
Fine-Grain OpenMP Runtime Support with
Explicit Communication Hardware Primitives

Pranav Tendulkar, Vassilis Papaefstathiou, George Nikiforos,
Stamatis Kavadias, Dimitrios S. Nikolopoulos and Manolis Katevenis

Institute of Computer Science, FORTH, Heraklion, Crete, Greece – member of HiPEAC
Email: {pranav,papaef,nikiforg,kavadias,dsn,kateveni}@ics.forth.gr

Abstract— We present a runtime system that uses the explicit
on-chip communication mechanisms of the SARC multi-core
architecture, to implement efficiently the OpenMP programming
model and enable the exploitation of fine-grain parallelism in
OpenMP programs. We explore the design space of implementa-
tion of OpenMP directives and runtime intrinsics, using a family
of hardware primitives; remote stores, remote DMAs, hardware
counters and hardware event queues with automatic responses, to
support static and dynamic scheduling and data transfers in local
memories. Using an FPGA prototype with four cores, we achieve
OpenMP task creation latencies of 30-35 processor clock cycles,
initiation of parallel contexts in 50 cycles and synchronization
primitives in 65-210 cycles.

I. INTRODUCTION

The increased demand for concurrency from many-core
processors makes strong scaling of parallel applications a
fundamental requirement of parallel programming models.
Strong scaling in turn implies the extraction of fine-grain
tasks and simple instruction streams [1]. Effective fine-grain
parallelism exploitation remains a challenge for hardware and
software due frequent communication and synchronization
between cores. On multi-core processors with coherent caches,
communication is consumer-initiated, thus requiring round-
trip messages to transfer data between cores, while synchro-
nization is implemented with atomic operations, which trigger
sequences of invalidations and subsequent data transfers from
remote caches or memory. Hardware support for explicit
communication, such as hardware LIFO queues (Carbon [1]),
asynchronous direct messages [2], RDMAs [3], and hardware
queues with asynchronous event-responses [4] provide viable
solutions to these problems.

This paper explores the design and implementation of
OpenMP on a multi-core system that offers explicit communi-
cation primitives for fast on-chip data transfers. Our thesis is
that explicit on-chip communication mechanisms support effi-
ciently a wide range of primitives that are common in runtime
systems for parallel programming. The OpenMP primitives
include: (i) scheduling of parallel loops and asynchronous
tasks [5], using either work-stealing [6] or work-sharing [7];
(ii) user-level synchronization including locks, barriers, and
reductions and (iii) data privatization in local memories [8].

We present the design and implementation of an OpenMP
runtime system for an FPGA prototype of the SARC archi-
tecture [9] which features explicitly managed on-chip local

memories, explicit on-chip communication primitives includ-
ing remote stores for producer-initiated short data transfers,
RDMA operations for producer-initiated or consumer-initiated
bulk data transfers, hardware event queues with automatically
generated responses, and hardware counters [4].

Our OpenMP implementation on a four-core SARC multi-
core FPGA prototype, achieves parallel task initiation in 30-35
processor clock cycles. Synchronization operations including
barriers, locks, atomic regions, and reductions on integer vari-
ables cost 65-210 clock cycles. Our implementation achieves
near-peak on-chip data transfer bandwidth in memory-bound
computational kernels and good scaling with fine-grain tasks.

II. HARDWARE PLATFORM

SARC features a configurable L2 cache memory which can
be dynamically partitioned at run-time between a coherent
cache and a software-managed local memory (scratchpad),
which is visible in global address space. The FPGA prototype
of SARC used in this work has four Microblaze cores, with a
private L1 cache and the configurable L2 for each core. The
current prototype does not support cache coherence.

SARC also defines primitive mechanisms for virtualized
inter-core communication such as direct remote loads and
stores to the scratchpad of other cores, remote DMA reads
and writes for efficient bulk transfers between scratchpads,
and between off-chip DRAM and scratchpads. The architec-
ture offers three event-response-type hardware mechanisms to
support communication and synchronization between cores: (i)
Command-Buffers: used to initiate multi-word communication
(messages and DMA), (ii) Counters: used to implement barrier
synchronization and completion notification for unordered
sequences of operations, and (iii) Hardware Queues: a generic
mechanism to implement atomic multi-party synchronization.

