
NoC-MPU: a secure architecture for flexible
co-hosting on shared memory MPSoCs

Joël Porquet and Alain Greiner
LIP6 Laboratory

Université Pierre et Marie Curie
joel.porquet@lip6.fr

Christian Schwarz
Nagravision

christian.schwarz@nagra.com

Abstract—For many embedded systems, data protection is
becoming a major issue. On those systems, processors are often
heterogeneous and prevent from deploying a common, trusted
hypervisor on all of them. Multiple native software stacks are thus
bound to share the resources without protection between them.
NoC-MPU is a Memory Protection Unit allowing to support the
secure and flexible co-hosting of multiple native software stacks
running in multiple protection domains, on any shared memory
MP-SoC using a NoC. This paper presents a complete hardware
architecture of this NoC-MPU mechanism, along with a software
trusted model organization.

ACKNOWLEDGMENTS

This work has been carried out in the framework of a
cooperation between UPMC/LIP6 and STMicroelectronics.

I. INTRODUCTION

For many embedded systems, especially when handling
protected content, data protection is a major issue. Only a few
years ago, bi-partitioning techniques were enough to comply
with security requirements. ARM, for example, proposed the
TrustZone feature, allowing a "secure world" to live alongside
a "non-secure world" [1].

Nowadays, this binary co-hosting is no more sufficient to
answer the new security requirements. Recent consumption
models promote, for example, the convergence of traditional
video and Internet-based content [2]. This leads to a significant
increase of the security complexity.

Devices such as set-top boxes now provide a multitude of
services: User Interface, Conditional Access, Digital Right
Management, Personal Video Recorder, etc. Each service
finds its physical representation in a mixture of hardware
and software components, ranging from small security-critical
software stacks running on basic processors or accelerators,
up to commodity OSes on complex application processors.
Although these highly heterogeneous software stacks each
contains internal sensitive information that must remain pro-
tected, all of them are bound to collaborate.

A. Co-hosting and Virtualization

New techniques are emerging to co-host multiple native
software stacks in parallel and to transparently partition
available platform resources among them. First intended for

978-3-9810801-7-9/DATE11/ c©2011 EDAA

mainframe servers [3] and later for desktop systems [4]–[7],
Virtualization is now reaching embedded systems. The pure
software approaches [8], [9], relying on the use of a Memory
Management Unit (MMU) to perform the isolation between
native software stacks, are soon expected to be superseded
by dedicated virtualization hardware support within embed-
ded processors. However, in both cases, isolation is always
achieved at processor level.

This processor-centric property makes the sharing of pro-
cessing and memory resources efficient on symmetric multi-
processor architectures that can be controlled by a common
trusted basis (e.g. a virtualization hypervisor). However, this
approach is not convenient for heterogeneous multiprocessor
shared-memory embedded systems-on-chip (MP-SoCs).

For instance, multimedia-oriented MP-SoCs are often com-
posed of a small number of general purpose processors,
assisted by various specialized programmable processors as
well as dedicated coprocessors frequently having a DMA
(Direct Memory Access) capability. The latter two are unable
to support virtualization since they are mostly MMU-less,
and sometimes do not even offer several privilege levels.
Establishing a common trusted basis on such heterogeneous
platforms is thus difficult, as long as, for example, a software
stack running on a specialized processor is able to access the
whole address space, bypassing completely any virtualization
layer.

B. Software stacks and protection domains

As described in [10], this MP-SoC heterogeneity must
be addressed by a platform-global protection mechanism,
covering the full communication infrastructure, instead of a
processor-centric mechanism. We define a protection domain
as a set of specific access rights to the shared address
space. We assume that each software stack is running in
a specific protection domain, with rights-overlaps possible
between them. Figure 1 illustrates the ideal co-hosting of
several protection domains where software stacks transparently
share all the platform’s resources: memory, processing and
peripheral resources.

As a given initiator device (e.g. processor or coprocessor)
can be working for various software stacks, a global protection
mechanism requires that all transactions released by an initia-
tor device are tagged by an identifier defining which software



Processor Processor Processor

Memory DMA

Network−on−Chip

Fig. 1. Co-hosting of protection domains sharing processing and memory
resources as well as a DMA device

stack is issuing the transaction. Incidentally, this information is
already supported by standard communication protocols: VCI
[11] and OCP [12] respectively define the TRDID field and
MThreadID field. While they have been specified to support
– out-of-order – simultaneous transactions issued by multi-
threaded processors, they can be used to tag the transactions
with a "protection domain identifier".

In this perspective, we call multi-protection-domain an
initiator device that has the capability to tag the transactions
with a protection domain identifier, and we assume then that
all initiator devices in the platform have this "multi-protection-
domain" capability.

