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Abstract—This paper makes a case for developing statistical timing
error models of DSP kernels implemented in nanoscale circuit fabrics.
Recently, stochastic computation techniques have been proposed [1],
[2], [3], where the explicit use of error-statistics in system design has
been shown to significantly enhance robustness and energy-efficiency.
However, obtaining the error statistics at different process, voltage, and
temperature (PVT) corners is hard. This paper: 1) proposes a simple
additive error model for timing errors in arithmetic computations due
PVT variations, 2) analyzes the relationship between error statistics
and parameters, specifically the input statistics, and 3) presents a
characterization methodology to obtain the proposed model parameters
and thus enabling efficient implementations of emerging stochastic
computing techniques. Key results include the following observations:
1) the output error statistics is a weak function of input statistics,
and 2) the output error statistics depends upon the one’s probability
profile of the input word. These observations enable a one-time off-line
statistical error characterization of DSP kernels similar to delay and
power characterization done presently for standard cells and IP cores.
The proposed error model is derived for a number of DSP kernels in a
commercial 45nm CMOS process.

I. INTRODUCTION

Present-day worst-case design methodology leads to high power
consumption due to increased variations in process, temperature and
voltage (PVT) [4], while a nominal-case design results in a loss
of yield. Error-resiliency has emerged as an attractive approach for
designing nanoscale systems. Error-resilient designs are implemented
at nominal PVT corner to save power, and the resulting timing errors
are corrected via logical [5] [6], architectural [7], or algorithmic
techniques [8].

The robustness and energy efficiency of error-resilient designs
depend upon the error statistics of the underlying hardware, even
though error statistics are typically not accounted for in the design.
For example, the robustness of N -modular redundancy (NMR),
where the outputs of N identical kernels are majority voted upon
(see Fig. 1(c)), depends upon the component probability of error
and requires the error events across the replicated kernels to be
independent [10]. While conventional NMR ignores error statistics,
stochastic computation [2] advocates an explicit characterization and
exploitation of component error statistics, i.e., error probability dis-
tribution, as seen at the architectural/algorithmic/system levels. Soft-
NMR (see Fig. 1(d)) and bit-level a-posteriori probability processing
(BLAPP) [3] exploit the likelihood of specific error magnitudes in
order to correct the output. In fact, stochastic computation techniques,
such as algorithmic-noise tolerance (ANT) [8], stochastic sensor
network-on-a-chip (SSNOC)[9], soft-NMR [1], and BLAPP [3] ex-
ploit the statistical nature of application-level performance metrics,
such as bit error-rate (BER), probability of detection, and signal-to-
noise ratio (SNR), and match it to the statistical attributes of the
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Fig. 1. A DSP kernel (B′) exhibiting errors: (a) block diagram, (b) proposed
additive error model, (c) NMR setup, and (d) soft-NMR.

underlying device and circuit fabrics. The benefits of such a design
philosophy are the tremendous gains in robustness (14X) and energy-
efficiency (40-75%) at high-degree of circuit fabric unreliability.

Therefore, it is clear that the availability of statistical error models
of circuit fabrics, and developing an understanding of the factors
that impact these models are essential in the investigation of next
generation robust energy-efficient system design techniques. Further-
more, the availability of error statistics enables robustness analysis
of existing techniques, as done in [10] for NMR. In this paper, we
propose the additive error model (see Fig. 1(b)) at word level for
non-recursive DSP computations. The proposed additive error model
is effective in abstracting the system-level timing error behavior.
Existing techniques [11] predict the probability of error for each
output bit while ignoring their correlations, and thus they cannot
determine the impact of error on system performance metric or derive
the word-level error statistics required by error-aware resilient system
techniques such as soft-NMR and BLAPP. Moreover, we show that
timing error statistics under the proposed error model are weakly
dependent on input statistics. This observation enables a one-time
off-line characterization of error statistics for DSP kernels similar
to power and delay characterization done today for standard cells
and IP cores. Furthermore, we employ various DSP blocks, such as
adders and FIR filters, to validate the proposed error model and its
characterization.

