

Abstract—Packet classification has been a fundamental

processing pattern of modern networking devices. Today’s

high-performance routers use specialized hardware for packet

classification, but such solutions suffer from prohibitive cost, high

power consumption, and poor extensibility. On the other hand,

software-based routers offer the best flexibility, but could only

deliver limited performance (<10Gbps). Recently, graphics pro-

cessing units (GPUs) have been proved to be an efficient accelera-

tor for software routers. In this work, we propose a GPU-based

linear search framework for packet classification. The core of our

framework is a metaprogramming technique that dramatically

enhances the execution efficiency. Experimental results prove that

our solution could outperform a CPU-based solution by a factor of

17, in terms of classification throughput. Our technique is scalable

to large rule sets consisting of over 50K rules and thus provides a

solid foundation for future applications of packet context inspec-

tion..

Keywords—Packet Classification; Software Router; GPU;

CUDA; Metaprogramming

I. INTRODUCTION

Today our world is connected by the Internet. Among

numerous network devices, Internet routers play an essential

role by serving as the backbone. A router is responsible for

delivering packets between neighboring networks in a timely

manner. Current Internet routers are “flow-aware”, which

means they classifies all incoming packets into flows according

to a set of predefined rules, before any further processing can be

done accordingly. Such process known as packet classification

is a key step in providing quality of service (QoS) control and

other advanced router functionalities.

Traditional routers depend on custom hardware to attain high

processing speed [1]. Specifically, ternary content-addressable

memory (TCAM) is used for packet classification. Besides

being expensive, such solutions cannot fully adapt to fast

changing network services and diversified usage cases. On the

contrary, software routers have been attracting significant

research efforts recently (e.g. [2] [3]) due to their extensibility

and customizability. Software routers are cost-efficient and

flexible because they are built with commodity hardware.

However, despite their superior flexibility, software routers

can hardly deliver the performance level required by fast-rising

Internet traffic. The fastest existing CPU-based software router

[3] reports a forwarding throughput of near 10Gbps, whereas

carrier-grade devices have to reach 40Gbps and scale to even as

high as 92Tbps [4]. The relatively low performance has

significantly limited the application of software routers.

A new trend in high-performance computing is to perform

general purpose computing with graphic processing units

(GPUs) [5]. A couple of recent works used GPUs to implement

software routers and observed significant boost in speed [6] [7].

However, the pioneering work reported in [6] focused on full

system implementation and did not fully investigate the packet

classification algorithms. PacketShader [7] has implemented

the OpenFlow switch protocol [8] which is a specialized packet

classification standard designed for research of new protocols.

OpenFlow differs fundamentally from general packet

classification schemes due to its dedicated purpose.

In this work, we investigate efficient data-parallel algorithms

for packet classification, following the spirit of previous works

on GPU-based software routers [6] [7]. A key observation is

that many algorithms, although having low theoretical

complexity, may scale poorly with large rule sets, and fail to

meet performance constraints under future large rule sets [9].

We address the scalability problem by avoiding overly

complicated algorithm and instead focusing on efficient

parallelization. Adopting a novel metaprogramming approach,

we propose a GPU-based linear search scheme for packet

classification. Experimental results prove that it significantly

outperforms existing software solutions, even with very large

rule sets.

II. PRELIMINARIES FOR PACKET CLASSIFICATION

A. Problem formulation

Packet classification works on the header of input packets.

The problem can be defined as follows [10]:

Given a set of rules, where each rule has components,

and each component is a criterion on a specific field of the

packet header. A packet P matches rule R if every one of the

fields in its header meets the corresponding criterion in R. Since

a packet may match more than one rule, priority is assigned to

rules in order to break ties. In summary, packet classification is

the process of finding the highest-priority matching rule for

every incoming packet.

In practice, packet classification involves the following

header fields: source and destination IP addresses (SIP/DIP),

port numbers (SP/DP), and protocol ID (PROT). The 5-tuple

<SIP, DIP, SP, DP, PROT> forms a 104-bit vector which fully

captures the characteristics of a packet header.

