processor to generate the interrupts.

Both of them use the tranport() method implemented on the
ac_tlm_protocol from ArchC.

D. SCNSL and Communication

In order to allow early software development for the net-
worked environment, we designed the model of our system
using SCNSL. A case study in which one SoC sends data to
a functional level node model was written in order to validate
the viability of the methodology.

The network and proxy blocks shown in Figure 2 come
from SCNSL library. The former is the core of the network
simulator. It reproduces the behavior of the channel and man-
ages the packet forwarding from the source node to destination
nodes. Transmission delay, path loss, collisions and the state of
destination nodes are taken into account. The latter constitutes
an interface between the custom SystemC modules and the
network core.

The RF block implements both ArchC and SCNSL
interfaces to achieve interaction with both domains
(ac_tlm_transport_if and tlm_transport_if, respectively).
The main thread waits for a transmit command from MIPS
processor and then starts the communication.

V. SIMULATION AND DISCUSSION

With the model described in the previous item, it is pos-
sible to simulate the communication between the SoC and a
functional level node model. In order to validate the platform
functionality, a simple application was developed. It consists
of a MIPS cross-compiled program that is loaded into the
memory in the beginning of the simulation.

The developed code is quite simple. First, the interrupts
are enabled. Then, the processor is set to the sleep mode.
An infinite loop runs while there are no interrupt requests.
When the ADC performs a conversion, or when the functional
node sends a package through the wireless network, the
microprocessor stops the loop and runs an interrupt treatment
routine. In this routine, the processor is set back to the normal
mode and performes actions according to the interrupt cause.
The results can be checked by getting the simulation and debug
information, as shown in Figure 3, where node0 and Nodel
represent the SoC and the funcional level nodes, respectively.

DBG:
0BG: Simulation Time: 3999 us

DBG: Starting instruction Execution
DBG: ----- PC-0x580 NPC-0XS584 ----- 617
DBG: j 352

DBG: Target = @x589

DBG:
DBG: Simulation Time: 3999 us

While there are no interrupts,

DBG: Starting instruction Execution —_— the microprocessor runs an
0BG ----- PC=0x584 NPC=0x580 ----- 618 infinite loop
DBG: nop
DBG:
08G: Simulation Time: 3999 us
DBG: Starting instruction Execution
0BG: ----- PC-@X580 NPC-0x584 ----- 619
086: J 352
DBG: Target = @x580
Received data from ADC SystemC-AMS: 11010100
DBG:
DBG:
DBG: Simulation Time: 4002 us
DBG: MIPS: Processor interrupted.
DBG: NPC (@x580) stored.
Interrupt caused
4902 us: Processor: ADC Interrupt. by the ADC
DBG: CAUSE (@x4) stored.
DBG: Interrupts disabled. CONFIG (@) stored.
DBG: Jumping to interrupt vector address (@x8).
DBG:
DBG:
DBG:
086: Simulation Time: 4386600 ns Data are sent
DBG: Starting instruction Execution
P p— PC=0x584 NPC-0X580 ----- 729 — from the SoC
DBG: nop node

4445200 ns: noded. transceiver: sending a radio packet
DBG:

DBG:
DBG: Simulation Time: 5077800 ns

DBG: Starting instruction Execution
The functional node receives DRG: -mmnm PO-x534 NPGBx550 ----- a9
the data and sends an <—— "% "
acknowledgment back
5085200 ns: Nodel: reading a radio packet

DBG:

DBG:
DBG:
DEG: Simulation Time: 5726200 ns

DBG: MIPS: Processor interrupted.

DBG: NPC (@x584) stored.

5726200 ns: noded.transceiver: reading a radio packet

PA—

The SoC node receives the

causi
acknowledgment, causing an 5726200 ns: Processor: RF Interrupt.

RF interrupt DBG: CAUSE ().

DBG: CAUSE (6x1) stored.

DBG: Interrupts disabled. CONFIG (@) stored.

DBG: Jumping to interrupt vector address (@x8).

DBG:

DBG:

>
Simulation Time

Fig. 3. Debug information

This approach is different from the other works showed in
Section II, since it combines the use of SystemC-AMS to de-
scribe an ADC and SCNSL to allow network communication
between the nodes, while other tools such as NS-2 are usually
adopted. Although SystemC-AMS blocks are used in the nodes
implemented by [8], the communication between them does
not use the resources offered by SCNSL that makes easier to
perform simulations with a larger number of nodes.

