
Speeding-up SIMD instructions Dynamic Binary

Translation in Embedded Processor Simulation

Luc Michel, Nicolas Fournel and Frédéric Pétrot

TIMA laboratory,

CNRS/Grenoble INP/UJF, Grenoble, France.

Abstract—This paper presents a strategy to speed-up the
simulation of processors having SIMD extensions using dynamic
binary translation. The idea is simple: benefit from the SIMD
instructions of the host processor that is running the simulation.
The realization is unfortunately not easy, as the nature of all
but the simplest SIMD instructions is very different from a
manufacturer to an other. To solve this issue, we propose an
approach based on a simple 3-addresses intermediate SIMD
instruction set on which and from which mapping most existing
instructions at translation time is easy. To still support complex
instructions, we use a form of threaded code. We detail our
generic solution and demonstrate its applicability and effective-
ness using a parametrized synthetic benchmark making use of the
ARMv7 NEON extensions executed on a Pentium with MMX/SSE
extensions.

I. INTRODUCTION

Audio, video and communication applications are the core

activities of embedded devices. Thanks to the integration

technology, it has been possible already in the late 90’s to

realize in software many hardwired device parts, leading to

a "revival of the SIMD idea"[1]. Since then, a lot of work

has been done regarding compilation tools to automatically

exploit[2], extract[3] and simulate systems making use of such

instructions[4]. As integration continues, software solutions

are preferred to increase the reuse capabilities, and MPSoCs

using processors with SIMD extension are now common in

embedded platforms. The simulation speed of these platforms

is a key point to allow concurrent hardware and software

design. One good candidate for fast simulation of instruction

sets is the dynamic binary translation approach, that has

been recently advocated by several works [5], [6]. However,

although binary translation is well suited for the scalar code,

it generally ends up as a host function call to an instruction

interpretation function for the SIMD instructions in retar-

getable solutions. This slows down drastically the simulation

of programs making use of these extensions, even though most

host processors are high performance processors that include

some sort of SIMD unit indeed not used by binary translation.

The purpose of this paper is to propose a solution applicable

to retargetable dynamic binary translation that can make use

of the host computer SIMD capabilities. As the nature of the

SIMD extensions of the different instruction set architectures

(ISA) are quite different, what can seem to be a trivial problem

ends up as a fairly complex one, at least when targeting the

ability of doing a translation between many extensions.

The paper is organized as follows. Section II presents the

principles of dynamic binary translations, as a prerequisite

to the rest of the paper, and details the solutions that have

been proposed for handling SIMD instructions in this context.

Section III introduces our solution making use of a dedicated

intermediate representation. Finally, Section IV gives and

analyses experimental results, prior to discuss the future works

in Section V.

II. RELATED WORK

Binary translation is aiming at transforming instructions

of one ISA to another. This process can be executed at

two different moments: offline, we then talk of static binary

translation (SBT) [7], [8], or at run-time, we then talk of

dynamic binary translation (DBT) [9], [10].

The main and original goal of binary translation has been

migration and compatibility. Indeed, numerous works propose

solutions based on binary translation (static or dynamic)

aiming at exploiting new features of more recent versions

of an architecture (for example UQBT with the SPARC ISA

[7]). Others propose solutions easing migration from some

architecture to another [8], [11], [12].

More applications of this technique have emerged in the

recent years, for example Just-in-time compilation for Java,

native binary acceleration [13] or virtualization and system

simulation [10].

In the DBT field, efforts have been made to build ma-

chine adaptable binary translator. In that way, the translator

can be adapted to numerous architectures with a reduced

effort [10], [14], [9]. These translators are all based on an

intermediate representation so that the complete process of

binary translation can be described in a two-phases manner,

as proposed on figure 1. The intermediate representation is

machine independent to guaranty the re-targetability of the

translator. This representation can be viewed as a generic

machine instruction set, it is even called micro-operations in

QEMU [10] or I-RTL in Walkabout [9].

Fig. 1. Machine adaptable dynamic binary translation process

The first phase is in charge of translating the target instruc-

tion into the machine independent intermediate representation.978-3-9810801-7-9/DATE11/ c©2011 EDAA



Most of the case, this phase is called translator [10], [9]. The

second phase is then in charge of encoding the intermediate

representation into host instructions. It is called code genera-

tion, by analogy with the compilation notion, [10] or encoder

[9].

Among all the works proposed until now, many have

addressed the issue of translating binaries from a scalar target

architecture to another scalar architecture. This case is the

most direct one, since by falling back in an elementary

intermediate representation, we can always find a translation

for instructions regardless of their complexity [10].