B. Current solutions

Most hardware routers implement packet classification with

the ternary content-addressable memory (TCAM) [11], which

performs packet classification as a single-step lookup. In spite

Scalable Packet Classification via GPU Metaprogramming

Kang Kang and Yangdong Steve Deng

kk06.thu@gmail.com and yangdong.deng@gmail.com

Institute of Microelectronics, Tsinghua University

978-3-9810801-7-9/DATE11/©2011 EDAA

of the high processing speed, TCAMs are hindered by four

major deficiencies [11]: 1) high cost, 2) storage inefficiency, 3)

high power consumption, and 4) limited scalability for large

rule sets. On the other hand, software packet classification

systems perform the rule matching process on general-purpose

processors (e.g. BPF+ [12] and Click [2]). Such systems are

usually feature-rich and highly configurable, but weak in

performance.

A large number of software packet classification algorithms

have been proposed in recent years. Taylor’s taxonomy [11]

categorizes these algorithms into four classes, namely the

exhaustive search, decision tree, hash table, and decomposition.

The simplest and most fundamental method of classifying

packets is an exhaustive search over the entire rule set [11]. It is

also known as linear search when performed in a sequential

manner. Exhaustive search does not attempt to reduce

redundancies in the rule set at all. Therefore, it incurs

considerable computational overhead. It is frequently used as a

component within more sophisticated algorithms. Note that

exhaustive search is readily parallelizable.

Decision tree and hash table algorithms both aim to divide

original rule set into subsets, in order to cut down the number of

rules that need to be iterated. We may view k-dimensional

packet classification as a problem of finding the high-

est-priority hyper cube that covers a given point in a

k-dimensional classification space, where each rule corre-

sponds to a -dimensional (1 ≤ c ≤ k) hyper cube, and a packet

equals to a point in the space [13]. From this point of view, both

decision tree and hash table methods seek to cut the

classification space into subspaces using a set of hyper

planes, so that there are only a few rules in each region. The

major difference between the two lies in the underlying data

structure.

C. Performance challenges

For software packet classification solutions, performance

metrics reduce into two categories: speed, and scalability.

 Speed Classification speed is usually the major challenge for

software packet classification. In the worst case of uniformly

minimum-sized packets, a throughput of 25.5Mpps is re-

quired to support the OC-192 line speed of 10Gbps [14].

 Scalability In addition to classification speed, deficiencies

in other metrics including storage size and preparation time

may become stumbling blocks for extensibility. For instance,

some classic algorithms are reported to cease to work even

with mid-sized rule sets due to unrealistic storage consump-

tion and preparation time (e.g. over 4GB of memory and 24

hours of time [9]).

III. GPU COMPUTING FOR PACKET CLASSIFICATION

A. GPU architecture and programming model

We use the NVIDIA GT200 GPU to exemplify modern GPU

architectures. The GPU chip consists of 240 scalar processors

(SPs), evenly distributed into 30 streaming multiprocessors

(SMs). A single SP has its own execution hardware, but no

instruction fetch and decoding capabilities. A SM would fetch

instructions and schedule their execution on its 8 internal SPs.

Programming for the NVIDIA GPU follows the Compute

Unified Device Architecture (CUDA) [15] programming

model. A GPU application could launch tens of thousands of

threads, which execute the same program but work on different

data sets. Multiple threads are organized into thread blocks in a

1-D, 2-D, or 3-D manner to match the problem structure.

During execution, every 32 threads known as a “warp” would

follow an identical instruction schedule, i.e., a SIMD execution

style [15]. If threads in a group take different branches of a

program, all possible program execution paths have to be

traversed. The program data would be stored on the graphics

memory, which is located off the GPU chip, but on the graphics

card. The amount of cache on a GPU chip is very limited; long

memory latency has to be hidden by 1) coalescing memory

requests to neighboring addresses into a single request, and 2)

switching among threads. On the other hand, the program

instruction is cached. Later we will show the difference in

caching data and instruction has important implications for

GPU-based packet classification.

B. GPU-accelerated network processing

We implemented packet classification algorithms on a

GPU-accelerated software router as illustrated in Fig. 1. The

Internet traffic is conducted through two 10Gbps network

interface cards (NICs). The packets would first be transferred

from NICs to main memory via DMA operations. Before

processed by GPU, packets are transported to GPU memory

through the PCIe bus attached to the North Bridge. The routing

operations are orchestrated by the CPU, while the majority of

packet processing workload is offloaded to GPU to utilize its

massive parallel computational resources.