Counters implement atomic add-on-store and allow up-
to four configurable notification addresses to receive a pre-
configured word when the counter reaches zero; these ad-
dresses may reside in remote nodes.

Queues offer atomic enqueue and dequeue operations that
can be used for inter-core synchronization and for efficient task
dispatching and scheduling. The SARC prototype offers two
types of hardware queues: (i) Single Reader Queues (SRQ)
and (ii) Multiple Reader Queues (MRQ) both hosted inside
scratchpad memory and following FIFO order. Any core can
atomically enqueue elements in both SRQs and MRQs with978-3-9810801-7-9/DATE11/ c©2011 EDAA

68 
32 

69 
31 

104 
51 

100 
52 

140 

69 

131 
74 

127 

77 

130 

82 

127 

78 

133 

88 

129 

78 

135 

88 

0 

50 

100 

150 

200 

250 

300 

q‐
ct
r 

sc
r‐
ct
r 

q‐
sc
r 

sc
r‐
sc
r 

q‐
ct
r 

sc
r‐
ct
r 

q‐
sc
r 

sc
r‐
sc
r 

q‐
ct
r 

sc
r‐
ct
r 

q‐
sc
r 

sc
r‐
sc
r 

2  3  4 

O
ve
rh
ea
d 
(c
lo
ck
 c
yc
le
s)
 

Cores No. 

Gomp_parallel_start  Gomp_parallel_end 

Fig. 1: omp parallel overhead

write-messages of size up to a cache-line. SRQs allow dequeue
operations only from the core that hosts the queue locally,
while any core may dequeue from MRQs; dequeue operations
are read-messages. The unique feature of MRQs is that they
match enqueue with dequeue operations, i.e. a dequeue from
a empty queue does not fail but instead waits for the next
enqueue in order to be matched; upon matching a new message
containing the enqueued element is sent to the reader.

SARC FPGA prototype description and latency analysis of
all these hardware primitives is available in [4], [9].

III. OPENMP DIRECTIVES IMPLEMENTATION

The OpenMP v3.0 software stack on SARC comprises ap-
plication code compiled using OpenMP C compiler Rose [10],
a re-targeted runtime GOMP API [11] library and a low-
level communication library mapping all hardware features
like DMA, scratchpad management etc. In the following sub-
sections we discuss the implementation of OpenMP directives
on the SARC prototype, and measure the overhead of each
directive using the EPCC benchmarks [12], Table I.

A. Initiating parallel execution

The omp parallel directive specifies a parallel region
which will be cloned and executed in all cores. Spawning
a parallel region requires transferring a region descriptor
(function pointer and arguments) from the master core to slave
cores. The runtime system can pass the region descriptor,
either in a hardware SRQ (labeled q-, Table I) or in pre-
allocated scratchpad area (labeled scr-), where slave cores wait
for new descriptors. For region completion notification from
the slaves we have two implementation options: (i) notify
the master in a hardware up-counter incremented by slave
cores (labeled ctr-) and (ii) use a pre-allocated scratchpad area
(labeled scr-) per slave core for posing completion flag.

Figure 1 presents the overhead breakdown for the par-
allel directive. GOMP_parallel_start is the time re-
quired to start parallel regions on all slaves, whereas
GOMP_parallel_end is the time spent by the master to
wait for region completions. Posting to scratchpad space is

implemented with fast remote stores – plain store instructions
– for short descriptors (up-to 32 bytes) and with remote DMA
writes for longer descriptors. In contrast, posting a descriptor
to a remote hardware queue takes 20 cycles and it has to be
copied from the hardware queue to software buffers at the
receiver. Using a counter for region completion notification is
faster than using remote stores to scratchpad addresses, since
in the counter-based implementation the master waits on one
scratchpad location, instead of many locations, one per slave,
when distinct scratchpad notification addresses are used.

Initiating OpenMP parallel regions and processing their
completion in the SARC prototype cost between 109 and 148
cycles per region, depending on NoC contention.

