
 

 

 

 

 

Abstract—Packet classification has been a fundamental 

processing pattern of modern networking devices. Today’s 

high-performance routers use specialized hardware for packet 

classification, but such solutions suffer from prohibitive cost, high 

power consumption, and poor extensibility. On the other hand, 

software-based routers offer the best flexibility, but could only 

deliver limited performance (<10Gbps). Recently, graphics pro-

cessing units (GPUs) have been proved to be an efficient accelera-

tor for software routers. In this work, we propose a GPU-based 

linear search framework for packet classification. The core of our 

framework is a metaprogramming technique that dramatically 

enhances the execution efficiency. Experimental results prove that 

our solution could outperform a CPU-based solution by a factor of 

17, in terms of classification throughput. Our technique is scalable 

to large rule sets consisting of over 50K rules and thus provides a 

solid foundation for future applications of packet context inspec-

tion.. 
 

Keywords—Packet Classification; Software Router; GPU; 

CUDA; Metaprogramming 

I. INTRODUCTION 

Today our world is connected by the Internet. Among 

numerous network devices, Internet routers play an essential 

role by serving as the backbone. A router is responsible for 

delivering packets between neighboring networks in a timely 

manner. Current Internet routers are “flow-aware”, which 

means they classifies all incoming packets into flows according 

to a set of predefined rules, before any further processing can be 

done accordingly. Such process known as packet classification 

is a key step in providing quality of service (QoS) control and 

other advanced router functionalities. 

Traditional routers depend on custom hardware to attain high 

processing speed [1]. Specifically, ternary content-addressable 

memory (TCAM) is used for packet classification. Besides 

being expensive, such solutions cannot fully adapt to fast 

changing network services and diversified usage cases. On the 

contrary, software routers have been attracting significant 

research efforts recently (e.g. [2] [3]) due to their extensibility 

and customizability. Software routers are cost-efficient and 

flexible because they are built with commodity hardware. 

However, despite their superior flexibility, software routers 

can hardly deliver the performance level required by fast-rising 

Internet traffic. The fastest existing CPU-based software router 

[3] reports a forwarding throughput of near 10Gbps, whereas 

carrier-grade devices have to reach 40Gbps and scale to even as 

high as 92Tbps [4]. The relatively low performance has 

significantly limited the application of software routers. 

A new trend in high-performance computing is to perform 

general purpose computing with graphic processing units 

(GPUs) [5]. A couple of recent works used GPUs to implement 

software routers and observed significant boost in speed [6] [7]. 

However, the pioneering work reported in [6] focused on full 

system implementation and did not fully investigate the packet 

classification algorithms. PacketShader [7] has implemented 

the OpenFlow switch protocol [8] which is a specialized packet 

classification standard designed for research of new protocols. 

OpenFlow differs fundamentally from general packet 

classification schemes due to its dedicated purpose. 

In this work, we investigate efficient data-parallel algorithms 

for packet classification, following the spirit of previous works 

on GPU-based software routers [6] [7]. A key observation is 

that many algorithms, although having low theoretical 

complexity, may scale poorly with large rule sets, and fail to 

meet performance constraints under future large rule sets [9]. 

We address the scalability problem by avoiding overly 

complicated algorithm and instead focusing on efficient 

parallelization. Adopting a novel metaprogramming approach, 

we propose a GPU-based linear search scheme for packet 

classification. Experimental results prove that it significantly 

outperforms existing software solutions, even with very large 

rule sets. 

II. PRELIMINARIES FOR PACKET CLASSIFICATION 

A. Problem formulation 

Packet classification works on the header of input packets. 

The problem can be defined as follows [10]: 

Given a set of   rules, where each rule has   components, 

and each component is a criterion on a specific field of the 

packet header. A packet P matches rule R if every one of the   

fields in its header meets the corresponding criterion in R. Since 

a packet may match more than one rule, priority is assigned to 

rules in order to break ties. In summary, packet classification is 

the process of finding the highest-priority matching rule for 

every incoming packet. 