Other works have proposed translations from scalar archi-

tectures to parallel architectures, more precisely to VLIW

architectures DAISY [11], IA64 [12]. These solutions are

a little more complex than the previous ones since on top

of finding a matching between instructions, these solutions

have to extract the instruction level parallelism (ILP) to take

advantage of the host architecture for better performances.

Our main concern is to simulate embedded processors

including SIMD extensions efficiently. To the best of our

knowledge, only few works address this question and none

in a retargatable way. Among them we can cite an effort from

FX!32 [8] to translate MMX SIMD instructions to the Alpha

instruction set. Another effort aims specifically at executing

SIMD instructions (MMX/SSE) on an IA64 architecture [15].

The usual strategy consists in calling a specific function,

named helper in QEMU, that implements the SIMD instruc-

tion behavior. We believe that taking advantage of the host

SIMD capabilities is a must, and therefore our proposition

is to propagate instruction set parallelism from target to host

through extensions of the intermediate representation.

III. DYNAMIC BINARY TRANSLATION OF SIMD

INSTRUCTIONS

A. Specificity and complexity of SIMD instruction sets

SIMD instructions perform parallel operations on multiple

data (Single Instruction Multiple Data – SIMD). We can find

today multiple ISA extensions providing SIMD instructions to

general purpose CPUs. Among them, we specifically looked

at MAX instructions for the PA-RISC, MIPS’ MDMX and

DSPASE, PPC’s AltiVec, SPARC’s VIS, Intel’s MMX/SSE

and ARM NEON. All these instructions set extensions share

the same characteristics, described below. For performing

parallel operations on multiple data, SIMD instruction per-

forms the operation (or sequence of instructions) on registers

interpreted as array of values. This array of data can have a

variable number of values of various size, for example a 128

bits wide register can be viewed as two 64 bits, four 32bits,

eight 16 bits or sixteen 8 bits values. On top of that the variety

of the operations applied to the data is huge. It ranges from the

classical arithmetic operation (add, sub, shift, . . . ) to saturated

or rounding arithmetic. Among this large range of instructions,

each SIMD instruction set represents a unique subset choice

made by the designers. On top of these classical instructions,

SIMD extensions can even integrate some exotic instructions

such as the vmul.p8 Neon instruction performing polynomial

multiplication which has no equivalent in other SIMD ISA.

We have then to make a careful choice of the micro-

operations to add to the intermediate representation of the

DBT. The main two constraints we respect for this extension

are:

• limit the number of new IR micro-operations in order to

limit the burden on the code generator and the overall

performances of the binary translator.

• add enough micro-operations in the IR to allow a maxi-

mum coverage of the SIMD instruction sets.

Indeed, adding too much micro-operations will tend to add

one micro-operation per SIMD instruction. This will not solve

the problem since the code generator (the second phase of

DBT) will have an heavy work to do to guaranty the emulation

of each of the micro-operations. In the other hand if we do not

add enough micro-operations all SIMD instructions cannot be

expressed and the translator will have a huge task to guaranty

this translation. We concentrate then on an extension of the IR

with a set of instructions which is close to the intersections

of the studied SIMD instruction sets. The IR micro-operations

will be 3-addresses operations since it is the most general

case and allows to represent the 2-addresses versions easily,

whereas the reverse is not true.

As opposed to scalar DBT, finding instruction equivalence in

SIMD DBT has to take care the SIMD specificities: parallelism

and register interpretation.

B. Different translation cases

In the process of translating from one SIMD instruction

to an other, we face similar situations compared to scalar

DBT. The main difference is the number of parameters to take

into account in this process. We will illustrate this all along

this section with concrete examples of translation from ARM

NEON instruction set to Intel MMX/SSE.

a) Direct mapping between instructions: fortunately the

easiest case of the scalar DBT is also present in the SIMD

DBT. It is the presence of an exact equivalence between a

target SIMD instruction and an host SIMD instruction. The

behavior of the SIMD DBT in this situation is quite similar to

the one of the scalar DBT. All we have to do is to guaranty to

convey operands to correct registers and retrieve the result

from the correct register. This case can be called a direct

mapping. The main diverging aspect between scalar and SIMD

direct mappings lies in the fact that we have to guaranty

that there is the same level of parallelism between the two

instructions, i.e. the same interpretation of registers (couple of

number and size of the values).

This case is widely applicable on arithmetic operations of

SIMD instruction sets. Figure 2 illustrates the DBT of an

ARM Neon vadd.i16 into an Intel MMX/SSE paddw. The

IR micro-operation used to propagate the parallelism is named

simd_128_add_i16 and represents the SIMD instruction

performing 8 parallel adds on 16 bits values in 128 bits

registers.

