
Predicting Bus Contention Effects on Energy and
Performance in Multi-Processor SoCs

Sandro Penolazzi, Ingo Sander and Ahmed Hemani
Dept. of Electronic Systems, School of ICT, KTH, Stockholm, Sweden

{sandrop, ingo, hemani}@kth.se

Abstract—We present a high-level method for rapidly and
accurately predicting bus contention effects on energy and
performance in multi-processor SoCs. Unlike most other ap-
proaches, which rely on Transaction-Level Modeling (TLM),
we infer the information we need directly from executing the
algorithmic specification, without needing to build any high-level
architectural model. This results in higher estimation speed and
allows us to maintain our prediction results within ∼2% of gate-
level estimation accuracy.

I. INTRODUCTION

Multi-Processor SoCs (MPSoCs) have emerged as one
possible solution to cope with the demand of increasing
performance and computational power. However, since all
processors are typically connected to the same bus, contention
can occur, which results in a degradation of performance and
in an increase of energy consumption.

Being able to estimate these two quantities early in the
design cycle is essential to avoid costly and time-consuming
design reiterations. Making it possible is the goal of this paper.

Raising abstraction is a fundamental step towards achieving
early design estimation [3] and Transaction-Level Modeling
(TLM) is a good example of how the abstraction level can be
raised above RTL. However, TLM still implies a considerable
engineering effort, since it relies on simulating both the soft-
ware and the underlying hardware. This can make even TLM
slow when running large and complex use-case scenarios.

Our approach differs from TLM in that it does not sim-
ulate a high-level architecture, but it infers the architectural
implications by combining native code execution and back-
annotation with target-specific information. The abstraction
level of our approach is higher than TLM, thus resulting in
faster estimation. We rely on the following two steps:

1) Characterizing bus contention (Section III): this step con-
sists in identifying and analytically expressing the main factors
responsible for bus contention. Although time consuming, this
step is a one-time activity that should be carried out by the IP
provider.

2) Predicting bus contention (Section IV): this step aims at
predicting the effects of the aforementioned factors, in terms of
performance degradation and energy consumption increase, for
an MPSoC with N processors running N applications. Unlike
the step above, this step is very fast, as the prediction algorithm
is applied on a code profiled during native execution on the

host and back-annotated with target-specific information. This
step is responsibility of the system designer.

II. RELATED WORK

Many high-level modeling approaches rely on TLM. In [6]
the authors choose an approximately-timed transaction-level
implementation to evaluate the timing effects due to bus
contention when mapping applications to MPSoCs. The model
is written in SystemC. In [5], the authors also use TLM to
increase communication speed in MPSoC design. In [4], a
methodology is proposed for software estimation in heteroge-
neous multiprocessor systems. Applications are represented as
a set of tasks forming a fork-join task graph, while the archi-
tecture is specified using the High-level Machine Description
(HMDES) language [2].

Although more abstract and faster than RTL, these ap-
proaches rely on the actual simulation of the target architecture
and, as such, they may still be too slow for modeling complex
scenarios. As opposed to them, our approach runs the appli-
cation code natively on the host and back-annotates it with
target-specific information. After that, a stochastic/analytical
model for contention detection is applied.

III. CHARACTERIZING BUS CONTENTION

In this section, we identify the factors involved in bus
contention and create an analytical model for them. Although
time-consuming since done at gate level for gaining higher
accuracy, this is a one-time activity done by the IP provider.

We define e and E as the execution time and energy
consumption of an application, assuming that this runs on a
single-processor SoC and has all the resources available for
itself. In this ideal case, no bus contention occurs. Executing N
times the same application on this single-processor SoC would
result in an execution time eN = N ·e and energy consumption
EN = N · E. Assuming now to have an MPSoC with N
processors and to run the same application in N identical
copies, each one mapped onto one processor, we still expect
an energy consumption EN = N · E, but we now expect an
execution time eN = e. However, because of bus contention,
we get EN = N · (E + ∆E) and eN = e + ∆e. Identifying
and analytically expressing the factors responsible for ∆e and
∆E is the focus of this section.

Our reference architecture is a SoC composed of one
SPARC compliant Leon3 processor [1], one shared SRAM

978-3-9810801-7-9/DATE11/ c©2011 EDAA



memory and one AHB controller. This configuration is then
extended to a homogeneous MPSoC hosting up to 7 proces-
sors. A Round Robin scheduling policy is chosen for bus
arbitration.

We use an FFT, a Fibonacci and a Viterbi as a characteri-
zation benchmark. Such applications, which are of common-
use and show regular algorithms, run at gate level, which
allows to get accurate numbers for execution time, energy
consumption and a detailed instructions trace. We vary the
number N of processors between 1 and 7. Besides, the same
application runs in N identical copies, each one mapped onto
one processor. Due to the very long time necessary to run
gate-level simulations and energy extractions, we have limited
to three the number of applications used for calibration and
we have only considered Round Robin for bus arbitration.

We identify two major factors affecting bus contention: the
number of processors (Subsections III-A) and the number of
w/r accesses to memory (Subsection III-B).

A. Factor 1: number of processors

In Figure 1 we show the execution time of each of the three
applications running on the different SoC configurations.

Fig. 1. Execution time e (in number of cycles) for FFT, Fibonacci and Viterbi

The first factor involved in bus contention is the number
of processors, which has a nearly linear impact and shows a
similar progression in all the three benchmarks considered. We
associate the increase of execution cycles to stall conditions
for the processors.

We define the percentage of cycles difference C%
x,y between

the N -processor and the 1-processor case, where x = N and
y = 1, for the benchmark applications chosen. The percentage
is calculated having the 1-processor case as a reference. The
results suggest that this value is quite uniform for the same
comparison interval across the different applications.

If we indicate with N the total number of processors and
consider the i-th application running on the i-th processor,
where i ≤ N , we can refer to the execution time e and energy
consumption E of each i-th application as ei(N) = ei(1) +
∆ei(N) and Ei(N) = Ei(1) + ∆Ei(N). Note that ei(1)
and Ei(1) correspond to the ideal case where an application
runs on a single-processor SoC, with no bus contention. We
also introduce the quantity Ci(N) as the number of execution
cycles for the i-th application in the N-processor SoC case.
Note that the value of Ci(1) is available through the relation
Ci(1) = ei(1)/T , being T the clock period. We can thus
express ∆ei(N) with N > 1 using the simple Equation 1:

∆ei(N) = T · C%
N,1 · Ci(1) (1)

We now consider the percentage of cycles difference C%
x,y

between the N -processor case and the (N−1)-processor case,
where x = N and y = N − 1, for the benchmark applications
chosen. The (N − 1)-processor case is taken as a reference.
As an interesting result, we found that C%

7,6 = 16.67% for all
the three applications.

In order to understand whether this quantity would maintain
itself constant also for configurations with a higher number of
processors, the FFT benchmark was run on a SoC with up to
15 Leon3 processors. The results are shown in Figure 2.

Fig. 2. Execution time e (in cycles) for FFT, 1 ≤ N ≤ 15

It is evident that, taken the 6-processor configuration as a
reference, it results that C%

N,6 = (N − 6) · 16.67, for N > 6.
This indicates a strong regularity in the increment of cycles
for configurations with a number of processors N > 6. Note
that these results are representative of the case where Round
Robin is used for bus arbitration.

We identify 3 regions in Figure 2, highlighted by dashed
circles. The circle in the middle shows an almost constant
number of cycles for the SoC configurations with 2, 3 and
4 processors. In this case the bus controller allocates to each
processor requesting the bus a time slot with the width of a bus
transfer. In case of a 4-processor SoC, each processor will thus
be granted a bus access every fourth bus transfer. It appears
that this time frame is short enough to allow a processor to
continue its execution without stalling until it regains control
over the bus. That is why the performance penalty introduced
is insignificant.

However, for configurations with more than 4 processors,
this time frame gets too long and the processor has to stall
for some time before it can access the bus again and continue
its execution. This leads to the behavior highlighted by the
circle on the right and to the 16.67% time penalty for any
extra processor.

Finally, the circle on the left highlights an execution time
difference between the configurations with 1 and 2 processors,
which apparently contradicts the interpretation we have given
above for the configurations with 2 to 4 processors. The
explanation is found in the way the bus controller operates: if
there is only one master requesting the bus, no arbitration is
done and thus no arbitration penalty is introduced.

We have also measured the energy difference for the same
benchmark applications on the 7 SoC configurations, and
we have obtained a linear energy increase proportional to
the processors number. The increase in energy consumption
is a direct consequence of the increased execution time,
which we have previously attributed to stall conditions for a



processor. Indirectly, we can thus say that the energy difference
Ei(N) − Ei(1), with N > 1, is also due to stall conditions.
In particular, if we indicate as Estall

cycle the stall energy overhead
per clock cycle, we can write the following Equation 2:

Estall

cycle
=
Ei(N)− Ei(1)

Ci(N)− Ci(1)
(2)

We expect Estall

cycle to be a constant value. Therefore, we
calculate the value of Estall

cycle by applying Equation 2 to every
SoC configuration with 2 ≤ N ≤ 7 and running our three
reference benchmarks. The consistency of the results confirms
the predictability of the stall energy consumption per clock
cycle, which has an average value Êstall

cycle = 24.85 pJ and a
very low standard deviation σ = 0.53.

With this in mind, we want to analytically express the
energy overhead ∆Ei(N) for the i-th application as a function
of the number of processors N . This quantity was previously
defined as the extra energy consumed by the i-th application
because of bus contention, which is as a function of the number
of processors N . The relation is shown in Equation 3.

∆Ei(N) =
Êstall

cycle
· ∆ei(N)

T
(3)

B. Factor 2: number of w/r accesses to memory

Besides the number of processors, we also investigate the
impact that w/r memory accesses have on bus contention
compared to instructions fetching. We remind the reader that
our reference SoC is composed of processors without cache.

Using the FFT as a reference, we measure the instruction-
level difference C%

7,1 in the execution cycles between the 7-
processor and the single-processor SoC. We are comparing
these two limit cases in order to make the differences more
visible.

Clearly, for all instructions the value of C%
7,1 is positive.

This makes sense, since we are using processors without
cache, which implies that all instructions need to be fetched
directly from memory. Contention can therefore happen for
any instruction.

Being the average value for C%
7,1 = 129.32% when mea-

sured on an application-level basis, all the load/store-related
instructions show a value for C%

7,1 above average. Infact, in this
case, not only fetching represents a possibility for contention,
but also writing/reading data to/from memory. Nonetheless,
there are also some non-store/load-related instructions exhibit-
ing execution time above average. Some of them operate on
data though – such as add, sll and sub – and a delay can be
introduced if the data is not available when the instruction is
issued.

Explicitly considering the load/store-related instructions as
a second factor in modeling bus contention can thus improve
the estimation accuracy for ∆e. This can be done by separately
considering the contribution of the load/store-related instruc-
tions and the non-store/load-related ones. If we denote the
former and latter group of instructions by the symbol wr and

wr respectively, we can reformulate Equation 1 as Equation 4:

∆ei(N,wr) = T ·[C%
wr,N,1·Ci,wr(1)+C%

wr,N,1·Ci,wr(1)] (4)

IV. PREDICTING BUS CONTENTION

In the present section, we use a case study to elaborate
on how we can use and extend the results from Section III
to predict the bus contention effects on an N -processor SoC
running N arbitrary applications. We remind the reader that
we evaluate such effects in terms of variation in the execution
time ∆ei(N,wr) and energy consumption ∆Ei(N,wr) for
each i-th application.

As opposed to the bus contention characterization process,
which is a one-time and time-consuming activity carried out by
the IP provider, the bus contention prediction is very fast and
is made by the SoC architect during design-space exploration.
The speed comes in this case from the fact that the prediction
relies on well-defined equations, such as Eq. 4 and 3, which
are applied on a code profiled during native execution on the
host and back-annotated with target-specific information.

A. Case study

In this case study we want to generalize Equation 4, so
that it can still be applied to the case of an MPSoC with N
processors running N different applications that can start and
finish at any time.

We define an MPSoC execution time empsoc as the range of
time beginning when the first processor starts its execution at
time ts and ending when the last processor finishes its execu-
tion at time tf . It is therefore true that empsoc = max(tf )−
min(ts). In addition, the number of active processors na can
vary in time, until it becomes 0 when the last application
has completed its execution. Since bus contention can only be
caused by an active processor trying to access the bus, we can
rewrite ei(N,wr) and Ei(N,wr) more precisely as ei(na, wr)
and Ei(na, wr). Keeping track of the variation of na over
time is critical. Note also that, when 0 < na ≤ N , there
will be N − na processors in the idle state. This scenario is
shown in Figure 3, where we consider 5 different applications
running on 5 processors [P1, ..., P5], and where each i-th
application starts and finishes at different times ts,i and tf,i.
The processors in idle state are represented by dotted lines.

Fig. 3. MPSoC execution time for N processors and N different applications

Using Equation 4, we want to predict the value ei(na, wr)
for any possible application. Being C%

wr,N,1 and C%
wr,N,1 the

only unknown elements in the equation, we can now use the
average Ĉ%

wr,N,1 and Ĉ%
wr,N,1 calculated on our characteriza-

tion benchmarks, i.e. FFT, Fibonacci and Viterbi, and apply
them to other applications as well. In Section V, we prove



the generality of our model and that the error introduced
is minimal. Equation 4 generalized to any i-th application
becomes therefore:

∆ei(na, wr) = T · [Ĉ%
wr,na,1 ·Ci,wr(1) + Ĉ%

wr,na,1
·Ci,wr(1)]

(5)
The energy consumption caused by the idle state can instead

be expressed as follows:

Ei,idle = Pidle · (empsoc − ei) (6)

where Pidle is the power consumption of the processor when
in idle state. The complete equations for execution time and
energy consumption can thus be rewritten as ei(na, wr) =
ei(1, wr) + ∆ei(na, wr) and Ei(na, wr) = Ei(1, wr) +
∆Ei(na, wr) + Ei,idle respectively.