In practice, packet classification involves the following 

header fields: source and destination IP addresses (SIP/DIP), 

port numbers (SP/DP), and protocol ID (PROT). The 5-tuple 

<SIP, DIP, SP, DP, PROT> forms a 104-bit vector which fully 

captures the characteristics of a packet header. 

B. Current solutions 

Most hardware routers implement packet classification with 

the ternary content-addressable memory (TCAM) [11], which 

performs packet classification as a single-step lookup. In spite 
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of the high processing speed, TCAMs are hindered by four 

major deficiencies [11]: 1) high cost, 2) storage inefficiency, 3) 

high power consumption, and 4) limited scalability for large 

rule sets. On the other hand, software packet classification 

systems perform the rule matching process on general-purpose 

processors (e.g. BPF+ [12] and Click [2]). Such systems are 

usually feature-rich and highly configurable, but weak in 

performance. 

A large number of software packet classification algorithms 

have been proposed in recent years. Taylor’s taxonomy [11] 

categorizes these algorithms into four classes, namely the 

exhaustive search, decision tree, hash table, and decomposition. 

The simplest and most fundamental method of classifying 

packets is an exhaustive search over the entire rule set [11]. It is 

also known as linear search when performed in a sequential 

manner. Exhaustive search does not attempt to reduce 

redundancies in the rule set at all. Therefore, it incurs 

considerable computational overhead. It is frequently used as a 

component within more sophisticated algorithms. Note that 

exhaustive search is readily parallelizable. 

Decision tree and hash table algorithms both aim to divide 

original rule set into subsets, in order to cut down the number of 

rules that need to be iterated. We may view k-dimensional 

packet classification as a problem of finding the high-

est-priority hyper cube that covers a given point in a 

k-dimensional classification space, where each rule corre-

sponds to a  -dimensional (1 ≤ c ≤ k) hyper cube, and a packet 

equals to a point in the space [13]. From this point of view, both 

decision tree and hash table methods seek to cut the 

classification space into    subspaces using a set of   hyper 

planes, so that there are only a few rules in each region. The 

major difference between the two lies in the underlying data 

structure. 

C. Performance challenges 

For software packet classification solutions, performance 

metrics reduce into two categories: speed, and scalability. 

 Speed Classification speed is usually the major challenge for 

software packet classification. In the worst case of uniformly 

minimum-sized packets, a throughput of 25.5Mpps is re-

quired to support the OC-192 line speed of 10Gbps [14]. 

 Scalability In addition to classification speed, deficiencies 

in other metrics including storage size and preparation time 

may become stumbling blocks for extensibility. For instance, 

some classic algorithms are reported to cease to work even 

with mid-sized rule sets due to unrealistic storage consump-

tion and preparation time (e.g. over 4GB of memory and 24 

hours of time [9]). 

III. GPU COMPUTING FOR PACKET CLASSIFICATION 

A. GPU architecture and programming model 

We use the NVIDIA GT200 GPU to exemplify modern GPU 

architectures. The GPU chip consists of 240 scalar processors 

(SPs), evenly distributed into 30 streaming multiprocessors 

(SMs). A single SP has its own execution hardware, but no 

instruction fetch and decoding capabilities. A SM would fetch 

instructions and schedule their execution on its 8 internal SPs. 

Programming for the NVIDIA GPU follows the Compute 

Unified Device Architecture (CUDA) [15] programming 

model. A GPU application could launch tens of thousands of 

threads, which execute the same program but work on different 

data sets. Multiple threads are organized into thread blocks in a 

1-D, 2-D, or 3-D manner to match the problem structure. 

During execution, every 32 threads known as a “warp” would 

follow an identical instruction schedule, i.e., a SIMD execution 

style [15]. If threads in a group take different branches of a 

program, all possible program execution paths have to be 

traversed. The program data would be stored on the graphics 

memory, which is located off the GPU chip, but on the graphics 

card. The amount of cache on a GPU chip is very limited; long 

memory latency has to be hidden by 1) coalescing memory 

requests to neighboring addresses into a single request, and 2) 

switching among threads. On the other hand, the program 

instruction is cached. Later we will show the difference in 

caching data and instruction has important implications for 

GPU-based packet classification. 

B. GPU-accelerated network processing 

We implemented packet classification algorithms on a 

GPU-accelerated software router as illustrated in Fig. 1. The 

Internet traffic is conducted through two 10Gbps network 

interface cards (NICs). The packets would first be transferred 

from NICs to main memory via DMA operations. Before 

processed by GPU, packets are transported to GPU memory 

through the PCIe bus attached to the North Bridge. The routing 

operations are orchestrated by the CPU, while the majority of 

packet processing workload is offloaded to GPU to utilize its 

massive parallel computational resources. 

 
Fig. 1.  GPU-based software router. 

Regarding GPU-based packet classification implementations, 

the hash-table-based and exhaustive search algorithms are good 

candidates due to their relatively regular data flow. Decision 

tree algorithms, however, are unsuitable since many of their 

inherent characteristics are contradictory to the basic principles 

of GPU computing. Especially, traversing of a tree structure 

leads to constantly divergent program execution paths, and 

thence considerable overhead. 

C. GPU packet classification using DBS algorithm 

We investigate the discrete bit selection (DBS) [16] as a 

representative of hash-based algorithms. The algorithm is 

selected for its simplicity and fair performance. In addition, 

data preparation in DBS is relatively fast; for many algorithms, 



 

 

 

 

preparation time can become the bottleneck on large rule sets. 

Classification using DBS algorithm works as follows. A 

certain number (16 in our case) of “effective bits” are 

consecutively chosen from the 104-bit vector formed by 

concatenating all 5 fields. The effective bits then serve as the 

hash key mask in filling and probing the hash table. 

We implemented DBS on both GPU and CPU. Preparation is 

conducted on CPU in both versions. GPU threads are organized 

into 120 blocks, each consisting of 128 threads. One thread is 

responsible for the processing of one packet. Therefore, 14,336 

packets are processed as a batch during each kernel launch. 

An interesting observation obtained from DBS, that the 

partitioning of rule sets is limited to a certain granularity, 

implies a performance bound for more general algorithm 

categories than only DBS or hash-based algorithms. The limit 

is due to the overlapping of rules in the classification space. 

Consider the situation where one packet may simultaneously 

match a group of m rules: all m rules must be iterated through in 

order to find the highest-priority one. This poses a worst-case 

bound on the number of lookups. 

We measured the minimum worst-case numbers of lookups, 

i.e., the largest number of rules that overlap and thence are 

impossible to be further divided. Fig. 2. Shows the results: in 

most cases it resolves to a few dozen lookups, but lower bound 

for worst-case number of lookups can be as high as 167 for 

some rule sets. This has a larger impact on GPU than on CPU 

on classification performance. The reasons are twofold. First, 

GPU undergoes much larger overhead in memory operations. 

Second, there is no early termination mechanism available for 

GPU computing since all threads in a warp must take the same 

execution path; a GPU’s SMs must wait until the “slowest” 

thread finishes before taking in another warp. The worst case 

behavior on CPU then becomes the average case behavior on 

GPU. 

 
Fig. 2.  Limitation on rule set partitioning. 

D.  GPU packet classification using linear search 

The analysis in the previous section suggests that the 

hash-based classification algorithms incur inherent hurdles for 

an efficient GPU implementation. In attempt to entirely 

circumvent these difficulties, we developed a linear search 

scheme for software packet classification. The proposed linear 

search scheme is radically different from common approaches 

in that no memory accesses are needed to fetch rules. 

The key to eliminating memory access is the adoption of a 

metaprogramming technique. Metaprogramming refers to the 

practice of generating source or executable code dynamically 

from a more abstracted program, i.e., a metaprogram. The 

heterogeneous nature of GPU computing system is actually 

very amendable to metaprogramming, because the CPU is 

readily available for code generation and flow control, whereas 

the CUDA Driver API allows dynamical compiling, uploading, 

and executing of GPU kernel code in runtime. Our prototype 

system performs packet classification in the following steps: 

1) Translate each rule into a fragment of C code that checks if 

a packet matches. The rules are now embedded as 

compilation-time constants. 