B. Statically scheduled for loops

The omp for directive parallelizes for loops. It incurs
overhead for statically computing the range of loop iterations
to execute on each core and executes an implicit barrier at the
end of the loop, unless explicit nowait clause. Computation
of the loop bounds costs 15 cycles, however the total overhead
is dominated by the barrier where the counters clearly outper-
form the hardware mutex by factors two to five (Table I).

C. Barriers

We implement two alternatives for omp barrier. The
first implementation is a centralized sense-reversing barrier
which uses a Xilinx hardware mutex IP (hwmtx, Table I)
that offers test-and-set (TAS) like operations in a “fast” non-
cacheable address space (SRAM). The second implementation
uses our hardware counters (ctr, Table I): the counter is
initialized to minus the number of participating cores. Each
core that reaches the barrier, posts a message to increment
the counter by 1. When the counter becomes zero, then it
automatically triggers a response that sends a barrier release
flag to all participating cores in their scratchpad.

A counter-based barrier takes 100 cycles on 4 cores and is
up to 5.4× faster than the Xilinx hardware mutex. The latter
implementation generates superfluous traffic in the memory
bus and increases contention and latency. The counter-based
barrier requires 10 clock cycles to initiate the “increment”
message, while the remaining time is NoC latency for the
counter updates to arrive and trigger notifications that are
delivered to all participating cores.

D. Critical and atomic sections

The omp critical directive specifies a critical section
in an OpenMP program. Additionally, the omp_lock_t
datatype and the omp atomic directive are used to perform
atomic updates on shared variables. We implement all these
operations using two alternatives: (i) using the hardware mutex
and (ii) using MRQs to implement a lock [4]. The MRQ
initially contains one token that all cores try to read. A dequeue
from the MRQ implements a lock acquisition and the core that
successfully acquires the token (dequeue) enters the critical
section. Upon exit from the critical section, the token is placed
back in the MRQ (enqueue).

TABLE I: OpenMP directive overheads (clock cycles)

cores parallel for barrier critical atomic reduction
q-ctr scr-ctr q-scr scr-scr hwmtx ctr hwmtx ctr mtx q mtx q q scr

1 127 102 108 79 180 93 180 94 125 50
2 195 109 199 113 220 110 201 87 66 67 200 116 308 152
3 231 137 233 140 359 119 337 94 76 65 304 128 355 178
4 269 148 266 162 561 126 539 100 91 65 447 134 426 210

2806  2818  2819  2077  2181  2169 

7557  7467  7474 
627 

2857 

544 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

2‐
CO

RE
S 

3‐
CO

RE
S 

4‐
CO

RE
S 

2‐
CO

RE
S 

3‐
CO

RE
S 

4‐
CO

RE
S 

2‐
CO

RE
S 

3‐
CO

RE
S 

4‐
CO

RE
S 

SRQ  MRQ  Scratchpad 

O
ve
rh
ea
d 
(c
lo
ck
 c
yc
le
s)
 

Task Spawn 

Gomp_task  Gomp_taskwait 

Fig. 2: Task directive overhead

The overhead of a lock-unlock pair on a single core is
93 clock cycles: locking costs 73 clock cycles and unlocking
costs 20 clock cycles, Table I. The benchmark inserts a large
“think time” inside the critical region and when multiple cores
contend for the lock, then a portion of the lock overhead
is overlapped; the lock requests are already waiting in the
MRQ. The overlapped latency of these operations is 65 to 67
cycles. The overhead of the atomic directive is measured in a
similar way, however the critical section in this case includes a
single integer addition, therefore the overlap between the lock
overhead and the critical section is negligible, Table I.

E. Reductions

We implement two alternatives for reductions: (i) using an
SRQ or (ii) using per-core scratchpad locations, both located
in the master core. All cores calculate their local portion of
the reduction and send their values either in the SRQ with
a message (i), or in their dedicated scratchpad location with
remote stores (ii). The master gathers the partial results and
computes the final value. Using dedicated scratchpad locations
with remote stores is up-to 2× faster than using an SRQ, since
the overhead of generating messages is eliminated, Table I.

F. Tasks

Spawning tasks is similar to spawning parallel regions and
we evaluate three alternative implementations: (i) spawning
tasks in per core SRQs, (ii) spawning tasks in a central MRQ
on the master core, and (iii) spawning tasks in lock (fastest
implementation) protected scratchpad areas per slave core.
Task completion is signaled in hardware counters.