II. THE PROPOSED ADDITIVE TIMING ERROR MODEL

We focus on non-recursive architectures to simplify the exposition
and because such architectures can implement a large class of
applications. We propose that the output of any DSP kernel B′ with
latched input and outputs (see Fig. 1(a)) exhibiting timing errors can
be represented via an additive error model (Fig. 1(b)):

y[n] = yo[n]⊕e[n] = fo(x[n])⊕f1(x[n], y[n−1], A, Vdd, Vt, T, P )
(1)

where y[n] is the corresponding output at time-index (or clock-cycle)
n, x[n] is the input, yo[n] is the correct (error-free) output, and e[n]
is the error. yo[n] is a function (fo()) only of the present input x[n]
since the kernel is non-recursive, while e[n] is a complex non-linear



function (f1()) of the kernel architecture (A), the input (x[n]), the
supply voltage (Vdd), the threshold voltage (Vt), the temperature (T ),
and other physical effects (P ). It is also a function of the previous
output y[n−1] because some or all bits of the output y[n] can retain
their values if the clock period is too small. As y[n − 1] is also a
function of x[n− 1] and y[n− 2], we can express e[n] as

e[n] = f2(x[n], A, Vdd, Vt, T, P ) (2)

where x[n] = (x[1], x[2], ..., x[n]). Function f2() is complex if
described in a deterministic manner. Instead, by recognizing that
most emerging applications employ statistical performance metrics
such as mean-square error (MSE), SNR, peak-SNR (PSNR), and
error-aware resilient techniques rely on the statistics of e[n] rather
than the exact value of e[n], we propose to treat e[n] as a random
variable E and characterize its probability mass function (PMF)
denoted by PE(k) = p(e[n] = k), i.e., we are interested in
PE = f3(PX , A, Vdd, Vt, T, P ), where PX represents the PMF of
input x. Thus, given a fixed PVT corner, the output error PMF
depends on the architectural implementation of the DSP computation
and input statistics. The output error statistics is a strong function
of the architecture A since different architectures have different path
delay distributions, and thus will result in different errors for the
same set of input statistics [12]. In the next section, we study the
relationship between the error statistics PE and input statistics PX .

III. ERROR ANALYSIS: IMPACT OF INPUT STATISTICS

Many DSP applications have a typical input data set or statistics
PX,T which can be employed to characterize the output error of
a given architecture. However, this makes error characterization
procedure dependent on application. Given a DSP kernel/architecture
A, we wish to answer the questions:

1) If we employ a typical input PMF PX,T to obtain the output
error PMF PE,T , can we find a class of input PMFs CX,T =
{PX,i}Mi=1 such that they all have similar error PMFs as PX,T ?

2) Can we find a PX,DSP such that the size of the corresponding
class, |CX,DSP |, is large and its characteristics are commonly
encountered in most DSP applications?

If the answer to the second question is in the affirmative then
error characterization can be done once for DSP kernels/architectures
employing PX,DSP . We show that this is indeed the case. To demon-
strate this fact, we study the relationship between input statistics
and output error. As Boolean computation occurs at bit-level, it is
expected that the output error statistics PE will be a stronger function
of bit-level input statistics rather than word-level input statistics PX .
Next, we study the relation between word-level and bit-level input
statistics.

A. Bit-level vs. Word-level Statistics

Any Bx-bit signal/operand x[n] in a DSP kernel consists of bits
denoted by bx,i[n] for i = 1, 2, . . . , Bx. We define the following:
• Bit probability of bx,i: px,i = p(bx,i[n] = 1)
• Bit probability profile (BPP) of an operand x: ΦX =

(px,1, px,2, . . . , px,Bx), i.e., the set of bit probabilities of its
constituent bits.

• Probability mass function (PMF) of an operand x: PX = p(x)

It is clear that given a PMF of x PX , the ith component of x’s BPP
is computed by summing PX over x whose ith bit is one. On the
other hand, given a BPP ΦX , a unique PX cannot be obtained unless
the correlations between bits bx,i are explicitly specified. In fact, the
next property shows that the number of PX that can be mapped to the
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Fig. 2. Various 16-bit input statistics: (a) world-level distribution, and (b)
their corresponding bit probability profiles.

same ΦX is very large. Thus, to simplify and generalized statistical
error characterization we can define conditions on ΦX instead of PX

to enforce similar output error statistics for a given DSP kernel.

