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Abstract—This paper presents a ripple-carry adder module
that can serve as a basic component for Quantum Dot Automata
arithmetic circuits. The main methodological design innovation
over existing state of the art solutions was the adoption of so
called minority gates in addition to the more traditional majority
voters. Exploiting this widened basic block set, we obtained a
more compact, and thus less expensive circuit. Moreover, the
layout was designed in order to comply with the rules for
robustness again noise paths [6].

I. INTRODUCTION

As the electronic CMOS transistor technology for infor-
mation processing approaches its limits, new possibilities for
the implementation of digital information processing are being
explored. Among those raising greatest interest are Quantum
Cellular Automaton (QCA). QCA are matrixes of cells, in
which information is stored as the position of couples of
electrons bound within cell borders. Neighbor cells interact by
means of electric Coulombian repulsion, and cell state can be
frozen at will by controlling a potential barrier rising signal
(clock). Disposing such cells in a two dimensional matrix,
driving the state of some cells (inputs) to a desired value,
triggering the freezing of the cells state with a multiphase
signal, and then reading out the value of some defined cells
(outputs), it is possibile to implement digital information
processing functionalities. Even though there is agreement on
the mathematical model that describes certain fundamental
functional features of QCA cells, there are different technolo-
gies still competing for their actual implementation. All the
technologies offer the perspective of highly scalable nanoscale
devices with power consumptions far lower than nowadays
microelectronics, even though some seem more likely to be
exploitable on an industrial scale. Even though the technolog-
ical roadmap to industrial production of such devices is still
under definition, the problem of circuit design can be (and
indeed already is) addressed, relying on the simulation of cell
models for verification. For what concerns design techniques,
the situation is up to now similar to that of CMOS gates based
circuit: a set of basic components is defined to be combined for
implementing the desired functionalities. Since it is possible,
with QCA cells, to implement universal sets of classical logic
gates (NAND, NOR), all the synthesis methods based on such
elementary cells apply. Nevertheless, to ground QCA design
on such ”compatibility” is largely inefficient since, differently
from what happens with CMOS transistor, they are not the
simplest and most economic components possible. Rather,
the role of basic blocks, that is of the most efficient basic
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functionalities implementable, is played in QCA circuits by the
majority and the not gates (majority gates have three inputs,
and produce as output the boolean value that is most present at
the input ports). One of the possibilities is to then try to define
and implement synthesis algorithms that generate functions
circuital implementations combining instances of these two
basic gates. At the same time, analogously to what happens
for CMOS design, it is worth investigating the design of
components that implement specific, highly reusable functions,
such as modular components for arithmetic circuits. This paper
contributes to the latter effort, presenting QCA designs of
half and full adders with significantly lower cost than the
state of the art implementations. To reach this goal we widen
the set of basic gate exploit the minority gate for the first
time in an arithmetic circuit design. To validate the proposed
components, we build adders of different orders and simulate
them with state of the art simulation engines and models. The
paper is structured as follows: in Section II we summarize
the fundamental facts regarding QCA cells. In Section III we
review the state of the art of arithmetic design with QCAs.
In section IV we introduce the basic adder module and the
challenges arisen in the design. In Section V the issues arising
from the combination of the basic modules into higher order
adders are described, and the solutions discussed. Functional
and timing correctness are then verified by simulation. In
Section VI we compare timing and cost figures of our solution
with the state of the art. Conclusions and perspectives for
further works are discussed in Section VII.

II. QCA BASICS

Quantum Cellular Automaton can be seen as matrixes of
cells. Each cell can be empty or it can contain four quantum
dots. A quantum dot can be described as a well in which an
electron can be trapped or, equivalently, stay at rest. The dots
can be positioned one near each vertex of the cell, or one close
to the medium point of each side, to form, respectively, cross
cells and plus cells. Within each cell, two excess electrons are
bound. Each electron can be in one of the four dots, but due
to electric repulsion no two electrons can occupy the same
dot. Moreover, electrons will tend to occupy dots that are
maximally distant, that is opposed dots.