[10] introduced the concept of a global architecture mecha-
nism supporting the secure and flexible co-hosting of multiple
software stacks running in multiple protection domains. This
paper proposes a possible hardware/software implementation
of this mechanism called NoC-MPU (Network on Chip with
Memory Protection Unit) that can be used in any shared
address space MP-SoC using a NoC.

This paper is organized as follows: section II is an overview
of the previously proposed NoC-based protection solutions;
section III presents the proposed NoC-MPU architecture;
finally, we conclude and look at future work in section IV.

II. RELATED WORK

While general NoC technology has been widely studied
during the last decade, security aspects of NoC-based archi-
tectures have been addressed only recently.

Diguet et al. [13] may have been the first to tackle the idea
of directly integrating a security mechanism with the NoC. The
proposed mechanism checks the transactions between physical
devices, authorizing them only if they comply to a predefined
configuration (e.g. a given processor is allowed to access a
given memory bank). As a result, the granularity of the access
control is the hardware device. This static assignment does
not support different access rights to memory areas within the
same physical memory bank. Besides, this filtering method is
also incompatible with co-hosting, where several protection
domains are able to share the same initiator devices.

Fiorin et al. [14]–[16] have proposed a solution for data
protection in MP-SoC architectures based on NoC. Their
secure NoC architecture is composed of a set of Data Protec-
tion Units (DPUs) implemented within the Network Interface
Controllers. The DPU can check and limit the access rights

of initiator devices accessing various regions in a shared
address space (e.g. a given processor is allowed to access a
certain address region), with no performance overhead. The
access rights are defined for each physical device, except for
processors where the DPU can actually distinguish between
the two operating roles (kernel/user). However, this is not
sufficient to support several protection domains sharing the
same processing resources. Finally, the DPU implements a
segmentation approach without any caching mechanism: the
access rights tables are directly embedded within DPUs. It
seems difficult for this strategy to support flexible co-hosting
of multiple protection domains potentially requiring access to
multiple memory regions, since the access rights tables would
be too large.

III. THE NOC-MPU APPROACH

In this section, we describe the hardware/software architec-
ture of the proposed Memory Protection Unit (MPU) for NoC-
based architectures, that is the key element to support a flexible
co-hosting of several protection domains on a multiprocessor
platform.

For the remainder, we adopt the term compartment, as
introduced in [10], to refer to a software stack associated to a
protection domain. The compartment identifier (CID) allows to
associate any transaction issued by a multi-protection-domain
device to the corresponding compartment.

A. Principle of operation

Protecting compartments from one another means actually
protecting their code, data, exclusive uses of peripheral de-
vices, etc. against misuses. In a shared address space archi-
tecture, these assets are typically address regions accessible
through read or write transactions in this shared address space.
Therefore, the access control must define, for each compart-
ment, a set of access rights on various address regions. When a
compartment is executing on a processor, the CID information
is attached to each transaction. Isolation is achieved in the NoC
by checking all the transactions against the set of access rights
defined for this CID. As a result, the granularity of the access
control becomes the compartment, a flexible, logical construct,
instead of a physical device.

Processor Processor Processor

MemoryMemory

Network−on−Chip

MPU MPUMPU

CID CID CID

CID CID

Fig. 2. Example of a NoC-based architecture equipped with MPU modules

As illustrated in Figure 2, the MPU is a hardware module
embedded in the NoC, supplying services similar to those
offered by a "firewall" in local area networks.

The filtering algorithm performed by the MPU is defined
by a permission table, indexed by the memory address of a



transaction request and its associated CID, and containing the
access rights for each combination of these two entries. To
provide for a large number of compartments, sharing the same
address space with different access rights, this table cannot
be stored within the MPU (contrary to the DPU mechanism
[14]) but in the memory. On the other hand, the permission
table must be stored in on-chip memory, for both performance
and security reasons. Similarly to a standard MMU, the MPU
module contains a small cache (called permission lookaside
buffer, or PLB) and a dedicated Finite State Machine (FSM)
to fetch the required entry from the permission table in case
of a PLB miss. As shown in Figure 3, each new transaction
triggers a PLB look-up. If the PLB contains the permission
information for the tuple (address,CID) the transaction is
granted or denied accordingly. Otherwise, the hardware FSM
accesses the permission table in memory, located at the address
hold by the permission table base, and refills the PLB with
the missing information.

refill

Data

CID

Permission Table Base

PLB

MPU Memory

transaction

Permission Table

address

enable

Fig. 3. Abstract architecture of the MPU module

[17] discussed alternative layouts for the permission tables.
The two basic approaches are segmentation and pagination. In
the segmented approach, the permission table is a linear array
of segments ordered by segment base address. Although this
method supports variable segment sizes, the lookup time can
turn to be tremendous, as well as the update, whenever the
number of segments is too high. We thus preferred the paged
approach, where the address space is decomposed in fixed
size pages, and the access rights are defined for each page.
The worst-case lookup is deterministic and the management
is quite easy.

