
Arithmetic Logic Units with High Error Detection
Rates to Counteract Fault Attacks

Marcel Medwed
IAIK, Graz University of Technology, Austria

Crypto Group, Université catholique de Louvain, Belgium
Email: Marcel.Medwed@uclouvain.be

Stefan Mangard
Infineon Technologies AG

Munich, Germany
Email: Stefan.Mangard@infineon.com

Abstract—Modern security-aware embedded systems need pro-
tection against fault attacks. These attacks rely on intentionally
induced faults. Such intentional faults have not only a different
origin, but also a different nature than errors that fault-tolerant
systems usually have to face. For instance an adversary who
attacks the circuit with two lasers can potentially induce two
errors at different positions. Such errors can not only defeat
simple double modular redundancy schemes, but as we show,
also naive schemes based on any linear code over GF(2). In this
article, we describe arithmetic logic units (ALUs) which provide
high error detection rates even in the presence of such errors.
The contribution in this article is threefold. First, we show that
the minimum weight of an undetected error is no longer defined
by the code distance when certain arithmetic and logic operations
are applied to the codewords. As a result, additional hardware
is needed to preserve the minimum error weight for a given
code. Second, we show that for multi-residue codes, these delicate
operations are rare in typical smart card applications. This allows
for an efficient time-area trade-off for checking the codewords
and thus to significantly reduce the hardware costs for such a
protected ALU. Third, we implement the proposed architectures
and study the influence of the register file and a multiplier on
the area and on the critical path.

I. INTRODUCTION

In more and more applications, cryptographic operations are
performed on embedded processors. Some of the most impor-
tant applications in this context are payment, identification,
access control, digital rights management and IP protection. In
order to protect these applications, it is necessary to implement
countermeasures against physical attacks on the embedded
processors.

There are numerous publications on physical attacks that
allow the extraction of secret information based on the ob-
servation or manipulation of an embedded device and its
environment. Typical examples of physical attacks are timing
attacks [8], power analysis attacks [9] and fault attacks [2],
[3].

In particular fault attacks are becoming increasingly impor-
tant. There exist several publication that discuss methods to
induce faults in order to reveal secret information [4], [15]–
[18]. In general there are two types of fault attacks. On the
one hand, there are global fault attacks on the systems. In this
case, the attacker has only limited control over the type and
location of the fault. On the other hand, there are local fault

attacks. Using sophisticated laser equipment it is possible to
bypass global countermeasures such as light sensors.

In order to build a secure embedded processor, it is nec-
essary to provide error detection mechanisms that can detect
global attacks as wells as very local attacks. The most simple
solution to achieve this goal would be to duplicate the design
and to hence build a dual modular redundant (DMR) system.
This approach would allow high error detection rates, but it
would also be associated with significant costs. Furthermore,
simple DMR schemes can potentially be defeated by so-called
second-order fault attacks [7]. In this article, we present and
analyze a novel code-protected ALU that provides a high
error detection rate on the one hand and that has less area
requirements than a DMR ALU. In fact, our ALU preserves
the code distance throughout all operations and has an error
detection rate of 99,998%. Despite this, we save 24.8% of area
compared to a DMR ALU.

A. Related Work

Coding schemes for processors are a research topic since
decades. Already in 1970, Rao published a paper on how
to use bi-residue codes for error correction for arithmetic
operations [12]. Later on, residue prediction formulas for all
common arithmetic and logic operations have been developed
and also deployed in computer architectures [13], [14]. Elliot
and Sayers on the other hand equip an ALU with Hamming
code predictors to increase its reliability [5].

All above works only consider single-bit and in some cases
double-bit faults. Furthermore, double-bit faults are not consid-
ered to appear in both operands of a calculation simultaneously
since this is unrealistic if the faults occur unintentionally. As
a result, those architectures are not suited to protect against
fault attacks. The problem of using error-detection codes to
protect complete ALU/register-file units against fault attacks
did not receive much attention so far.

Protecting dedicated cryptographic hardware against fault
attacks on the other hand is indeed a vivid research topic. An
overview of protection mechanisms for AES implementations
can be found in [10]. The work presented in [6] protects poly-
nomial multipliers using parity schemes. However, although
the protection of sensitive parts such as cryptographic co-
processors is necessary, it is not sufficient. Already before fault
attacks were presented in the cryptographic community, they978-3-9810801-7-9/DATE11/ c�2011 EDAA

have been used to attack pay-TV cards [1]. Here, the operating
system was the point of attack. Due to manipulated counter
or address values, sensitive memory regions were sent by the
cards to their output.

B. Our Contribution
As mentioned above, fault-attack protected systems must be

resistant to global attacks. Such attacks result in a random error
and thus a high redundancy suffices to repel global attacks. A
typical amount of redundancy would be 16 bits which accounts
for a detection rate of 1−216 ≈ 99.998%. However, there are
also local attacks. So far no work has shown the effect of
precise low weight errors which affect both operands involved
in an logic or arithmetic operation. To grasp this effect we
define the operational distance as a metric which states the
minimum weight for an undetected error for a given code
under a given operation. In fact, we show that the operational
distance of an arbitrary linear code over GF(2) is two and
the one of an arbitrary multi-residue code is three for some
operations.

Based on these results, we define a general architecture for
which the minimum weight of an undetected error is equal
to the code distance rather than to the operational distance.
In terms of security this architecture is superior to existing
approaches. However, especially for multi-residue codes, the
hardware costs of such an architecture need to be reduced.
To do so, we use the fact that only some operations have
an operational distance smaller than the code distance. By
analyzing the instruction frequencies for typical smart card
applications we can further observe that those operations are
rare for multi-residue codes. Based on these observations,
we design a new architecture which reduces the hardware
overhead for a multi-residue code based ALU by 90% points.

Finally, we synthesize these architectures for a 0.35µm
CMOS standard cell library and compare the area costs and
the critical path delays to the ones of a DMR-based approach.
For further analyses, we also take the effect of the register file
and the one of a possible multiplier into account. To the best
of our knowledge this is the first work to estimate the costs of
protecting a general purpose datapath against fault attacks1.

The remainder of the paper is organized as follows: Section II
discusses linear and multi-residue codes and analyzes their
operational distances. An architecture for which the minimum
error weight is equal to the code distance is presented in the
first part of Section III. In the second part of this section, we
analyze instruction frequencies for smart card applications and
discuss optimizations for the previously presented architecture.
In Section IV, the different hardware designs are discussed and
compared. Finally, conclusions are drawn in Section V.

II. SUITABLE CODES

This section discusses binary linear codes and multi-residue
codes. We look at their basic properties and how they can be

1Note that we are only concerned with data integrity and that address-bus
manipulations and attacks on the program flow (glitches, power spikes) have
to be handled separately.

used to protect arithmetic and logic operations. Eventually,
we investigate their operational distance for common ALU
operations. For this purpose we use the following definition.

Definition Let C be a channel code and f a binary operation
f(a, b) = c with a, b, c ∈ C. Furthermore, let e = (ea, eb)
be an error which affects both operands, such that (ã =
a + ea, b̃ = b + eb). We define the Hamming weight of e
as WH(e) = WH(ea) +WH(eb). For an undetected error, we
demand c �= c̃ = f(ã, b̃) but c̃ ∈ C. We define the operational
distance of C regarding f as the minimum Hamming weight
WH(e) needed to produce an undetected error.

A. Linear Codes

A [n, k] linear code encodes a k-bit dataword into an n-bit
codeword. This is done by multiplying the dataword d ∈ Fk

q

with the k × n generator matrix G. We only look at the case
where q = 2. In systematic form, G can be written as [I|P]
where I is a k × k identity matrix and P is the k × r parity
matrix. A codeword is error free, if its product with the r×n
parity check matrix H is the zero vector, where H =

�
PT |I

�
.

The code distance D is the minimum pairwise Hamming
distance between all codewords. Consequently, every error
with Hamming weight smaller D is detected with certainty.
For the parameters [n = 48, k = 32], the best known binary
linear code has distance 6.

In the following we recall the parity generation for arith-
metic and logic operations on linear codes. We denote data-
words by da, db, . . . and the corresponding parities by pa =
daP, pb = dbP, The logic-and, logic-or, exclusive-or and
integer addition operations are denoted by ∧,∨, ⊕ and +
respectively.

For dc = da ⊕ db the corresponding parity is pc = pa ⊕
pb. The exclusive-or operation is the same as addition over
F2 which is the base field of the code. Hence, this operation
is natively supported by the code. As a consequence, neither
auxiliary values are needed to calculate the correct parity nor
is the operational distance smaller than the code distance. This
means that even if both operands are affected by errors, the
Hamming weight of the errors’ sum has to be at least D.
Otherwise the error is detected with certainty.

Shift operations and other unary linear operations involve
only one operand. Thus they preserve the distance of the code
as well. For linear codes the result of an unary operation dc =
u(da) has the corresponding parity pc = pa ⊕ (da ⊕u(da))P.

The logic-and and the logic-or operation need auxiliary
values to generate a valid parity. These are parities which are
derived from intermediate values during the calculation. For
dc = da∧db, the parity is given by pc = pa⊕pb⊕(da∨db)P.
Similarly, for dc = da ∨ db, the parity is given by pc =
pa ⊕ pb ⊕ (da ∧ db)P.

To handle integer addition, the carry bits of the arithmetic
operation have to be incorporated in the parity of the sum. We
denote the carry bits, generated during an addition, by dcarry ,
where the least significant bit is the carry-in. The carry-out bit
is not part of dcarry , thus dcarry is also k bits long. The parity

calculation for addition follows the observation that ds = da+
db = da ⊕ db ⊕ dcarry . Therefore, ps = pa ⊕ pb ⊕ dcarryP. If
the carry generation itself is corrupted, the error adds to the
sum as well as to the parity. As a consequence, any error in
the carry generation stays undetected.

For exclusive-or and unary linear operations the operational
distance equals the code distance. The operational distance for
the other three operations is stated in the following:

Theorem 1. The operational distance for every binary linear
code regarding logic-and, logic-or and integer addition is two.

Proof: We can write the three operations as c̃ = f(ã, b̃)
with the parity written as p̃c = pa ⊕ pb ⊕ g(d̃a, d̃b)P.
The encoded result of g already depends on the erroneous
operands, thus this part of the parity already depends on d̃c.
The only portions which still depend on the original parities
are pa and pb. Hence, an error stays undetected, if it does not
affect the sum pa ⊕ pb. This is the case for errors (ea, eb)
for which ea = eb. The smallest error ea has WH = 1, thus
WH(e) is at least two.

Linear codes are well studied and can achieve a high
distance. However, for non-native operations like logic-and,
logic-or and integer addition, the operational distance is only
two. Furthermore, for integer addition, any corruption of the
carry vector stays undetected. Additionally, linear codes do
not support multiplication, because they are not defined for
operands larger than k bits.

B. Multi-Residue Codes

Multi-residue codes are arithmetic codes, defined by a set of
moduli m = {m1, . . . ,ml}. The check symbol of a dataword
a is given by pa = {da mod m1, . . . , da mod ml}. Finding
a suitable set of moduli with a high distance needs to be done
via exhaustive search. Following the conditions given in [11],
a set which assures D = 4 has been found for r = 16. In
particular, the check base m was chosen as {5, 7, 17, 31}.

The native operation of these codes is the addition. It can
be verified that indeed, for dc = da + db, the corresponding
parity pc = pa + pb mod m. Here, addition and reduction
are applied componentwise to the elements of the parity vector.
Furthermore, also multiplication can be performed without
auxiliary values, given by dc = da · db and pc = pa · pb

mod m. Analog to the exclusive-or for linear codes, addition
preserves the distance for multi-residue codes.

For Boolean operations, auxiliary values are needed. The
used relation is dc = da+db = 2 · (da∧db)+(da⊕db). From
that it follows, that the parity for dc = da ∧ db is calculated
by pc = (pa+pb− (da⊕db mod m))/2. Analog, for dc =
da∨db, pc = (pa+pb+(da⊕db mod m))/2 and eventually,
for dc = da ⊕ db, pc = pa + pb − (2 · (da ∧ db) mod m).
It is not too surprising that also for these operations, the code
distance drops if both operands are affected by errors.

Theorem 2. The operational distance for every multi-residue
code regarding logic-and, logic-or and exclusive-or is three.