In all the QCA technologies, electrons can move from one
dot to another by means of quantum tunneling. The cells can
then be considered bistables that, at equilibrium, are in one
of two different states. The electrons in one cell interact with
the electrons of the neighbor cells by means of Coulombian
repulsion. Each cell is controlled by a signal, that can either



freeze the electrons in the current position by rising a potential
barrier, or, by lowering it, it can allow the electrons to tunnel
between dots and arrange according to the interaction with
the other cells. By appropriately driving the potential barrier
of the cells, with a multiphase periodic signal, it is possible to
define a flow in the cells sensibility to neighbor cells. This is
necessary in order to make the circuit predictably responsive
to inputs, as will be shown later on in this section.

A. Digital design with QCA

There are different approaches to digital design with QCAs.
Some are based on standard synthesis procedures, that take
as input the truth table of the functionality to implement
and produce as output a disposition of cells in a matrix that
implement it [8]. Such procedures are based, as for the CMOS
technologies, on the definition of a universal set of “gates”.
The simplest logical operator that can be realised with QCAs
is the so called majority gate. The majority gate has three
boolean inputs, and produces as output the value that is most
present as input. A boolean expression representing it is:
M(x, y, z) = xy +xz + yz. The majority gate, in conjunction
with the negation function is universal. Another elementary
gate with QCA is the minority gate, which is the negation
of the majority: m(x, y, z) = ¬M(x, y, z). It can be shown
that m is universal ([9]). In Figure 1 (A) the implementation
of a majority gate is shown. When polarization of cells A, B
and C are fixed, their state will propagate to the nearest cells.
Then, the cell at the center of the cross will be subject to the
Coloumbian interaction with the three polarized neighbours,
and its electrons will settle according to the most present
polarization value. The state will then be propagated to the
output cell. On the other hand, the implementation of the
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Fig. 1. Structure of a Majority gate (A) and a Minority gate (B)

minority gate, which behaviour is similar to the one of the
majority gate, is shown in Figure 1 (B).

B. Wires and clocks

In QCA circuits the state of a cell can be transmitted, (that
is, propagated spatially) by means of wires.

A wire simply is an array of QCA cells in which the
polarization is propagated from one ”input” cell to the others.
To achieve directional control on the information flow, QCA
circuits rely on a clocking mechanism that consists on four
periodic signals with equal frequencies, each shifted in phase

by 90 degrees. One of the clock signals can be considered
the reference (phase = 0) and the others are delayed one,
two and three quarters of a period. The polarization of a cell
which is assigned to clock n doesn’t affect the polarization of
its neighbours assigned to clock n− 1.

It is important to point out that cross cells propagate the
same polarization along the wire while, in contrast, plus cells
intrinsically generate an inverted polarization in neighboring
cells of the same shape, thus achieving a negation logic
function.

III. STATE OF THE ART IN QCA ARITHMETIC DESIGN

Even though actual implementation of practical QCA de-
vices is still a perspective goal, the behavioral features of
the cells are for the most part precisely defined. This allows
to build mathematical models of the devices and to simulate
them, making it possible to address a wide number of design
challenges and issues, ahead of industrial implementations.
The de facto standard for the simulation of QCA devices is, to
date, QCADesigner [12]. In [6] it is shown how, with QCA,
large designs generated by the interconnection of simpler,
functionally verified blocks may behave incorrectly due to very
peculiar physical effects arising from Coloumbian interaction
of neighbor cells. From their analysis, authors drew a set of
design best practices aimed at circuit robustness with respect
to such effects. Such practices have the form of constraints
on the circuit geometric features such as the minimum wire
length of a phase block, the minimum space between wires
and the maximum length of wires. In particular, the inherent
pipelined structure of QCA circuits is taken into account. In [8]
an algorithm for the automatic synthesis of booleans functions,
using majority and minority gates, is presented. Unfortunately,
among the benchmark used to test it, there aren’t arithmetics
circuits. In [11] a modular ripple-carry structure for adders
is presented. The design is not optimized nor robust. Other
adder structures were presented in [2][3][4], and a comparison
of the different designs can be found in [7]. In [5], with
which our work directly compares, the most efficient mod-
ular adder design to date is presented. Authors start from a
conventional ripple carry design, and optimize the layout for
QCA implementation. The paths for the carry propagations are
minimized, so that minimum possible delay (in clock cycles)
is achieved, and the area is significantly reduced. With respect
to [5], we exploited minority gates in addition to majority
ones. This, together with careful optimization, allowed us to
obtain an even more compact adder, maintaining the same
temporal performance. Moreover, with respect to [5], the
adder here presented complies with the constraints drawn in
[6] for robust design. In [9], a minority based full-adder is
presented, but it is not modular and is only suitable as a stand-
alone component, since its inputs and outputs are enclosed by
logic wires, making it impossible to interconnect it to other
modules without long multilayer crossovers. What is more,
the performance optimization issue is not considered at all:
the circuit spawns across nine clock zones for both Sum and



Carry out results. In contrast, our design fits into just 1 clock
zone for the Carry out plus two more for the Sum.

IV. A COMPACT ADDER MODULE

In this Section we propose the design of a compact full-
adder module to be implemented as a QCA. We followed a
logic simplification process similar to the one presented in [5],
in which the most efficient adder implementation to date it is
described. We started adding the minority gate to the toolset
of basic blocks, and sought for the simplest implementation
of full adder outputs.

The expressions obtained are:
CarryOut = ¬m(A, B,CarryIn) (1)

Sum = ¬m(m(¬A,¬B, CarryIn),
m(A, B,CarryIn), CarryIn)

(2)

The proposed adder module, implemented with minority
gates only, is shown in Figure 2.

Fig. 2. Schema of the ripple-carry adder used as basic block

The advantage of using minority rather than majority gates
resides in the opportunity of saving the area and the cells
devoted to not gates, at the cost of a slightly increased design
complexity. The saving comes from the fact that minority gates
are natively implemented by plus shaped cells that, along a
wire, propagate a complemented signal to their neighbours.
This allows to save area and cells although maintaining the
same end to end delay, with respect to [5], for both Sum
and CarryOut signals. In addition, the proposed full-adder
complies with the best practices for robust design derived
in [6] in terms of both maximum wire length and minimum
adjacent cells in a clock region, while the adder proposed in [5]
does not, since it has a single-cell clock zone. This aspect will
turn out to be of particular significance in the implementation
of 2 and 4 bit adders.

The increased design difficulty with plus shaped cells comes
from the need to obtain a correct number of value inversions
along the wires and, at the same time, a reduced maximum
wire length allowed. The design proposed is extremely com-
pact and, notwithstanding the aforementioned difficulties, has
been proved stable and effective through thorough simulation.

There are two main simulation techniques to test a design
[12]: Coherence Vector and Bistable. The Coherence Vector

simulation engine computes evolution of a cell state relying
on the kink energy between the considered cell and all the
other cells in the circuit. The accuracy of Coherence Vector
model depends on the granularity of the time step and can be
used to evaluate the dynamic behavior of cells polarization
switching [6]. On the other hand, Bistable Approximation
models are still based on kink-energy but don’t analyse the
transient between two equilibrium states, thus reducing the
total time of simulation but resulting less accurate.

We tested our designs with both simulation engines: in
Bistable Approximation the number of samples was set to
2000 ∗ 2n where n is the number of inputs, as recommended
by QCADesigner guidelines. As shown in Fig. 3, we obtained
a correct and neat output waveform, not affected by any of
the distortions that in many QCA logic components emerge,
as described in [6]. This makes it possible to use the proposed
adder module as a stable basic block for the design of 2
and 4 bits adders, as is shown in the following sections.
Unfortunately, the work proposed in [5] does not provide
any waveform, making it impossible to perform a robustness
comparison between the two designs.