2) Form a series of kernels with the code fragments, compile 

them and upload binaries to the graphics card. 

3) Load packet header data into GPU memory, run the kernels, 

then transfer classification results back to CPU. 

This technique eradicates fetching of rules from memory; 

instead, the rule set is compiled as an integral part of program 

code, which can be efficiently broadcast to all CUDA cores on 

a GPU through the instruction issuing mechanism. Moreover, 

the memory latency for instruction binary can be automatically 

and effectively hidden by GPU’s instruction cache. 

The same thread block configuration as in the GPU version 

of DBS is used. To minimize compilation time, we create a new 

kernel for every 200 rule entries. A CPU version of the same 

algorithm is implemented for comparison. 

IV. PERFORMANCE EVALUATION 

A. Dataset and test environment 

Our test data are generated using the ClassBench tool [17]. 

For each of the 12 parameter sets provided, we synthesize two 

rule sets with N = 500 and 2000, respectively. To evaluate 

scalability, an exceptionally large rule set with N = 50,000 is 

generated for the fw4 parameter set. For each rule set, a se-

quence of 100,000 packet header traces is generated. 

We conduct the tests on a PC with a 2.5GHz Core 2 Q8300 

CPU, 4GB memory, and an NVIDIA GTX280 graphics card 

which features a GT200 GPU with 240 CUDA cores, and 1GB 

graphics memory. All CPU programs are single-threaded. 

B. DBS algorithm 

 Throughput (Fig. 3A) DBS on GPU shows considerable 

fluctuation in performance, whereas its CPU counterpart 

maintains a steady throughput of 1-2Mpps. This proves the 

previous analysis that the average case performance on GPU 

corresponds to the worst case behavior on CPU. The GPU 

implementation delivers an average throughput of 10.7Mpps 

and 4.8Mpps with rule numbers of 500 and 2000, 

respectively. On average, it is 4.6 times faster than the CPU 

equivalent. 

 Scalability (Fig. 3C) With fw4 being the most complicated 

rule set in our test, both preparation and classification phases 

are slow. It is worth noting that preparation time increases 

faster than classification time. 

C. Linear search 

 Throughput (Fig. 3B) Linear search is insensitive to the 

characteristics of rule sets. This insensitivity is more evident 

on the GPU version, as its threading model forbids 

early-termination optimizations. Compared with the CPU 
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implementation, on average the GPU version is 6.2 times 

faster with  =500, and 32.9 times faster with  =2000. 

 Scalability (Fig. 3D) Both preparation and classification 

times grows linearly with rule set size. And time consump-

tion remains in reasonable range for   as large as 50,000. 

D. Summary 

Our GPU metaprogramming linear search scheme is ex-

tremely efficient. The CUDA Profiler reports 109% instruction 

throughput and near-zero global memory accesses. Such high 

run-time efficiency has proven to effectively amend the 

algorithmic overhead: GPU linear search can provide 17 times 

higher throughput than DBS algorithm on CPU, or 8.5 times 

higher than its own CPU counterpart. 

V.  CONCLUSION 

In this work, we explore GPU-based acceleration techniques 

for packet classification, which is a key module in routers and a 

basic pattern of network processing. We propose a GPU-based 

packet classification solution using a linear search algorithm. 

Our scheme exploits a metaprogramming technique by 

compiling the rules into instructions so as to avoid the 

expensive latency of memory accesses. The prototype 

implementation offers significantly higher classification 

throughput than its CPU counterpart, while at the same time 

maintains good scalability even when the size of rule set 

reaches 50,000. We also demonstrated that metaprogramming 

can be a powerful tool for GPU computing. 
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(A) Classification throughput using DBS algorithm. 

 
(B) Classification throughput using linear search. 

 
(C) Scalability of GPU DBS algorithm (fw4 rule set). 

 
(D) Scalability of GPU linear search (fw4 rule set). 

Fig. 3.  Performance comparison of DBS algorithm and linear search. 
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