The location of the MPU modules in the platform is
relevant. The major advantage of being located at the initiators
side (as in Figure 2) is that these input modules are able to
prevent the Denial-of-Service attack where an initiator device
tries to saturate the NoC by performing massive unauthorized
accesses.

B. Hardware architecture

The proposed MPU module has been implemented in the
DSPIN NoC [18], a packet-switching micro-network dedicated
to shared memory multiprocessor architectures. Neverthe-
less, it could be embedded in any existing NoC supporting
read/write transactions in a shared address space.

As pictured in Figure 4, the architecture has a flat mesh
topology: one single device (initiator or target) is connected
to each NoC router, via a Network Interface Controller (NIC).
The NIC is in charge of adapting the packet-based DSPIN

DSPIN/VCI

MPU

VCI/DSPIN

MPU

VCI/DSPIN

Wrapper Wrapper

WrapperWrapper

NIC/I

DSPIN

Router

DSPIN

Router

DSPIN

Router

DSPIN

Router

Target

device

device

Initiator Initiator

device

Target

device
DSPIN/VCI

NIC/T NIC/T

NIC/I

Fig. 4. DSPIN-based architecture with MPUs embedded in NICs

protocol to the device protocol (VCI/OCP in our implementa-
tion). Two types of NICs exist, depending on whether a NIC
connects an initiator device (NIC/I) or a target device (NIC/T).

The MPUs are embedded inside NICs/I, and works in
parallel with the protocol conversion. The permission table
is implemented as a hierarchical, two levels, page table. There
is one table per compartment. The page size is 4 KiB (12 bits),
and the 20 MSB address bits are used to index the page table
(10 bits for each level).

0x04 0xbfc00 0x10

CID/

TRDID

VCI/OCP Interface

8 20

ADDRESS CMD

ENABLE

2

PLB

CID R/WADDRESS TAG (@<31:12>)

...

...

Fig. 5. Internal architecture of the PLB

As shown in Figure 5, we use three VCI/OCP signals to
access the PLB and check the access rights: the transaction
is defined by both the compartment identifier (CID, contained
in the VCI/TRDID field), and the 20 most significant bits of
the VCI/ADDRESS field. Both these information are looked
up and access rights for read (R) and write (W) operations are
supplied as output of the PLB. The VCI/CMD finally allows
to check the transaction and to let it pass through the network
or not.

for CID#x
Page directory

pointers
Page directory

PLB

MPU

Page tables

ADDRESS

CID

On−chip Memory

1 0

Read Write

Access Rights

@<31:22>

@<21:12>

V
C

I/
O

C
P

 I
n

te
rf

a
ce

Fig. 6. Hardware page walk mechanism

Whenever the PLB does not contain the access rights



corresponding to the current transaction, the hardware page
walk FSM supersedes the protocol conversion to retrieve the
information in memory (see Figure 6). A buffer of page
directory pointers is indexed by the CID field to get the base
address of the page directory associated to the compartment
which issued the request. The 10 MSB of the 32 bits address
are used as an offset to find, in the first level page directory,
the base address of the second level page table. The second
level page table is then accessed, using the next 10 address
bits as an offset to find the access rights information (2 bits).
This information is retrieved within the MPU, and added to the
PLB thus able to be consulted again for checking the access
rights of the current transaction.

The MPU performs these two memory accesses by reusing
the same physical identity as the initiator device which issued
the transaction (i.e. the device attached to the given NIC/I).
The MPU then intercepts both responses when they come back
via the NIC.

Since protocol conversion and MPU access are performed in
parallel, embedding the MPU within the NIC ensures that no
additional latency is provoked for PLB hits. A miss in the PLB,
however, causes the transaction to be temporarily frozen while
the PLB is refilled, which can increase the average latency.

C. Software architecture

The NoC-MPU protection mechanism nicely fits in the lay-
ered trust model proposed in the multi-compartment approach
[10]. Multi-protection-domain programmable processors are
each locally managed by a software Local Trusted Agent
(LTA). A LTA is in charge of updating a range of CID
values for both, itself and the compartments (e.g. applications)
running above it. A LTA is considered a compartment with
additional privileges. This local management is complemented
by a Global Trusted Agent (GTA), acting platform-wide. The
GTA handles the creation/destruction of compartments and
supervises the shared address space partitioning among them,
particularly through "on-the-fly" definition of page tables. It
also configures the different MPUs, that is the initialization
of directory page pointers, by the memory-mapped interface
each MPU presents. The GTA typically receives and handles
violation events (in case of unauthorized accesses), which can
be signaled by software interrupts.