Fig. 3. Simulation results of the ripple-carry

V. HIGHER ORDER ADDING CIRCUITS

As previously hinted, the full adder design described in the
previous section can be used as a basic building block for
the design of higher order adding circuits. It is worth noting
that, differently from what happens in CMOS design, it is not
possible to simply connect two single adders in order to obtain
a 2-bit adder. In fact, in QCA designs, it is necessary to both
extend and add clock regions on the input and output wires in
order to synchronize them, thus increasing the total amount of
cells and the total area usage. As a side effect, these added cells
may create interferences and potentially lead to inconsistencies
in the output signals, if not correctly handled. It is then
necessary to shift the clock regions to save the consistency
of the results. To overcome the impact of this adjustments
on the circuit cost, we introduced specific optimisations that
achieved a neat output waveform though introducing only one
clock zone more than the single full adder. In other words, the
most significant carry will be ready after 2/4 of a clock period
after the beginning of the computation, while both the sum
signals are ready in a single clock cycle. In fact, increasing of



one bit the capacity of the adder leads to an increment of its
latency of only 1/4 of clock cycle, both for the CarryOut and
the for the Sum signals.

We now focus on the 4 bit adder, which, for its design
structure and its latencies, can be connected modularly without
requiring any clock regions re-phase, and it is then very
suitable for the implementation of higher order adders such
as 8, 16, 32 and 64 bit adders. As shown in Figure 4, the
initial CarryIn and the CarryOut are in the same clock zone.
Hence, this module can be just replicated and connected to a
module of the same kind as is, with no need for internal clock
re-assignmenet or re-synchronization. An issue would arise in
adders large enough to require wires for input skewing and
output deskewing so long that would exceed the maximum
wire lenght allowed. But for adders of such high order, a carry-
look-ahead approach would be more convenient, as shown in
Section VI.

Fig. 4. Schema of the 4-bit ripple-carry adder

VI. PERFORMANCE FIGURES

Aim of the work presented in this paper is the optimiza-
tion of the basic ripple-carry adder module by minimizing
the number of utilized cells. For what concerns the timing
performance, our objective has been to preserve the same
latency of the best adder module that can be found in literature,
both for the CarryOut and the Sum signals. In particular, the
proposed approach makes it possible, considering the simple
full-adder, to save around the 17% of the cells (70 cells against
84 cells) with respect to the best approach that can be found
in literature. Considering the timing performance, since every
Majority gate introduces the same delays of a Minority gate
(a 1/4 clock cycle delay), the CarryOut signal is ready with
only 1/4 clock delay, while the Sum signal is valid after 3/4
of a clock cycle, that are the same timing performance of
the best approach of the state of the art. Table I presents a
complete comparison among the proposed adder module and
the best carry-look-ahead and ripple-carry adder modules that
can be found in literature [5] with respect to several different
higher order adders (the reduction of the number of cells of
the proposed 4 bit ripple-carry adder, RCA4, is around 16%
with respect to CFA4, while the reduction of the number of
cells of the proposed 8 bit ripple-carry adder, RCA8, is around
18% with respect to CFA8).

VII. CONCLUSIONS AND FURTHER WORKS

The work proposed in this paper has shown that it is possible
to significantly reduce the number of cells required to design

TABLE I
COMPARISON AMONG DIFFERENT IMPLEMENTATIONS OF ADDER CIRCUITS

Name Complexity Area Delay
(cells) (µm) (clocks)

CLA4 1575 0.74x1.09 3 2
4

CLA8 3988 3.50x1.58 6 2
4

CFA4 371 0.90x0.45 1 2
4

CFA8 789 1.79x0.53 2 2
4

proposed RCA4 313 1.00x0.40 1 2
4

proposed RCA8 721 1.97x0.56 2 2
4

basic components, such as adder circuits, by utilizing minority
gates instead of majority gates. In addition to this, the proposed
design presents an increased robustness (also shown by the
results of the different simulations) with respect to previous
approaches that can be found in literature, since almost all
the best practices have been followed. The main drawback
of the proposed approach could be found in the increased
complexity of the design, with respect to both the length of
the wires and the setup of the clock regions. These issues
has been successfully faced by means of ad hoc optimizations
performed by hands, and the latencies of the resulting adder
components have been shown to be equal to the best adder
components that can be found in literature, while the reduction
of the number of cells ranges from 16% to 18%.

An interesting extension of the proposed work could be
the automation of the optimizations proposed in this paper,
in order to make it possible to synthesize also more complex
circuits. This would require the automatic synthesis of a logic
function with only minority and not gates, in addition to the
correct handling of wires length and clock regions.
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