Note that the starting time ts,i for each i-th application is a
user-defined parameter. The value of tf,i is instead calculated
by the prediction algorithm, as explained below. The times ts
and tf are the only points where the na value is updated.
The reason is that there is no other time when this value
can change. The result is a static decomposition of the whole
applications set into multiple time windows wk. In Figure 3,
six time windows [w1, w6] are identified.

An algorithm can be used for predicting bus contention,
where the equations introduced before are used iteratively to
predict both execution time and energy consumption for each
i-th application. Note that, since the values are updated only
in correspondence of the beginning/end of a time window,
prediction is very fast and its speed is proportional to the
number of applications, not to their length. In detail, the pre-
diction algorithm consists of the following 4 steps, performed
whenever a new window wk starts:

1) The value of na is updated.
2) The ending time of a window is the minimum time

between all the tf,i of the applications that are still running and
the next closest starting time ts,i. The value of tf,i is calculated
as a function of the na value for the present window.

3) For each i-th application, the values of ∆ei(na, wr) and
∆Ei(na, wr) are updated using Equations 5 and 3.

4) The process iterates until all applications have completed
and na = 0. The value of Ei,idle can then also be updated
using Equation 6, since empsoc is known.

V. VALIDATING BUS CONTENTION PREDICTION ACCURACY

Since very accurate, gate level has been chosen to validate
the accuracy in predicting bus contention for both execution
time and energy consumption. The reference SoC architecture
is the same used during the bus contention characterization
phase. The 1-processor configuration is taken as a reference
and measured values ei(1) and Ei(1) are used.

We consider N different applications running on N proces-
sors. Each i-th application is mapped onto only one processor.
We consider the case where N=5. The five applications are a
Viterbi on P1, a Dhrystone on P2, the N-queen problem on
P3, a Fibonacci on P4 and an FFT on P5. Since we do not
have any OS running, all applications start at the same time,
but can finish at different times.

In Table I we show the results for measured versus predicted
execution time and energy. The table shows the number of
active processors na and the current state of each processor,
i.e. active or idle. The predicted values for execution time
and energy are calculated by using the algorithm described
in Subsection IV-A. The prediction error is below 2%. In the
energy prediction case, the idle energy is also considered in
the error calculation.

TABLE I
MEASURED VS. PREDICTED EXECUTION TIME ei[ms] AND Ei[µJ ].

P1 P2 P3 P4 P5

na Viterbi Dhrystone Queens Fibonacci FFT

5
measured ei

active

active

114.06

active

activeEi 156.87

predicted ei 115.25
Ei 158.50

4
measured ei

idle

182.95
Ei 257.11

predicted ei 183.64
Ei 258.01

3
measured ei 232.11

idle

Ei 326.56

predicted ei 231.92
Ei 326.19

2
measured ei 281.64

idle

Ei 407.42

predicted ei 281.61
Ei 407.26

1
measured ei 327.02

idleEi 485.73

predicted ei 326.99
Ei 485.56

Error[%] ei -0.01 -0.01 +1.04 -0.08 +0.38
Ei -0.03 -0.07 +1.07 -0.18 +0.29

VI. CONCLUSIONS AND FUTURE WORK

We have presented a high-level method for rapidly and
accurately predicting bus contention effects on energy and
performance in MPSoCs. Our approach consists of two steps:
first, a one-time activity done at gate level, aimed at identifying
and analytically expressing the main factors involved in bus
contention; second, the development of a prediction algorithm
to be used for design-space exploration and applied at the level
of native code execution. Our prediction results are within 2%
of gate-level estimation accuracy.

REFERENCES

[1] AEROFLEX GAISLER. http://www.gaisler.com.
[2] L. N. Chakrapani, J. Gyllenhaal, W. mei W. Hwu, S. A. Mahlke, K. V.

Palem, and R. M. Rabbah. Trimaran: An infrastructure for research in
instruction-level parallelism. In LNCS. Springer, 2004.

[3] F. Ghenassia. Transaction-Level Modeling with SystemC. 2005.
[4] A. Sahu, M. Balakrishnan, and P. Panda. A generic platform for

estimation of multi-threaded program performance on heterogeneous
multiprocessors. In DATE 2009, Nice, France.

[5] G. Schirner, A. Gerstlauer, and R. Dömer. Fast and accurate processor
models for efficient mpsoc design. ACM Trans. Des. Autom. Electron.
Syst., 15(2):1–26, 2010.

[6] M. Streubuhr, J. Gladigau, C. Haubelt, and J. Teich. Efficient
approximately-timed performance modeling for architectural exploration
of mpsocs. In Forum on Specification Design Languages (FDL), 2009,
Sophia Antipolis, France, 2009.