Fig. 1. GPU-based software router.

Regarding GPU-based packet classification implementations,

the hash-table-based and exhaustive search algorithms are good

candidates due to their relatively regular data flow. Decision

tree algorithms, however, are unsuitable since many of their

inherent characteristics are contradictory to the basic principles

of GPU computing. Especially, traversing of a tree structure

leads to constantly divergent program execution paths, and

thence considerable overhead.

C. GPU packet classification using DBS algorithm

We investigate the discrete bit selection (DBS) [16] as a

representative of hash-based algorithms. The algorithm is

selected for its simplicity and fair performance. In addition,

data preparation in DBS is relatively fast; for many algorithms,

preparation time can become the bottleneck on large rule sets.

Classification using DBS algorithm works as follows. A

certain number (16 in our case) of “effective bits” are

consecutively chosen from the 104-bit vector formed by

concatenating all 5 fields. The effective bits then serve as the

hash key mask in filling and probing the hash table.

We implemented DBS on both GPU and CPU. Preparation is

conducted on CPU in both versions. GPU threads are organized

into 120 blocks, each consisting of 128 threads. One thread is

responsible for the processing of one packet. Therefore, 14,336

packets are processed as a batch during each kernel launch.

An interesting observation obtained from DBS, that the

partitioning of rule sets is limited to a certain granularity,

implies a performance bound for more general algorithm

categories than only DBS or hash-based algorithms. The limit

is due to the overlapping of rules in the classification space.

Consider the situation where one packet may simultaneously

match a group of m rules: all m rules must be iterated through in

order to find the highest-priority one. This poses a worst-case

bound on the number of lookups.

We measured the minimum worst-case numbers of lookups,

i.e., the largest number of rules that overlap and thence are

impossible to be further divided. Fig. 2. Shows the results: in

most cases it resolves to a few dozen lookups, but lower bound

for worst-case number of lookups can be as high as 167 for

some rule sets. This has a larger impact on GPU than on CPU

on classification performance. The reasons are twofold. First,

GPU undergoes much larger overhead in memory operations.

Second, there is no early termination mechanism available for

GPU computing since all threads in a warp must take the same

execution path; a GPU’s SMs must wait until the “slowest”

thread finishes before taking in another warp. The worst case

behavior on CPU then becomes the average case behavior on

GPU.

Fig. 2. Limitation on rule set partitioning.

D. GPU packet classification using linear search

The analysis in the previous section suggests that the

hash-based classification algorithms incur inherent hurdles for

an efficient GPU implementation. In attempt to entirely

circumvent these difficulties, we developed a linear search

scheme for software packet classification. The proposed linear

search scheme is radically different from common approaches

in that no memory accesses are needed to fetch rules.

The key to eliminating memory access is the adoption of a

metaprogramming technique. Metaprogramming refers to the

practice of generating source or executable code dynamically

from a more abstracted program, i.e., a metaprogram. The

heterogeneous nature of GPU computing system is actually

very amendable to metaprogramming, because the CPU is

readily available for code generation and flow control, whereas

the CUDA Driver API allows dynamical compiling, uploading,

and executing of GPU kernel code in runtime. Our prototype

system performs packet classification in the following steps:

1) Translate each rule into a fragment of C code that checks if

a packet matches. The rules are now embedded as

compilation-time constants.

2) Form a series of kernels with the code fragments, compile

them and upload binaries to the graphics card.

3) Load packet header data into GPU memory, run the kernels,

then transfer classification results back to CPU.

This technique eradicates fetching of rules from memory;

instead, the rule set is compiled as an integral part of program

code, which can be efficiently broadcast to all CUDA cores on

a GPU through the instruction issuing mechanism. Moreover,

the memory latency for instruction binary can be automatically

and effectively hidden by GPU’s instruction cache.

The same thread block configuration as in the GPU version

of DBS is used. To minimize compilation time, we create a new

kernel for every 200 rule entries. A CPU version of the same

algorithm is implemented for comparison.

IV. PERFORMANCE EVALUATION

A. Dataset and test environment

Our test data are generated using the ClassBench tool [17].

For each of the 12 parameter sets provided, we synthesize two

rule sets with N = 500 and 2000, respectively. To evaluate

scalability, an exceptionally large rule set with N = 50,000 is

generated for the fw4 parameter set. For each rule set, a se-

quence of 100,000 packet header traces is generated.

