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Abstract—This paper presents an efficient technique to per-
form wmulti-objective design space exploration of a multi-
processor platform. Instead of using semi-random search algo-
rithms (like simulated annealing, tabu search, genetic algorithms,
etc.), we use the domain knowledge derived from the platform
architecture to set-up the exploration as a discrete-space multi-
objective Markov Decision Process (MDP). The system walks the
design space changing its parameters, performing simulations
only when probabilistic information becomes insufficient for a
decision. The algorithm employs a novel multi-objective value
function and exploration strategy, which guarantees high accu-
racy and minimizes the number of necessary simulations. The
proposed technique has been tested with a small benchmark (to
compare the results against exhaustive exploration) and two large
applications (to prove effectiveness in a real case), namely the
Jffmpeg transcoder and pigz parallel compressor. Results show that
the exploration can be performed with 10% of the simulations
necessary for state-of-the-art exploration algorithms and with
unrivaled accuracy (0.6 + 0.05% error).

I. INTRODUCTION

Parametrized embedded System-on-Chip (SoC) architec-
tures must be optimally tuned (i.e. their configuration parame-
ters must be appropriately chosen) to find the best trade-off in
terms of the selected figures of merit (e.g. energy and delay)
for a given class of applications. This tuning process is called
Design Space Exploration (DSE).

In the past, multi-processor platforms have been explored
using either classical heuristic algorithms (such as tabu search,
simulated annealing, etc.) [1] or pruning techniques that try
to reduce the size of the design space [2]. Both classes of
techniques rely on simulation (or estimation) as a means for
evaluating the system-level metrics corresponding to a newly
found configuration. If system-level simulation (or estimation)
can be performed in a reasonable time, these algorithms
provide good results. This is generally not true for Multi-
Processor Systems-on-Chip (MPSoCs), for which simulations
can be rather lengthy and time consuming [3].

This work addresses the problem by exploiting the domain
knowledge provided by the definition of a design platform. We
extend our previous approach where exploration is modeled
as a Markov Decision Process (MDP) [4], to create a multi-
objective exploration algorithm referred to as Multi-Objective
MDP (MOMDP), with the following contributions:

¢ A new value function definition
o Improved accuracy: MOMDP sports a six-fold accuracy
improvement compared to MDP and surpasses nine other
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state-of-the-art exploration algorithms. The number of
Pareto points discovered is also increased

« High performance: although the number of simulations
required by MOMDP is higher than MDP, it remains
an order of magnitude lower than any algorithm with
comparable accuracy.

In addtition, we envision a trade-off between speed and
accuracy combining MDP and MOMDP: the former can be
used to obtain a quick overview of the design space, while
the latter performs detailed analysis.

The paper is structured as follows: Section II summarizes
classical exploration algorithms for multi-variate analysis; our
extensions to MDP are introduced in Section III; the appli-
cation of the methodology to three benchmarks is described
in Section IV; finally, Section V draws some concluding
remarks.

II. RELATED WORK

Three main classes of techniques have been proposed in
literature for aiding the design space exploration of system
architectures: (a) techniques that try to reduce the design
space size [5], [6] (b) techniques that provide exploration
heuristics [1](c) techniques based on statistical analysis aimed
at guiding the exploration to specific regions of the design
space [7]

These algorithms approach the problem as a black-box:
they do not take into account the peculiar features, the design
constraints and the a-priori knowledge of the target platform.
For instance, platform-based design [8] methodologies provide
a useful amount of knowledge that can be used to define better
exploration strategies, consistently reducing the number of
required simulations. We previously introduced the theoretical
framework for the use of decision theory to exploit this
information in [4]. In this paper we extend our methodology
by making it fully multi-objective and by adding a new
technique to avoid local minima. The idea is not to improve
the performance of the algorithm, but rather to increase its
accuracy and guarantee that the largest possible number of
Pareto points are found.

III. PROPOSED EXTENSIONS

In this work, we propose two important extensions of the
algorithm presented in [4], that increase its accuracy without
excessively impacting on its performance.



A. The Leap of Faith

In our previous studies, the enabling of forbidden actions in
the fourth step of the algorithm was not sufficient to escape
from deep minima, especially when this required a large
number of actions. To maximize the number of Pareto points
discovered by the algorithm and guarantee that all the largest
possible number of points is found, in this work we introduce
a special action called the “leap of faith”: if the application
of forbidden actions fails to provide a new point with a better
value function, the algorithm simulates the best point found
on the graph, disregarding its probability. This technique
allows to escape from local minima by selecting congurations
with high but unlikely gains. If the configuration found in this
way has a better value function, the algorithm restarts from
this point, otherwise it is considered to have converged.