Table I gives some examples of direct mappings between

the ARM Neon add instructions and the Intel SSE ones. These

examples are only 128 bits adds, but equivalent mapping can



Fig. 2. Direct mapping between vadd.i16 Neon instruction and paddw

MMX/SSE instruction

TABLE I
MAPPING BETWEEN ADDITION INSTRUCTIONS

Operation Neon instruction MMX/SSE instruction

add 8 bits vadd.i8 Qd, Qn, Qm paddb xmm1, xmm2

add 16 bits vadd.i16 Qd, Qn, Qm paddw xmm1, xmm2

add 32 bits vadd.i32 Qd, Qn, Qm paddd xmm1, xmm2

add 64 bits vadd.i64 Qd, Qn, Qm paddq xmm1, xmm2

also be found for 64 bits instructions and for other arithmetic

instructions such as sub, and, or and xor.

b) No direct mapping: in a less favorable case, there ex-

ists no direct mapping between instructions of the instruction

sets. Most of the cases, this lack of mapping is due to a lack

of generality of the operations performed by the target SIMD

instruction. In that case it is only of little interest to have a

micro-operation in the IR for that instruction. The strategy

in such cases is to split the target SIMD instruction in more

elementary operations present in the IR. This technique is once

more identical to the one used in scalar DBT, but we have still

more parameters to take into account during the process, i.e.

parallelism level and registers interpretation.

Fig. 3. The vsra Neon instruction is translated into two TCG micro-
operations

Figure 3 gives an example of this situation with the

translation of the ARM Neon vsra.u32 instruction which

is performing a right shift on operands and accumulate the

shifted results in the output register. This SIMD instruc-

tion is translated into two elementary IR micro-operations

simd_128_shr_i32 and simd_128_add_i32. The code

generator can then find an equivalent for each micro-operation,

i.e. psrld and paddd.

c) The exceptional case: a third and least favorable case

is finally possible. This situation is quite seldom, but due to the

way instructions have been chosen for integration in the SIMD

instruction sets, it can be encountered. This situation happens

when an SIMD instruction of the target can be translated

into a corresponding IR micro-operation but no equivalent is

available in the host SIMD instruction set. As shown in table

II, all versions of the shift are available in ARM Neon SIMD

instruction set. This is even true for all SIMD instruction

sets except the Intel SSE SIMD instruction set. As it can

be realized from this table, there exists no instruction for

shifting 8 bits values. As this operation is present in all other

instruction sets, it is present in the IR.

Fig. 4. The left shift micro-operation is translated into multiple MMX/SSE
instructions

TABLE II
MAPPING BETWEEN LEFT SHIFT INSTRUCTIONS

Operation Neon instruction MMX/SSE instruction

shl 8 bits vshl.i8 Qd, Qm, #imm N/A

shl 16 bits vshl.i16 Qd, Qm, #imm psllw xmm1, xmm2

shl 32 bits vshl.i32 Qd, Qm, #imm pslld xmm1, xmm2

shl 64 bits vshl.i64 Qd, Qm, #imm psllq xmm1, xmm2

The code generator has then to solve this situation by

generating multiple host instructions, as shown in figure 4.

The example given in this figure is for the translation of a

8 bits logical left shift emulated by a 16 bits version. Figure

5 gives more details of the sequence of MMX instructions

used for this emulation of the 8 bits logical left shift of 4

(we used 64 bits MMX version for the sake of readability).

As shown on the figure, the MMX version contains the 16

bits left shift operation followed by other MMX instructions

in charge of masking the uselessly propagated bits due to the

mismatch of operation width (8 to 16 bits). We may hope that

this least favorable case is still much better than doing it with

a sequence of scalar instructions.

Fig. 5. Reproducing 8 bits left shift with 16 bits left shift and a mask

d) Comparison instructions: As far as comparisons are

concerned, PowerPC Altivec, Sparc VIS, MMX/SSE and Neon

instruction sets provide the result for each element in the out-

put operand, whereas the MIPS DSPASE sets flags. Because



of this unbalanced distribution, we select the micro-operations

that produce their results in the output operand.

IV. EXPERIMENTS

The proposed IR extension has been ported in the QEMU

binary translator. The translator for the ARM Neon instruction

set and the code generator for the Intel MMX/SSE instruction

set have been implemented.