Figure 2 presents the overheads for spawning 64 empty
tasks for the three alternative implementations. Task wait time

0 

50 

100 

150 

200 

250 

300 

350 

400 

Copy  Scale  Add  Triad 

Ba
nd

w
id
th
 (M

B/
s)
 

Stream Func6on 

OpenMP  SARC lib  Projected  OpenMP + TB 

SARC lib + TB  Projected with TB  TheoreBcal 

Fig. 3: STREAM bandwidth on the SARC prototype

decreases as we increase the number of cores because tasks
are processed with a higher throughput. The average task
spawning time is 45 clock cycles in (i), 35 clock cycles in (ii),
and 118 clock cycles in (iii). In case (iii), the lock overhead
dominates the task spawning latency and thus it cannot be
amortized by very small tasks. On the other hand, spawning
tasks in MRQ is 25% faster than spawning in SRQs, since
tasks are generated locally.

IV. APPLICATION BENCHMARKS

We have parallelized two OpenMP application benchmarks,
using the Rose compiler framework to automatically analyze
the shared and private data accesses and generate the necessary
data transfers to and from scratchpad memories.

A. Streaming kernels

The OpenMP version of the Stream [13] benchmark mea-
sures memory bandwidth using computation kernels (copy,
add, scale, triad) with a high ratio of bytes per operation.
We evaluate four implementations of Stream where 3 cores
transfer data from the scratchpad of an idle core. The first
implementation uses the SARC OpenMP runtime library and
the second uses the low-level SARC prototype communication
library [4] with the purpose of minimizing control overhead.
The other implementations use same back-end and apply triple
buffering to overlap communication with computation.

Figure 3 presents measurements of bandwidth for Stream
with 3 cores transferring data from the scratchpad memory
of an idle core. In addition we plot the maximum theoretical
and projected bandwidth (model with basic queuing theory
and simple assumptions). The difference between measured
and projected bandwidth is in the range of 5% to 20%, due to

0 
0.5 
1 

1.5 
2 

2.5 
3 

3.5 
4 

128  256  512  1024  2048  4096 

Sp
ee
du

p 

Elements No. 

Bitonic Sort 
2‐CORES  4‐CORES 

Fig. 4: Bitonic sort speedup on the SARC prototype

approximated NoC contention in our model. The additional
overhead of OpenMP in all cases amounts to around 300
clock cycles. Overall, the SARC OpenMP does not impose
heavy runtime overhead using near optimal of the available
bandwidth of the architecture.

B. Bitonic Sort

We implemented an OpenMP version of bitonic sort on the
SARC prototype and present the speedup achieved relative to
the sequential version when using 2 and 4 cores. The input
sizes range from 128 to 4096 integer elements and produce
extremely fine-grain parallel tasks. We use remote DMAs for
the butterfly data exchange during bitonic merge. The speedup
of the SARC OpenMP implementation is satisfactory (though
not perfect due to the overhead of task spawning, barriers and
fine-grain data transfers) and amortizes the runtime implemen-
tation and saturates relatively fast, Figure 4.

V. RELATED WORK

The Cell processor uses remote DMAs, mailboxes and
signal registers, which enable exchange of control messages
between the PowerPC (PPE) and the SPEs [3]. Our work
explores a more extensive family of on-chip communication
primitives (remote stores, hardware event queues with au-
tomatic responses, hardware counters) and their use in the
runtime systems of high-level parallel programming models.

OpenMP compiler technology for the Cell processor [8]
and compiler and runtime technology for architectures with
explicitly managed local memories [14] implement techniques
based on array reference analysis to automate data transfers
from DRAM to local memories and to improve temporal
locality by avoiding off-chip data transfers. Our work is
directed towards using on-chip communication mechanisms to
enable fine-grain parallelism in OpenMP programs and com-
plements compiler technology for generating and optimizing
off-chip data transfers. We leverage compiler analysis of array
references to automatically generate and overlap data transfers
in our OpenMP implementation.