Other simulations can be performed to validate the WSN
applications in which tasks such as analog signal acquisition,
digital data processing and communication are carried out. The
model has mixed-signal blocks integrated using a methodology
that includes SystemC, TLM, ArchC, SystemC-AMS and
SCNSL. A library with all the blocks was generated, allowing
design reuse in future projects. All the tools are open-source.

With this model, it is possible to run and develop appli-
cations before having the hardware platform available, saving
time and reducing design costs. In addition, more nodes can
be added to the network and routing algorithms can be tested.

VI. CONCLUSION

This work presented a simulation of a mixed-signal SoC for
WSN using SystemC TLM for the digital blocks and SystemC-
AMS for an ADC. The networked environment was modeled
using SCNSL in order to run WSN applications. The main

advantage is to use a single tool to model hardware, software
and network interactions, simplifying the modeling task.

A case study in which one SoC node performs data acqui-
sition from the ADC and also receives data from a functional
level node model via a wireless network is presented. Although
its simplicity, the presented example illustrates the proposed
modeling methodology. The combined use of SystemC-AMS
and SCNSL differs from the other approaches showed in
Section II to model WSN and brings the advantages of fast
simulation speed from the former and network capabilities
from the latter.

ACKNOWLEDGMENT

The authors would like to thank CNPq and inct NAMITEC
- National Institute of Science and Technology of Nano and
Microelectronic Systems (Brazilian government agencies) for
financial support.

REFERENCES

[1] J. Zheng and A. Jamalipour, Wireless Sensor Networks: A Networking
Perspective. Wiley-IEEE Press, 2009.

[2] 1. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393—
422, 2002.

[3] J. Glaser, J. Haase, M. Damm, and C. Grimm, “Investigating power-
reduction for a reconfigurable sensor interface,” in Proceedings of the
Austrian National Conference on the Design of Integrated Circuits and
Systems (Austrochip 2009), Graz, Austria, vol. 7. Citeseer, 2009.

[4] M. Hempstead, G. Wei, and D. Brooks, “An accelerator-based wireless
sensor network processor in 130nm CMOS,” in Proceedings of the 2009
international conference on Compilers, architecture, and synthesis for
embedded systems. ACM, 2009, pp. 215-222.

[5] The Open SystemC Initiative website.
http://www.systemc.org

[6] “IEEE Standard VHDL Analog and Mixed-Signal Extensions,” IEEE
Std 1076.1-2007 (Revision of IEEE Std 1076.1-1999), pp. c1 =328, 15
2007.

[7] The Verilog-AMS website.
http://www.vhdl.org/verilog-ams

[8] M. Vasilevski, N. Beilleau, H. Aboushady, and F. Pecheux, “Efficient
and refined modeling of wireless sensor network nodes using SystemC-
AMS,” in Research in Microelectronics and Electronics, 2008. PRIME
2008. Ph. D. 1EEE, 2008, pp. 81-84.

[9] M. Damm, J. Haase, and C. Grimm, “Co-Simulation of mixed HW/SW
and Analog/RF systems at architectural level,” in Behavioral Modeling
and Simulation Workshop, 2008. BMAS 2008. IEEE International.
IEEE, 2009, pp. 84-89.

[10] Open SystemC Initiative. (2010,
AMS Extensions Users Guide.
http://www.systemc.org/downloads/standards

[11] F. Fummi, D. Quaglia, and F. Stefanni, “A SystemC-based framework
for modeling and simulation of networked embedded systems,” in
Specification, Verification and Design Languages, 2008. FDL 2008.
Forum on. 1EEE, 2008, pp. 49-54.

[12] E. Fummi, M. Poncino, S. Martini, F. Ricciato, G. Perbellini, and M. Tur-
olla, “Heterogeneous co-simulation of networked embedded systems,”
in Design, Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, vol. 3. 1EEE, 2004, pp. 168-173.

[13] N. Drago, F. Fummi, and M. Poncino, “Modeling network embed-
ded systems with NS-2 and SystemC,” in Circuits and Systems for
Communications, 2002. Proceedings. ICCSC’02. Ist IEEE International
Conference on. IEEE, 2002, pp. 240-245.

[14] The ArchC Architecture Description Language website. [Online].
Available: http://archc.sourceforge.net

[15] F. Ghenassia, Transaction-level modeling with Systemc: TLM concepts
and applications for embedded systems. Springer Verlag, 2005.

[16] J. Ou, P. Brunmayr, F. Muhammad, J. Haase, and C. Grimm. (2010)
TU Vienna SystemC AMS Communications Library Documentation.
[Online]. Available: http://www.systemc-ams.org

[Online]. Available:

[Online].

Available:

March)
[Online].

SystemC
Available:

