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Abstract—Reversible logic is one of the emerging technologies
having promising applications in quantum computing. In this
work, we present new design of the reversible BCD adder that
has been primarily optimized for the number of ancilla input
bits and the number of garbage outputs. The number of ancilla
input bits and the garbage outputs is primarily considered as
an optimization criteria as it is extremely difficult to realize a
quantum computer with many qubits. As the optimization of
ancilla input bits and the garbage outputs may degrade the design
in terms of the quantum cost and the delay, thus the quantum cost
and the delay parameters are also considered for optimization
with primary focus towards the optimization of the number of
ancilla input bits and the garbage outputs. Firstly, we propose a
new design of the reversible ripple carry adder having the input
carry C0 and is designed with no ancilla input bits. The proposed
reversible ripple carry adder design with no ancilla input bits
has less quantum cost and the logic depth (delay) compared to
its existing counterparts. The existing reversible Peres gate and
a new reversible gate called the TR gate is efficiently utilized
to improve the quantum cost and the delay of the reversible
ripple carry adder. The improved quantum design of the TR
gate is also illustrated. Finally, the reversible design of the BCD
adder is presented which is based on a 4 bit reversible binary
adder to add the BCD number, and finally the conversion of the
binary result to the BCD format using a reversible binary to
BCD converter.

I. INTRODUCTION

In the hardware design, binary computing is preferred over
decimal computing because of ease in building hardware
based on binary number system. In spite of ease in building
binary hardwares, most of the fractional decimal numbers
such as 0.110 cannot be exactly represented in binary, thus
their approximate values are used for performing computations
in binary hardware. Because the financial, commercial, and
Internet-based applications cannot tolerate errors generated by
conversion between decimal and binary formats, the decimal
arithmetic is receiving significant attention and efforts are be-
ing accelerated to build dedicated hardware based on decimal
arithmetic [1]. Among the emerging computing paradigms,
reversible logic appears to be promising due to its wide appli-
cations in emerging technologies such as quantum computing,
quantum dot cellular automata, optical computing, etc [2].
Reversible circuits can generate unique output vector from
each input vector, and vice versa, that is, there is a one-to-one
mapping between the input and the output vectors. Quantum
computing needs to be build from reversible logic gates as
quantum operations are reversible in nature [2]. Quantum
computers of many qubits are extremely difficult to realize

thus the number of qubits in the quantum circuits needs to be
minimized [3], [4]. This sets the major objective of optimizing
the number of ancilla input qubits and the number of the
garbage outputs in the reversible logic based quantum circuits.
The constant input in the reversible quantum circuit is called
the ancilla input qubit (ancilla input bit), while the garbage
output refers to the output which exists in the circuit just to
maintain one-to-one mapping but does not work as a primary
or a useful output.

The proposed work focuses on the design of the reversible
BCD adder primarily optimized for number of ancilla input
bits and the garbage outputs. As the optimization of ancilla
input bits and the garbage outputs may degrade the design in
terms of the quantum cost and the delay, thus quantum cost
and the delay parameters are also considered for optimization
with primary focus towards the optimization of number of
ancilla input bits and the garbage outputs. To the best of our
knowledge this is the first attempt in the literature that designs
the reversible BCD adder with the goal of optimization of
the number of ancilla input bits and the garbage outputs. To
achieve the desired objective, firstly we present a new design
of the reversible ripple carry adder with input carry (C0)
that have no ancilla input bits and is better than the existing
counterparts in terms of quantum cost and the logic depth
(propagation delay). The proposed reversible ripple carry adder
is able to reduce the quantum cost and the delay of reversible
ripple carry adder with no ancilla input bits by efficient use
of the existing reversible Peres gate and a new reversible gate
called the TR gate. The quantum design of the TR gate is
also illustrated. We have illustrated the design of the reversible
BCD adder which is based on a 4 bit reversible binary adder to
add the BCD number and finally the conversion of the result of
the addition to the BCD format using the reversible binary to
BCD converter. The comparison of the proposed design with
the existing designs is also illustrated.

II. BASIC REVERSIBLE GATES

The reversible gates used in this work are the NOT gate, the
CNOT gate, the Toffoli gate [5] and the Peres gate [6] which
are shown in Fig. 1. Each reversible gate has the quantum cost
and the delay associated with it [7]. As discussed in [7] the
NOT gate and the CNOT gate have the quantum cost of 1 and
delay of 1 ∆; the Toffoli gate has the quantum cost of 5 and
delay of 5∆; the Peres gate has the quantum cost of 4 and
delay of 4∆.
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Fig. 1. Existing Reversible Gates

A. Improved Design of the TR gate

The reversible TR gate is a 3 inputs 3 outputs gate having
inputs to outputs mapping as (P=A, Q=A ⊕ B, R = A ·B̄⊕C
[8]. We present the graphical notation of the TR gate in Fig.
2(a) along with its new quantum implementation with 2x2
quantum gates in Fig. 2(b). The TR gate is designed from
1 Controlled V gate, 1 CNOT gate, and 2 Controlled V +

gates resulting in its quantum cost as 4. Further, the logic
depth of the quantum implementation of the TR gate is 4
resulting in its propagation delay as 4 ∆. The quantum cost
and the delay of the TR gate were earlier estimated as 6 and
6 ∆, respectively [8]. The TR gate can realize the Boolean
functions A · B̄ ⊕ C and A ⊕ B with only gate. Further, it
can implement the functions such as A · B̄ when its input C
is tied to 0. These properties of TR gate make it very useful
in designing the reversible arithmetic units.

(a) Quantum symbol of the TR Gate (b) Quantum realization

Fig. 2. TR gate and its improved quantum implementation

B. Prior Works

Arithmetic units such as adders, subtractors, multipliers
form the essential component of a computing system. In [9]
researchers have designed the quantum ripple carry adder
having an input carry C0 with no ancilla input bit, while the
design with no input carry is designed with one ancilla input
bit. In [4], [10], the researchers have investigated new designs
of the quantum ripple carry adder having no input carry with
no ancilla input bit and an improved delay. A comprehensive
survey of quantum arithmetic circuits can be found in [3]. The
researchers have also investigated the design of BCD adders
and subtractors in which parameters such as the number of
reversible gates, number of garbage outputs, quantum cost,
number of transistors, etc are considered for optimization [11],
[12], [13]. Thus to the best of our knowledge researchers
have not yet addressed the design of the BCD arithmetic
units primarily focusing on optimizing the number of ancilla

input bits and the garbage outputs while also considering the
parameters of quantum cost and the delay of the designs.

III. DESIGN METHODOLOGY OF PROPOSED REVERSIBLE
RIPPLE CARRY ADDER WITH INPUT CARRY

Considering the addition of two numbers ai and bi stored
at memory locations Ai and Bi, respectively, where 0≤i≤n-
1. The input carry C0 is stored at memory location Ai−1.
Further, consider that z ∈ {0, 1} is stored at memory location
An. At the end of the computation, the memory location Bi

will have si, while location Ai keep the value ai. There is an
additional location that initially stores the value z, and at the
end of the computation will have the value z ⊕ sn. Thus at
the end of the computation, location An will have the value
of sn when z=0. The proposed method improves the delay
and the quantum cost by selectively using the Peres gate and
the TR gate at the appropriate places. The proposed method
is explained below with an example of addition of two 4 bit
numbers a=a0...a3 and b=b0...b3:

1) For i=0 to n-1: At pair of locations Ai and Bi apply
the CNOT gate such that the location Ai will maintain
the same value of ai, while location Bi transforms to
the value ai ⊕ bi. The step 1 is shown for addition of
4 bit numbers in Fig.3. At this step 1, the input state is
transformed to:
|c0⟩

(⊗n−1
i=0 |bi ⊕ ai⟩ |ai⟩

)
|z⟩

2) For i= -1 to n-2: At pair of locations Ai+1 and Ai apply
the CNOT gate such that the location Ai+1 will maintain
the same value, while the location Ai transforms to
ai+1⊕ ai. Further, apply a CNOT gate at pair of
locations An−1 and An such that the location An−1

will maintain the same value, while the location An

transforms to an−1⊕ an. The step 2 is illustrated in
Fig. 3. At this step, the state is transformed to:

|c0 ⊕ a0⟩

(
n−2⊗
i=0

|bi ⊕ ai⟩ |ai ⊕ ai+1⟩

)
|bn−1 ⊕ an−1⟩

|an−1⟩ |z ⊕ an−1⟩

3) For i=0 to n-2: At locations Ai−1, Bi and Ai apply the
Toffoli gate such that Ai−1, Bi and Ai are passed to the
inputs A, B, C, respectively, of the Toffoli gate. The step
3 is illustrated in Fig.3. Apply a Peres gate at location
An−2, Bn−1 and An such that An−2, Bn−1 and An are
passed to the inputs A, B, C, respectively, of the Peres
gate. After this step, the state is transformed to:

|c0 ⊕ a0⟩

(
n−2⊗
i=0

|bi ⊕ ai⟩ |ci+1 ⊕ ai+1⟩

)
|bn−1 ⊕ cn−1⟩

|an−1⟩ |z ⊕ sn⟩

Further, for i=0 to n-2: Apply a NOT gate at location
Bi as illustrated in Fig.3. This step will transform the
state to:



|c0 ⊕ a0⟩

(
n−2⊗
i=0

|bi ⊕ ai⟩ |ci+1 ⊕ ai+1⟩

)
|bn−1 ⊕ cn−1⟩

|an−1⟩ |z ⊕ sn⟩

4) For i=n-2 to 0: At locations Ai−1, Bi and Ai apply the
TR gate such that Ai−1, Bi and Ai are passed to the
inputs A, B, C, respectively, of the TR gate. The step
is illustrated in Fig.3. Further, for i=0 to n-2: Apply a
NOT gate at location Bi as illustrated in Fig.3. After
this step, the state is transformed to:

|c0 ⊕ a0⟩

(
n−2⊗
i=0

|bi ⊕ ci⟩ |ai ⊕ ai+1⟩

)
|bn−1 ⊕ cn−1⟩

|an−1⟩ |z ⊕ sn⟩

5) For i=n-1 to 0: At pair of locations Ai and Ai−1 apply
the CNOT gate such that the location Ai will maintain
the same value of ai, while location Ai−1 transforms to
the value ai ⊕ ai−1. This step is shown in Fig.3, and
after this step the state is transformed to:

|c0⟩

(
n−2⊗
i=0

|bi ⊕ ci⟩ |ai⟩

)
|bn−1 ⊕ cn−1⟩

|an−1⟩ |z ⊕ sn⟩

6) For i=0 to n-1: At pair of locations Ai and Bi apply
the CNOT gate such that the location Ai will maintain
the same value of ai, while location Bi transforms to
the value ai ⊕ bi. This step is shown for addition of
4 bit numbers in Fig.3 and after this step the state is
transformed to:

|c0⟩

(
n−1⊗
i=0

|si⟩ |ai⟩

)
|z ⊕ sn⟩

Thus, the proposed methodology is able to design the
reversible ripple carry adder with an input carry without any
ancilla input bit.

Delay and Quantum Cost
• The step 1 of the proposed methodology needs n CNOT

gates working in parallel thus this step has the quantum
cost of n and delay of 1 ∆.

• The step 2 of the proposed methodology needs n+1
CNOT gates working in series thus this step has the
quantum cost of n+1. The delay of this stage will be only
2 ∆ as here n-1 CNOT gates work in parallel with the
Toffoli gates of the next stage thus only 2 CNOT gates
contributes to the delay..

• The step 3 needs n-1 Toffoli gates working in series thus
contributing to the quantum cost of 5(n-1) and delay of
5(n-1) ∆. There is a Peres gate contributing to quantum
cost of 4 and delay of 4 ∆. Further, there are n-1
NOT gates working in parallel with the Peres gates thus
contributing to quantum cost of n-1 and zero delay. The

total quantum cost of this stage is 5(n-1)+4+n-1 while
the delay contribution of this stage is 5(n-1) ∆ +4 ∆.

• The step 4 needs n-1 TR gates working in series thus
contributing to the quantum cost by 4(n-1) and delay of
4(n-1) ∆. Further, there are n-1 NOT gates which all work
in parallel with the TR gates except the last NOT gate.
Thus, it contributes to quantum cost of n-1 and delay of
1 ∆. Thus this step has the quantum cost of 4(n-1)+n-1
and the delay of 4(n-1) ∆ +1 ∆.

• The step 5 needs n CNOT gates working in parallel with
the TR gates and the NOT gates, except the last one. Thus
this step has the quantum cost of n and delay of 1 ∆.

• The step 6 needs n CNOT gates working in parallel thus
this step has the quantum cost of n and delay of 1 ∆.

Thus the total quantum cost of n bit reversible ripple carry
adder is n+n+1+5(n-1)+4+n-1+4(n-1)+n-1+n+n=15n-6. The
propagation delay will be 1 ∆+2 ∆+5(n-1) ∆+4 ∆+4(n-1)
∆+1 ∆+1 ∆+1 ∆=(9n+1) ∆. A comparison of the proposed
design with the existing designs is illustrated in Table I which
shows that the proposed design of reversible ripple carry
adder with input carry is designed with no ancilla input bit
and has the less quantum cost and delay compared to its
existing counterparts. In Table I AIs, GOs, QC stand for
ancilla inputs, garbage outputs and quantum cost, respectively.
The comparison is not illustrated with [4], [10] as they have
designed the reversible ripple carry adder with no input carry.
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Fig. 3. Proposed reversible 4 bit adder with input carry

TABLE I
A COMPARISON OF RIPPLE CARRY ADDER WITH INPUT CARRY

AIs GOs QC Delay ∆
[9] 0 n+1 17n-6 10n+2
[9] 0 n+1 17n-22 10n-8

Proposed 0 n 15n-6 9n+5

IV. DESIGN OF REVERSIBLE BCD ADDER

In the BCD addition, the two decimal digits A and B,
together with the input carry Cin, are first added in the top
4-bit binary adder to produce the 4 bit binary sum (K3 to K0)
and the carry out (Cout). The outputs of the binary adder can
be passed to a binary to BCD converter to have the result
of the binary addition in the BCD format. This approach
is illustrated in the Fig. 4(a) where a 5 bit binary to BCD



converter produces the desired output in the BCD format. In
this work, we have proposed the equivalent reversible design
of the approach shown in Fig.4(a) to design the reversible
BCD adder optimized for the number of ancilla input bits and
the number of garbage outputs. The 4 bit reversible ripple
carry adder with input carry can be designed based on the
methodology illustrated for ripple carry adder with input carry
as shown in Fig.3. For binary to BCD conversion, we have
used the reversible binary to BCD converter proposed in [13]
that has the quantum cost of 16 and delay of 16 ∆. The
proposed design of the reversible BCD adder is shown in
Fig.4(b) in which the input carry Cin is represented by c0,
Cout represents the carry out of the 4 bit reversible binary
adder, and OC represents the output carry of the 1 digit BCD
adder.

The proposed reversible BCD adder design has 1 ancilla
input bit and 5 garbage outputs. The quantum cost of the
proposed reversible BCD adder with input carry is 70 while
the delay is 57 ∆. A comparison with the existing designs of
the reversible BCD adder is illustrated in Table II in which
AIs, GOs, QC stand for ancilla inputs, garbage outputs and
quantum cost, respectively. The design 3 in [13] is the best
existing design in literature considering the number of ancilla
input bits and the garbage outputs. It needs 2 ancilla inputs
bits, 6 garbage outputs and has the quantum cost of 103.
The delay of [13] is not known. It can be observed from the
comparison table that the proposed design is better than the
design 3 in [13] in terms of number of ancilla input bits and
the number of garbage outputs. It also improves the quantum
cost compared to design 3 in [13] by 47%. Thus the proposed
design in this work is efficient compared to existing designs
in literature.

TABLE II
A COMPARISON OF REVERSIBLE BCD ADDERS

AIs GOs QC Delay ∆
[11] 7 10 55 -
[12] 4 8 169 -

Design 3[13] 2 6 103 -
Proposed design 1 5 70 57

V. CONCLUSIONS

In conclusions, we have presented efficient design of re-
versible BCD adder primarily optimizing the parameters of
number of ancilla input bits and garbage outputs. The opti-
mization of the quantum cost and the delay are also consid-
ered. The efficient design of the BCD adder depends on the
design methodology used for designing the reversible ripple
carry adder and the reversible binary to BCD converter. Thus
for future research, efficient design schemes for reversible
ripple carry adder and the reversible binary to BCD converter
is an interesting area to investigate.
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