Property 1. For a fixed precision Bx:
Px is symmetric around the mean µx = 2Bx−1

2
⇔ Φx =

(0.5, 0.5, ..., 0.5), i.e., px,i = 0.5 for all i = 1, 2 . . . , Bx

Property 1 indicates that any PMF of x that is symmetric around
µx = 2Bx−1

2
is mapped to the same BPP where each bit is

equally likely to be zero or one. Figure 2(a) and (b) show a set
of different 16-bit input distributions and their respective BPPs.
Symmetric distributions (U, G, and iG) with mean µx = 216−1

2

have the same equally-likely BPPs where each px,i = 0.5 unlike
asymmetric distributions (Asym1 and Asym2).

B. Impact of bit-level input statistics on output error

Here, we show that the output error statistics of a given DSP kernel
is more dependent on the input BPP, ΦX , instead of the word-level
input PMF, PX . Thus, condition(s) to ensure similarity of output error
statistics can be placed on ΦX instead of PX . Any output signal
yi of a DSP kernel/architecture with input x can be viewed as a
cascade of Li processing elements (PEs), denoted by {PEk}Li

k=1

(see Fig. 3). Each PEk has an output signal(s) zk, intermediate
input signal(s) zk−1, and a direct input signal set xk ⊆ x. Note that
this representation can take place at different granularity levels. For
example, each PEk can represent a single or multiple PEs or even



Fig. 3. An architectural model of a DSP kernel with input x, output bit by,i,
and Li processing elements (PE)s.

a single logic gate. In what follows, we decompose the main DSP
kernel into PEk’s in such a way that zk−1 and xk are independent.
For example, if both zk−1 and xk are generated from the same set of
signals then they are correlated and in that case we have to enlarge
PEk to make zk−1 an internal signal. With such decomposition, if
we know the logic functions implemented by all PEj|j≤k, then the
probability of any zk is completely determined by the BPP (Φ) of
xj|j≤k, i.e.,

p(zk) = fk(Φxj|j≤k
) (3)

where fk(·) is a polynomial function that depends on the logic
functions of PEj|j≤k.

Timing violations occur when the computation of the output yi
cannot complete in time. Assume that in Fig. 3 at most Li − 1 PEs
can compute correctly. A timing error occurs at the output if all Li

PE outputs zk[n] change their values from the previous clock cycle.
If we denote the transition event of a signal zk as tzk , i.e., tzk = 1
if z[n] 6= z[n− 1], then the probability of output yi being in error,
pey,i, is expressed as:

pey,i =
∑
ΦX

p(tz1 = 1, tz2 = 1, . . . , tzLi
=1|ΦX)p(ΦX)

=
∑
ΦX

Li∏
k=1

[
p
(
tzk = 1|{tzj = 1}k−1

j=1
,ΦX

)]
p(ΦX) (4)

However, the input signal set for each PEk, denoted by Izk =
{zk−1, xk}, shields zk from signal transitions in preceding PEs. Thus,

p
(
tzk = 1|{tzj=1}k−1

j=1
,ΦX

)
= p

(
tzk = 1|tzk−1 = 1,ΦXk

)
(5)

Substituting in (4), we write:

pey,i =
∑
ΦX

Li∏
k=1

[
p
(
tzk = 1|tzk−1 = 1,ΦXk

)]
p(ΦX) (6)

In addition, tzk is relatively independent of tzk−1 since zk is
determined by xk as well, i.e., transitions in zk−1 do not necessarily
imply transitions in zk. Thus, (7) is expressed as

pey,i =
∑
ΦX

Li∏
k=1

[p (tzk = 1|ΦXk )] p(ΦX) (7)

For ease of notation, we denote (zk−1[n], zk[n]) as z[n] and
introduce the operator |= to denote that all individual components
of the two vectors z[n] and z[n− 1] are not equal. In non-recursive
architectures the signal transitions are independent across time and
thus the conditional transition probability p(tzk = 1|ΦXk ) in (7) at
the output of each PEk is expressed as follows:

p(tzk = 1|ΦXk ) =
∑

zk[n−1] 6=zk[n]

p(zk[n− 1]|ΦXk )p(zk[n]|ΦXk ) (8)