Hardware support for fine-grain task-level parallelism, such
as hardware task queues and message queues [1], [2], is ad-
vocated for the exploitation of fine-grain parallelism in many-

core processors. In the same context, related work proposes
application-specific hardware task schedulers [15]. Our work
explores general-purpose hardware primitives, with several po-
tential uses, and compares them in alternative implementations
of a software stack for high-level parallel programming.

VI. CONCLUSIONS

The exploration of the implementation design space of
OpenMP directives on the SARC prototype, demonstrates
OpenMP task creation and synchronization latencies in the
order of a few tens of processor clock cycles. We further
demonstrate through application benchmarks the value of
using separate hardware primitives for fine-grain communi-
cation and bulk communication, as well as the importance
of low-latency communication for the exploitation of fine-
grain parallelism. Overall, our OpenMP implementation on
SARC approaches closely the theoretical peak performance
for bandwidth-bound code and parallelizes effectively codes
with task granularity of tens of clock cycles.

REFERENCES

[1] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural Support
for Fine-grained Parallelism on Chip Multiprocessors,” in ISCA ’07:
Proc. of Intl. Symposium on Computer Architecture, 2007, pp. 162–173.

[2] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible Architectural Sup-
port for Fine-grain Scheduling,” in ASPLOS ’10: Proceedings of the 15th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2010, pp. 311–322.

[3] O. Takahashi et al., “The Circuit Design of the Synergistic Processor
Element of a CELL Processor,” in ICCAD ’05: Proc. of the IEEE/ACM
Intl. Conference on Computer-Aided Design, 2005, pp. 111–117.

[4] S. Kavadias, M. G. Katevenis, M. Zampetakis, and D. S. Nikolopoulos,
“On-chip Communication and Synchronization with Cache-Integrated
Network Interfaces,” in Proc. of the 2010 ACM International Conference
on Computing Frontiers (CF), FORTH-ICS, Heraklion, Greece, 2010.

[5] E. Ayguadé et al., “The Design of OpenMP Tasks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 20, no. 3, pp. 404–418, 2009.

[6] C. E. Leiserson, “The Cilk++ Concurrency Platform,” in DAC ’09: Proc.
of the 46th Design Automation Conference, 2009, pp. 522–527.

[7] A. Duran, M. Gonzàlez, and J. Corbalán, “Automatic Thread Distribution
for Nested Parallelism in OpenMP,” in ICS ’05: Proc. of the 19th
International Conference on Supercomputing, 2005, pp. 121–130.

[8] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang, “Supporting
OpenMP on Cell,” International Journal of Parallel Programming,
vol. 36, no. 3, pp. 289–311, 2008.

[9] G. Kalokairinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias, M. Kat-
evenis, D. Pnevmatikatos, and X. Yang, “FPGA Implementation of a
Configurable Cache/Scratchpad Memory with Virtualized User-Level
RDMA Capability,” in IC-SAMOS09: Proc. of the IEEE International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, Samos, Greece, Jul. 2009.

[10] T. P. Chunhua Liao, Daniel J. Quinlan and B. de Supinski, “A ROSE-
based OpenMP 3.0 Research Compiler Supporting Multiple Runtime
Libraries,” in Intl. Workshop on OpenMP (IWOMP), 2010.

[11] “GCC OpenMP,” http://gcc.gnu.org/wiki/openmp.
[12] “EPCC OpenMP Microbenchmarks 2.0,” http://www.epcc.ed.ac.uk/

research/openmpbench.
[13] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current

High Performance Computers,” http://www.cs.virginia.edu/∼mccalpin/
papers/balance/, 1995.

[14] T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian,
A. Aiken, W. J. Dally, and P. Hanrahan, “Compilation for Explicitly
Managed Memory Hierarchies,” in PPoPP ’07: Proc. of the 12th Symp.
on Principles and Practice of Parallel Programming, 2007, pp. 226–236.

[15] G. Al-Kadi and A. S. Terechko, “A Hardware Task Scheduler for
Embedded Video Processing,” in HiPEAC ’09: Proceedings of the 4th
International Conference on High Performance Embedded Architectures
and Compilers, Berlin, Heidelberg, 2009, pp. 140–152.