A. Functional tests

In order to validate the correctness of our implementa-

tion, we ran different multimedia format conversions with

ffmpeg to compare the SIMD DBT from ARM Neon to Intel

MMX/SSE results to the ones obtained for the CortexA8 of

a BeagleBoard. Thanks to the intrinsic parallelism of SIMD

instructions the number of cases is limited.

B. Benchmarks and performance measurement

In order to estimate the performances of the SIMD DBT, we

have generated synthetical benchmarks containing between 0%

and 100% of SIMD instructions. These benchmarks covered

the three cases presented before (vadd.i16, vsra.u16 and

vshl.u8).

These benchmarks have been executed on the original

version of QEMU using helper functions as well as on

our improved version. Figure 6 shows the benchmark results

for the three Neon instructions. The curves represents the

execution time of the improved version Ti relative to the

original version’s execution time To: Ti/To.

Fig. 6. Performance measurement

As it can be realized from the figure, with a 0% of SIMD

instructions, our version reaches the same execution time

than the original version. This means that the modification

made to the DBT has no negative impact on the scalar DBT

performances.

At the other end of the curve, (100% of SIMD instruction

point), we can realize that the speed up for the three cases

is good, since the worst result is a 4x improvement (for the

vadd.i16 case – direct mapping). Among the three cases, the

easiest one does not give the best speedup as its helper version

also has the least complexity.

Finally, we can observe that regardless of the ratio of

SIMD instructions, the improved solution proposes a good

enhancement of the performances. It even reaches a speedup

close to its final speedup at about 20 %, which is due to the

huge weight of SIMD simulation in the original version.

V. PERSPECTIVES

As these preliminary results are encouraging, we believe

that two main, although ambitious, follow-ups are possible.

The first one concerns the definition of an abstract representa-

tion of the semantic of the SIMD instructions to (1) optimize

the intermediate instruction set and (2) allow to automate the

generation of the translation. The second one concerns the

dynamic translation of VLIW codes.

As a final remark, even though we focused on embedded to

desktop processor translation, the strategy we propose is also

viable for desktop to desktop translation and could benefit to

virtualization technologies.

ACKNOWLEDGMENT

The authors would like to thank the Catrene office and the

French Public Authorities for supporting this work through the

Catrene COMCAS project.

REFERENCES

[1] M. Schlett. Trends in embedded-microprocessor design. Computer,
31(8):44 –49, aug. 1998.

[2] R. Leupers. Compiler design issues for embedded processors. IEEE
Design and Test of Computers, pages 51–58, 2002.

[3] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific
instruction-set extensions under microarchitectural constraints. Inter-

national Journal of Parallel Programming, 31(6):411–428, 2003.
[4] P. Mishra and N. Dutt, editors. Processor Description Languages,

Volume 1. Morgan Kaufmann Publishers Inc., 2008.
[5] M. Gligor, N. Fournel, and F. Pétrot. Using binary translation in

event driven simulation for fast and flexible MPSoC simulation. In
CODES+ISSS, pages 71–80. ACM, 2009.

[6] M. Becker, G. Di Guglielmo, F. Fummi, W. Mueller, G. Pravadelli, and
Tao Xie. RTOS-aware refinement for TLM2.0-based HW/SW designs.
In Design, Automation Test in Europe Conference, pages 1053 –1058,
March 2010.

[7] C. Cifuentes and M. Van Emmerik. UQBT: Adaptable Binary Transla-
tion at Low Cost. Computer, 33(3):60–66, 2000.

[8] P. J. Drongowski, D. Hunter, M. Fayyazi, D. Kaeli, and J. Casmira.
Studying the Performance of the FX!32 Binary Translation System. In
the First Workshop on Binary Translation, 1999.

[9] D. Ung and C. Cifuentes. Machine-adaptable dynamic binary translation.
In DYNAMO ’00, pages 41–51, 2000.

[10] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In the
USENIX Annual Technical Conference, pages 41–46, 2005.

[11] K. Ebcioglu and E. R. Altman. DAISY: Dynamic Compilation for 100%
Architectural Compatibility. In ISCA 24, pages 26 – 37, 1997.

[12] C. Zheng and C. Thompson. PA-RISC to IA-64: Transparent execution,
no recompilation. Computer, 33(3):47–52, 2000.

[13] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In ACM conference on Programming
language design and implementation, pages 1–12, 2000.

[14] B. Yuncheng, L. Alei, and G. Haibing. Design and implementation of
crossbit:dynamic binary translation infrastructure. Computer Engineer-
ing, 33(23):100 – 134, 2007.

[15] J. Li, Q. Zhang, S. Xu, and B. Huang. Optimizing dynamic binary
translation for SIMD instructions. In Code Generation and Optimization,
March 2006.