This means that we treat the logic state of PEk independent of time
and sum over values where both zk[n] and zk[n−1] are different. For

example if zk is 1-bit, then we sum over the tuples (zk[n], zk[n−1])
∈ {(0, 1), (1, 0)}. Since the probabilities are stationary, we treat each
p(z[n]|ΦXk ) and p(z[n−1]|ΦXk ) similarly. Substituting (3) into (8)
and then (7), we obtain:

pey,i =
∑
ΦX

Li∏
k=1

∑
zk[n−1] 6=zk[n]

fk,n(Φxj|j≤k
)fk,n−1(Φxj|j≤k

)p(ΦX)

(9)
This shows pey,i is completely determined by ΦX . If we assume that
at most D ≤ Li− 1 PEs compute correctly in one clock-cycle, then,
for an error to appear at the output, the last D PEs need to undergo
a transition independent of preceding PEs in the chain. Otherwise
the error cannot be propagated. Conditioning on p(zQi−1), where
Qi = Li−D− 1, will shield all PEk>Qi−1 from signal transitions
in preceding PEs in the logic chain, and thus (6) is written as:

pey,i =
∑
ΦX

p(ΦX)
∑

zQi−1

p(zQi−1)

Li∏
k=Qi

[
p
(
tzk = 1|tzk−1=1,ΦXk , zQi−1

)]
(10)

Following similar procedure from (6) to (9), pey,i in (10) can also
be written as a polynomial function of ΦX . This shows that ΦX

completely determines the probability of output errors. Thus, we can
modulate the probability of output error in a DSP kernel/architecture
by enforcing conditions on the constituent elements of ΦX . Next, we
employ this observation to generalize the proposed error model to be
independent of the application, given a DSP architecture.

C. Generalized Error Characterization Procedure

Given a DSP kernel/architecture and two input statistics PX,1 and
PX,2 that have the same BPP, i.e., ΦX,1 = ΦX,2, then property
1 shows that output error PMFs corresponding to the two input
PMFs are equal, i.e., PE,1 = PE,2. Moreover, Property 1 shows
that for a DSP kernel with input precision Bx, all input PMFs that
are symmetric around 2Bx−1

2
have a BPP where all bits are equally

likely. We denote this BPP as ΦX,U and define the corresponding
class of PMFs as CX,U . The uniform input distribution U can be
used as a representative input distribution to characterize the DSP
kernel for CX,U . Furthermore, CX,U can be enlarged to CX,DSP

consisting of any input PMF that is symmetric around any value
µx ∈ (0 : 2Bx − 1). The uniform input distribution U can still
be used to obtain PE,DSP of CX,DSP . To see this, the mean of
x′ = x + 2Bx−1

2
− µx is µx′ = 2Bx−1

2
and thus PX′ ∈ CX,U .

Then, the error PMF of x can be obtained from the error-free
DSP kernel functionality fDSP via a simple translation of PE,U

as follows:PE = PE,U + fDSP

(
µx − 2Bx−1

2

)
. Therefore, output

error characterization for a DSP kernel/architecture at a given PVT
corner can be done once using a uniform input distribution to
obtain PE,DSP . The obtained error PMF PE,DSP is applicable
to any application whose input statistics is symmetric which is
encountered in several DSP applications. If the input statistics in
a given application is asymmetric then the error-characterization will
need to be redone for the DSP kernel.

Given a DSP kernel/architecture and an error-free operating fre-
quency fop, the generalized error characterization flow is:

1) Generate a uniformly distributed input data set Dx,U and obtain
the corresponding error-free output yo[n] using an RTL or
fixed-point simulation.

2) Synthesize the design at a PVT corner to obtain a gate-level
netlist of the DSP kernel that can operate error-free at fop.



TABLE I
KL DISTANCE BETWEEN ERROR PMFS OF 16-BIT ADDERS UNDER VARIOUS INPUT STATISTICS AND ERROR PMF PEU

.