B. Multi-Objective Exploration

The algorithm works with value functions [9] that map states
to real numbers; in the context of multi-objective optimization
such functions are also called scalarizing functions. For the
algorithm to generate an approximate Pareto curve, as opposed
to generating a single point, the algorithm is applied multiple
times, changing the scalarizing function at every application
so that it covers the whole span of the metric space of inter-
est. This technique, called parameter variation is often used
to generate the Pareto curve of multi-objective optimization
problems [10].

In this context, we introduce a novel value function to guide
the exploration of the algorithm. As opposed to previous works
(including our own), the proposed value function does not
optimize globally according to a scalarizing function, but gives
the best values to points that are likely to be on the Pareto
curve. In the following we describe the proposed approach
using only two metrics for the sake of simplicity, but it can
be easily extended to n dimensions.

The main idea is to have a value function that depends on
the number and location of approximate Pareto points found
by the algorithm during execution. The algorithm is started by
minimizing only one of the considered metrics (e.g. energy),
disregarding all the others (e.g. time, area, etc.). This leads to
one of the extremes of the Pareto front: from here, we use
the proposed value function, which gives best values to points
that are close to the starting point, but still minimizing all
considered metrics.

The algorithm is iteratively, making the algorithm “follow”
the Pareto front, until it is not possible to find any new Pareto-
dominating solutions, as shown in Figure 1.

Figure 2 shows how the value function is dened for a generic
application of the algorithm for two metrics (energy and time)
starting from a point (Ey, Tp). The metrics space is divided
into three areas: (1) an area where all the points are not Pareto-
covered by already discovered points, (2) an area where all
points are already Pareto-covered, and (3) an area where points
are not Pareto-covered, but has already been considered in the
previous itearations.
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Figure 1. TIterative search of the Pareto front: at each execution the algorithm
tries to discover a new point on the Pareto front. Dominated points are
discarded.
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Figure 2. When moving from a point (Eo, Tp) to (Ex,Tx ), the proposed
value function partitions the space in 3 sectors

The points in areas (2) and (3) are to be avoided, because
they are either already covered, or they are likely to have
been found in the previous runs. For this reason, they are
assigned a high (but not infinite, to still allow for multi-
decision solutions to be found) value: 2EyTy for (2) and
1.5Ty Ey for (3). In area (1), the metric for any point (E,, T )
is (T, — Tp)(Eo — E,), making the algorithm favor the closest
point that is not Pareto-covered and still minimizes the metrics.
With repeated applications, the algorithm keeps looking for
close Pareto points until no additional solutions are found.
During the exploration, all points simulated by the algorithm
are added to a set S if and only if they are not Pareto-
covered by other points, and points are removed from S if
they are found to be Pareto-covered at any time. At the end,
S constitutes the estimation of the Pareto curve.

This way, there is no need to define appropriate parameters
for the scalarizing function, and no need to determine the
number of times the algorithm should be applied. This reduces
the burden on the designer, as this number depends on the size
and shape of the design space, the chosen algoritm, the chosesn
scalarizing function, and other parameters. In addtition, the
estimation of this number for a certain Pareto front coverage
target usually requires a large number of experiments.

IV. EXPERIMENTAL RESULTS

The proposed methodology has been validated using two
large applications and a small benchmark for which exhaustive



Table 1
CHOSEN APPLICATIONS

Application Model Synchr. Sim. Time
ffmpeg pthreads | semaphore 30m
pigz pthreads condition 3m
fft6 OpenMP barrier 30s

search was possible, as listed in Table I. The two applications
are ffinpeg, a video transcoder used to convert a small clip
from MPEG-1 to MPEG-4, and pigz, a parallel compression
algorithm. The small benchmark consists of an implementation
of Bailey’s 6-step FFT algorithm (fft6). All application are
data-parallel and are targeted towards a homogeneous shared-
memory multi-processor platform (N processors accessing a
common memory via bus). ffimpeg and pigz are implemented
using pthreads and create a set of “worker” threads equal to
the number of available processors and dispatch independent
data to each worker. fft6 uses OpenMP instead, with loop
parallelization and static scheduling. To guarantee the maxi-
mum variability in application behaviour, all applications use a
different synchronization mechanism and require very different
simulation times.