This protection scheme allows to support complex software
architectures. For example, a standard hypervisor controlling
several virtual machines on a general purpose processor and
a real-time OS running user applications on a specialized
processor can both act as LTAs. Both can schedule their user
software stacks according to their policy and update respective
CID values; a software stack running on a dedicated processor
can act as the GTA to administrate the whole platform.

IV. CONCLUSION

In this paper we presented a novel, flexible and adaptive
solution for secure co-hosting of several protection domains
(compartments) running concurrently on a shared memory
multiprocessor System-on-Chip using a NoC. We described

the hardware module embedded in the Network Interface
Controllers that allows a flexible partitioning of the shared
memory address space among multiple compartments. We also
described the trusted software model which fits nicely with this
hardware protection scheme.

This complete hardware/software secure architecture is cur-
rently being implemented. First results concerning the per-
formance overhead (i.e. due to PBL misses of the hardware
protection modules) are encouraging, as well as the silicon
area overhead of the hardware modules over a NoC infrastruc-
ture. The next logical step is to thoroughly characterize this
performance overhead, evaluating typical execution scenarios.
This involves benchmarking applications on multiple compart-
ments and measuring the silicon overhead after synthesis of
the hardware modules.

REFERENCES

[1] T. Alves and D. Felton, “ARM TrustZone: Integrated Hardware and
Software Security,” July 2004. [Online]. Available: http://www.arm.com

[2] Cloakware Inc., “Security Impacts of Next-Generation Set-Top Boxes,”
White paper, 2009. [Online]. Available: www.csimagazine.com/pdf/
Cloakware-STB.pdf

[3] R. J. Creasy, “The Origin of the VM/370 Time-Sharing System,” IBM
Journal of Research and Development, vol. 25, no. 5, pp. 483–490, 1981.

[4] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, “Xen 3.0 and the Art of Virtualization,”
in Proceedings of Linux Symposium 2005, July 2005.

[5] VMWare. [Online]. Available: http://www.vmware.com
[6] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.

Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
Virtualization Technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[7] Advanced Micro Devices, Inc., AMD64 Virtualization Codenamed
“Pacifica” Technology: Secure Virtual Machine Architecture Reference
Manual, May 2005.

[8] O. K. Labs. [Online]. Available: http://www.ok-labs.com
[9] VirtualLogix. [Online]. Available: http://www.virtuallogix.com

[10] J. Porquet, C. Schwarz, and A. Greiner, “Multi-compartment: a new
architecture for secure co-hosting on SoC,” in SOC’09: Proceedings of
the 11th international conference on System-on-chip. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 124–127.

[11] VSI Alliance, Virtual Component Interface Standard, April 2001, ver-
sion 2, OCB 2 2.0.

[12] OCP-IP Alliance, Open Core Protocol Specification, 2005, release 2.1.
[13] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “NOC-centric

Security of Reconfigurable SoC,” in NOCS ’07: Proceedings of the First
International Symposium on Networks-on-Chip, 2007, pp. 223–232.

[14] L. Fiorin, G. Palermo, S. Lukovic, and C. Silvano, “A data protection
unit for NoC-based architectures,” in CODES+ISSS ’07: Proceedings
of the 5th IEEE/ACM international conference on Hardware/software
codesign and system synthesis. New York, NY, USA: ACM, 2007, pp.
167–172.

[15] L. Fiorin, G. Palermo, and C. Silvano, “A security monitoring service for
NoCs,” in CODES+ISSS ’08: Proceedings of the 6th IEEE/ACM/IFIP
international conference on Hardware/Software codesign and system
synthesis. New York, NY, USA: ACM, 2008, pp. 197–202.

[16] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Secure
Memory Accesses on Networks-on-Chip,” IEEE Trans. Comput., vol. 57,
no. 9, pp. 1216–1229, 2008.

[17] E. Witchel, J. Cates, and K. Asanović, “Mondrian Memory Protection,”
in ASPLOS-X: Proceedings of the 10th international conference on Ar-
chitectural support for programming languages and operating systems,
2002, pp. 304–316.

[18] I. M. Panades, A. Greiner, and A. Sheibanyrad, “A Low Cost Network-
on-Chip with Guaranteed Service Well Suited to the GALS Approach,”
2006, First International Conference on Nano-Networks (Nano-Net).