16-bit RCA 16-bit CBA 16-bit CSA
KV OS EU ,EG EU ,EiG EU ,EAsym1 EU ,EAsym2 EU ,EG EU ,EiG EU ,EAsym1 EU ,EAsym2 EU ,EG EU ,EiG EU ,EAsym1 EU ,EAsym2

0.95 0 0 0.062 0.04 0 0 0.08 0.05 0 0 0.07 0.07
0.90 0 0 0.15 0.06 0 0 3.93 0.06 0 0 1.29 0.53
0.82 0.01 0.01 1.15 0.20 0 0 24.3 0.72 0 0 40.7 0.40
0.73 0.07 0.07 8.86 1.33 0.02 0.01 32.6 1.83 0.01 0 129 15.7
0.65 0.30 0.28 52.0 8.48 0.01 0 142 14.5 0.1 0.02 308 96.5

3) Back-annotate the synthesized gate-level netlist with timing
information (standard-delay format (SDF) file) at PVT corners
worse than the synthesis PVT corner in step 2.

4) Generate the erroneous output y[n] at different PVT corners
by employing an RTL-level simulation of the synthesized gate-
level netlist in step 2 using the same input data set Dx,U as
step 1 and the SDF files generated in step 3 while fixing the
operating frequency at fop.

5) Error PMF PE is obtained at different PVT corners by com-
paring yo[n] in step 1 to y[n] in step 3.

IV. SIMULATION RESULTS

To validate the error analysis, modeling, and characterization, we
employ voltage overscaling (VOS) in order to generate timing viola-
tions and thereby emulate PVT variations. In VOS, the supply voltage
is reduced below a critical supply voltage Vdd−crit, which is the
lowest voltage at which the system operates error-free, while keeping
the frequency of operation fixed at fop. We define Vdd/Vdd−crit as
the voltage overscaling factor KV OS . In what follows a commercial
45nm CMOS process is employed and error PMF PE of a given
DSP kernel/architecture is obtained at each voltage following the
characterization flow outlined previously. In certain cases, when we
want to study the effect of different input statistics on output error,
we use the respective input statistics instead of a uniform one. We
focus on adder and multiplier units as these are widely used in DSP
designs and form most of the data path in circuits benchmarks. We
employ Kullback-Leibler distance (KL) to quantify the difference
between error PMFs for different input statistics. Given two PMFs
PE1 and PE2 of two random variables E1 and E2, the KL distance
is:

KL(PE1 , PE2) =
∑
e

PE1(e)log2

PE1(e)

PE2(e)
(11)

KL measures the distance between two distributions so that
KL(PE1 , PE1) = 0 if and only if PE1 = PE1 . Usually, two PMFs
are quite similar if KL < 1.

To verify the relation between word-level (PMF) and bit-level
(BPP) input statistics and output error statistics, Table I shows the
KL-distance between the error PMFs corresponding to different input
PMFs (G, iG, Asym1, and Asym2) and the error PMF PEU obtained
using a uniform input distribution in different 16-bit adders. The error
PMFs corresponding to symmetric input PMFs, G and iG, have very
small KL distance with PEU . On the other hand, error PMFs corre-
sponding to asymmetric input PMFs, Asym1 and Asym2, are close to
PEU only at high KV OS where the voltage of the adder is not reduced
enough to produce a large number of output errors. As voltage is
reduced further, the error PMF of asymmetric input distributions
starts to have a very large KL distance compared to PEU . Note that,
KL(PEU , PEAsym1) is greater than KL(PEU , PEAsym2). This is
because the Asym1 PMF is more asymmetric than Asym2 PMF (see
Fig. 2(a)). Similar trend is observed in Table II for different types of

TABLE II
KL DISTANCE BETWEEN ERROR PMFS OF A 16-TAP FIR FILTER UNDER

VARIOUS INPUT STATISTICS AND ERROR PMF PEU
.

KV OS EU ,EG EU ,EiG EU ,EAsym1 EU ,EAsym2

Direct-Form FIR
0.95 0.06 0.04 21.6 0.05
0.90 0.94 0.15 63 3.57
0.82 0.92 0.14 33 3.10
0.73 0.03 0.82 227 209

Transposed-Form FIR
0.95 0.49 0.13 70 0.53
0.90 0.91 0.38 62 5.78
0.82 0.31 0.08 56 3.41
0.73 0.03 0.89 203 163

16-tap FIR filters where error PMFs of symmetric input distributions
are close to PEU while those of asymmetric distributions are quite
different. These results support the error analysis and modeling
procedure presented in this paper, and specifically, the fact that input
distributions with similar input BPPs produce similar output error
statistics.
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