We conduct the tests on a PC with a 2.5GHz Core 2 Q8300

CPU, 4GB memory, and an NVIDIA GTX280 graphics card

which features a GT200 GPU with 240 CUDA cores, and 1GB

graphics memory. All CPU programs are single-threaded.

B. DBS algorithm

 Throughput (Fig. 3A) DBS on GPU shows considerable

fluctuation in performance, whereas its CPU counterpart

maintains a steady throughput of 1-2Mpps. This proves the

previous analysis that the average case performance on GPU

corresponds to the worst case behavior on CPU. The GPU

implementation delivers an average throughput of 10.7Mpps

and 4.8Mpps with rule numbers of 500 and 2000,

respectively. On average, it is 4.6 times faster than the CPU

equivalent.

 Scalability (Fig. 3C) With fw4 being the most complicated

rule set in our test, both preparation and classification phases

are slow. It is worth noting that preparation time increases

faster than classification time.

C. Linear search

 Throughput (Fig. 3B) Linear search is insensitive to the

characteristics of rule sets. This insensitivity is more evident

on the GPU version, as its threading model forbids

early-termination optimizations. Compared with the CPU

0
50

100
150
200

ac
l1

_5
0

0
ac

l2
_5

0
0

ac
l3

_5
0

0
ac

l4
_5

0
0

ac
l5

_5
0

0
fw

1
_5

00
fw

2
_5

00
fw

3
_5

00
fw

4
_5

00
fw

5
_5

00
ip

c1
_5

0
0

ip
c2

_5
0

0
ac

l1
_2

k
ac

l2
_2

k
ac

l3
_2

k
ac

l4
_2

k
ac

l5
_2

k
fw

1_
2

k
fw

2_
2

k
fw

3_
2

k
fw

4_
2

k
fw

5_
2

k
ip

c1
_2

k
ip

c2
_2

k
<a

vg
.>

M
in

. W
o

rs
t-

ca
se

Lo

o
ku

p
s

Rule Set

implementation, on average the GPU version is 6.2 times

faster with =500, and 32.9 times faster with =2000.

 Scalability (Fig. 3D) Both preparation and classification

times grows linearly with rule set size. And time consump-

tion remains in reasonable range for as large as 50,000.

D. Summary

Our GPU metaprogramming linear search scheme is ex-

tremely efficient. The CUDA Profiler reports 109% instruction

throughput and near-zero global memory accesses. Such high

run-time efficiency has proven to effectively amend the

algorithmic overhead: GPU linear search can provide 17 times

higher throughput than DBS algorithm on CPU, or 8.5 times

higher than its own CPU counterpart.

V. CONCLUSION

In this work, we explore GPU-based acceleration techniques

for packet classification, which is a key module in routers and a

basic pattern of network processing. We propose a GPU-based

packet classification solution using a linear search algorithm.

Our scheme exploits a metaprogramming technique by

compiling the rules into instructions so as to avoid the

expensive latency of memory accesses. The prototype

implementation offers significantly higher classification

throughput than its CPU counterpart, while at the same time

maintains good scalability even when the size of rule set

reaches 50,000. We also demonstrated that metaprogramming

can be a powerful tool for GPU computing.

REFERENCES

[1] H. J. Chao and B. Liu, High Performance Switches and Routers.
Wiley-IEEE Press, 2007.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, "The

Click modular router," ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263-297, Aug. 2000.

[3] M. Dobrescu, et al., "RouteBricks: Exploiting parallelism to scale

software routers," in Proc. ACM SIGOPS, 2009, pp. 15-28.

[4] W. Eatherton, "The push of network processing to the top of pyramid,"

Keynote address at Symposium on Architectures for Networking and

Communications Systems, 2005.

[5] J. D. Owens, et al., "A survey of general-purpose computation on

graphics hardware," Computer Graphics Forum, vol. 26, no. 1, pp.

80-113, Mar. 2007.

[6] S. Mu, et al., "IP routing processing with graphic processors," in Proc.

DATE, 2010, pp. 93-98.

[7] S. Han, K. Jang, K. Park, and S. Moon, "PacketShader: a
GPU-accelerated software router," in Proc. ACM SIGCOMM, 2010, pp.