The ReSP [11] open-source simulation environment was
used to perform the exploration of the aforementioned ap-
plications on a chip-multiprocessor platform. The platform
has been explored using the same parameters as [11], with a
resulting design space of 8640 points, comparable with similar
works (e.g. 6144 points for [6]). To gather sufficient data for a
statistical analysis the benchmarks were run 10 times for each
exploration algorithm (/N = 30 for each algorithm).

The proposed algorithm was compared with nine state-of-
the-art multi-objective optimization algorithms implemented in
MOMHLIib++ [12]. To avoid problems of scale in our graphs
(most algorithms perform orders of magnitude worse), we se-
lected only the three best to be included here: MOGLS (Multi-
ple Objective Genetic Local Search), IMMOGLS (Ishibuchi’s
and Murata’s Multiple Objective Genetic Local Search), and
PMA (Pareto Memetic Algorithm), plus our previously devel-
oped algorithm MDP.

A. Estimation of the Number of Evaluations

The number of evaluations needed to obtain an approximate
Pareto-set for the proposed algorithm depends on the number
of available actions, on the size of their bounds, and on the
algorithm parameters ! (the event horizon), € (the convergence
margin), and A (the accuracy factor).

The best values for the parameters (A = 0.3,¢ = 1075,1 =
4), and their effect on the performance of the proposed
algorithm was shown in [4], and will not be repeated here.
In such previous work, additional parameters and testing were
needed since the algorithm was not multi-objective: MOMDP
does not require such effort to produce high-quality results.

Figure 3(a) shows how the proposed approach (indicated
as MOMDP) compares with other algorithms in terms of
number of simulations; note that it is possible to use the
number of simulations, since all algorithms have negligible

execution time with respect to a single simulation time. We
tried to our best to find the optimal settings for each algorithm
for the design space under consideration, but, still, MOMDP
and MDP use ten times fewer evaluations than all other
algorithms. The variability of the number of evaluations is
very limited, showing stable convergence for all algorithms
(with the notable exception of PMA) on all benchmarks.

Figure 3(b) shows the number of Pareto points found by
each algorithm, normalized by the average found for each
benchmark to allow global comparison. MOMDP provides
the highest number of points on average (with a statistically
significant difference with MDP), confirming the validity of
its novel value function.

Also when comparing the proposed algorithm with recent
approaches [13], the number of simulations required is an or-
der of magnitude lower, except for MDP (which is significantly
less accurate).

B. Quality of the Resulting Approximate Pareto-set

We use three indicators, presented in [14], to compare
the relative quality of the approximate Pareto-Set obtained
by MDP and other state-of-the-art algorithms: the Average
Distance from Reference Set (ADRS), and the non-uniformity
and concentration of solution distribution. Figure 4 shows the
comparison of the Pareto-set evaluation metrics: concerning
non-uniformity, all algorithms provide well-distributed solu-
tions without any significantly different behaviour, and the
detailed results are not reported here for the sake of brevity.

Figure 4(a) shows that MDP and MOMDP have signifi-
cantly lower concentration, meaning that solutions cover more
of the design space for the proposed algorithm. The results are
confirmed using repeated t-tests (p-values< 0.02). Note how
MDP and MOMDP are not significantly different (p = 0.5).

The accuracy of MOMDP was measured as the Average
Distance from a Reference Set (ADRS); the reference set
consists of the Pareto-Set obtained after collecting all sim-
ulation results from all algorithms, or exhaustive simulation
in the case of ffto. ANOVA reports that algorithms have
different average ADRS with a p-value close to zero, and
Figure 4(b) shows the boxplot of ADRS per algorithm, ordered
by average. Using repeated t-tests between MDP and all the
other algorithms, evidence suggests that MOMDP is the most
accurate algorithm.

In conclusion, MOMDP outperforms all other algorithms
for accuracy and uniformity, with similar extent, using one
order of magnitude fewer simulations than pseudo-random
algorithms, and 2.5 times more simulations than MDP.

V. CONCLUSIONS

This paper presented a multi-objective design exploration
algorithm based on Markov Decision Processes.The proposed
algorithm presents a novel Pareto-front discovery technique
that guarantees results of the highest accuracy, but still re-
quiring a small number of simulations. In addition, when
compared to previous work on MDPs, results show an increase
in the number of discovered pareto points and a factor 6
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Figure 4. Concentration (a)and ADRS (b) metrics comparing MOMDP with state-of-the-art algorithms (lower is better)

improvement in accuracy. The number of simulations has
increased 2.5 times, but still remains one order of magnitude
smaller than nine state-of-the-art pseudo-random heuristics.
The proposed technique has been applied to three very differnt
applications showing consistent behaviour on all three.
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