195-206.

[8] N. McKeown, et al., "OpenFlow: enabling innovation in campus
networks," ACM SIGCOMM Computer Communication Review, vol. 38,

no. 2, pp. 69-74, Apr. 2008.

[9] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, "Packet classification
algorithms: from theory to practice," in Proc. IEEE INFOCOM, 2009.

[10] P. Gupta and N. Mckeown, "Algorithms for packet classification," IEEE

Network, vol. 15, no. 2, pp. 24-32, Mar. 2001.

[11] D. E. Taylor, "Survey and taxonomy of packet classification techniques,"

ACM Computing Surveys, vol. 37, no. 3, pp. 238-275, 2005.

[12] A. Begel, S. McCanne, and S. L. Graham, "BPF+: exploiting global
data-flow optimization in a generalized packet filter architecture," ACM

SIGCOMM Computer Communication Review, vol. 29, no. 4, pp.

123-134, Oct. 1999.

[13] S. Singh, F. Baboescu, G. Varghese, and J. Wang, "Packet classification

using multidimensional cutting," in Proc. ACM SIGCOMM, 2003, pp.

213-224.

[14] D. Liu, B. Hua, X. Hu, and X. Tang, "High-performance packet

classification algorithm for many-core and multithreaded network

processor," in Proc. ICCASES, 2006, pp. 334-344.

[15] J. Nickolls, I. Buck, M. Garland, and K. Skadron, "Scalable parallel

programming with CUDA," ACM Queue, vol. 6, no. 2, pp. 40-53, 2008.

[16] B. Yang, X. Wang, Y. Xue, and J. Li, "DBS: a bit-level heuristic packet
classification algorithm for high speed network," in Proc. ICPADS,

2009, pp. 260-267.

[17] D. E. Taylor and J. S. Turner, "ClassBench: a packet classification
benchmark," IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499-511, 2007.

(A) Classification throughput using DBS algorithm.

(B) Classification throughput using linear search.

(C) Scalability of GPU DBS algorithm (fw4 rule set).

(D) Scalability of GPU linear search (fw4 rule set).

Fig. 3. Performance comparison of DBS algorithm and linear search.

0.1

1

10

100

ac
l1

_5
0

0
ac

l2
_5

0
0

ac
l3

_5
0

0
ac

l4
_5

0
0

ac
l5

_5
0

0
fw

1
_5

0
0

fw
2

_5
0

0
fw

3_
5

00
fw

4
_5

0
0

fw
5

_5
0

0
ip

c1
_5

0
0

ip
c2

_5
0

0
ac

l1
_2

k
ac

l2
_2

k
ac

l3
_2

k
ac

l4
_2

k
ac

l5
_2

k
fw

1
_2

k
fw

2
_2

k
fw

3
_2

k
fw

4
_2

k
fw

5
_2

k
ip

c1
_2

k
ip

c2
_2

k
<a

vg
.>

Th
ro

u
gh

p
u

t
(M

p
p

s)

Rule Set

CPU_DBS GPU_DBS

0.1

1

10

100

ac
l1

_5
0

0
ac

l2
_5

0
0

ac
l3

_5
0

0
ac

l4
_5

0
0

ac
l5

_5
0

0
fw

1
_5

0
0

fw
2_

5
00

fw
3

_5
0

0
fw

4
_5

0
0

fw
5

_5
0

0
ip

c1
_5

0
0

ip
c2

_5
0

0
ac

l1
_2

k
ac

l2
_2

k
ac

l3
_2

k
ac

l4
_2

k
ac

l5
_2

k
fw

1
_2

k
fw

2
_2

k
fw

3
_2

k
fw

4
_2

k
fw

5
_2

k
ip

c1
_2

k
ip

c2
_2

k
<a

vg
.>

Th
ro

u
gh

p
u

t
(M

p
p

s)

Rule Set

CPU_LINEAR GPU_LINEAR

5.48
18.49

81 44.7
132.83

2040.7

1

100

10000

100 1000 10000 100000

Ti
m

e
 (

s)

Rule Count

classification

preparation

0.34
0.89

15.625
3.352

13.069

400.037

0.1

10

1000

100 1000 10000 100000

Ti
m

e
 (

s)

Rule Count

classification

preparation