Proof: We can write the three operations as c̃ = f(ã, b̃)

with the parity written as p̃c = pa+pb+(g(d̃a, d̃b) mod m).
The encoded result of g already depends on the erroneous
operands, thus this part of the parity already depends on d̃c.
The only portions which still depend on the original parities
are pa and pb. Hence, an error stays undetected, if it does
not affect the sum pa + pb. This is given if ã + b̃ = a + b.
As a consequence, for an error e = (ea, eb), ea = −eb must
hold. The smallest such e is (1,−1), where the arithmetic error
−1 can be realized with 2 bits: 2d − 1d = 10b ⊕ 11b. Thus,
WH(e) = 3.

Summarizing, multi-residue codes have several advantages
over binary linear codes. First, the smallest operational dis-
tance for multi-residue codes is three, opposed to two for linear
codes. Second, multi-residue codes are prone to arithmetic
errors, which are in turn data dependent. Thus, it is harder
to induce precise errors. Third, they do not have direct
weaknesses like the carry corruption problem for linear codes
and finally they natively support multiplication.

III. GENERAL AND OPTIMIZED ARCHITECTURES

In the previous section it became clear that non-native oper-
ations need special treatment for two reasons. First, they need
auxiliary values to predict the correct check symbol. Second,
the use of these auxiliary values decreases the operational
distance. In this section we look for the minimum effort needed
to preserve the code distance and give a general architecture.
Furthermore, we discuss a time-area trade-off optimization of
this architecture for multi-residue codes.

32-bit Data Registers 16-bit Parity
Registers

Data ALU Parity
ALU

32 3232 1616

Aux
Encoder

Contol
Unit

Encoder
&

Checker

Encoder
&

Checker

Instructions Valid Parity?

16

Fig. 1. General architecture of the protected datapath.

A. Distance-preserving Measures

All investigated codes preserve the code distance if only one
operand is affected, even for non-native operations. Problems
only arise if ea �= 0 and eb �= 0. In this case, it is possible
that an operation produces a valid but incorrect result although
WH(e) < D. That is, the total Hamming weight of the error
is smaller than the code distance.

However, this demands WH(ea) < D and WH(eb) < D. As
a consequence, ea as well as eb is detectable with certainty,

32-bit Data Registers 16-bit Residue
Registers

Data ALU
Residue
ALU

32 3232 1616

Contol
Unit

Instructions Valid Residue?

16

Encoder & Checker

Residue Register

Fig. 2. Optimized multi-residue code ALU.

if we check ã and b̃. Furthermore, since such errors affect
both operands, it is sufficient to check only one operand. It
follows, that checking the result and in addition one of the
two operands preserves the distance. For an implementation
this means that three encoders and two checkers are needed. A
general architecture which fulfills this requirement is depicted
in Figure 1.

Depending on the code, parity generation is a complex task
and two additional encoders are expensive. On the other hand,
native operations only need one encoder for checking the
result. This raises the interesting question of how often non-
native operations have to be performed. Assuming that they
are rare, it would be possible to save area by spending two
additional clock cycles and re-using the encoder.

B. Instruction Frequency Analysis

In order to determine the need of additional encodings we
analyzed the instruction stream of an ARM7TDMI-S micro-
processor. For that purpose we modified the ARM emulator
Skyeye to obtain the instruction streams for various applica-
tion. The instruction stream was then parsed for instructions.
From this information an instruction profile for four different
scenarios, of which we believe that they are representative for
smart cards, was created.

The first code we evaluated was an optimized 32-bit imple-
mentation of the Advanced Encryption Standard (AES). The
second code performed an elliptic curve scalar multiplication
on the standardized NIST curve P-192. Eventually, we used
µC-Linux as a candidate for an operating system. In the last
case we did the profiling for the boot process as well as for
basic shell activities.

The outcome of the instruction frequency analysis can be
seen in Table I. For all four scenarios, data transfer operations
(Load/Store, Mov) together with arithmetic operations (Arith.,
Cmp) account for more than 50% of the instructions. A
good deal of the arithmetic instructions is used for address
arithmetic. An AES encryption needs 20% of logic operations,

TABLE I
INSTRUCTION FREQUENCIES

Instr. AES Boot Shell ECC

Arith. 17,62% 23,83% 13,23% 17,46%
Branch 0,33% 28,42% 25,62% 4,66%
Cmp 0,22% 11,72% 16,37% 2,22%
Load/Store 40,72% 23,60% 23,02% 54,73%
Logic 19,53% 3,57% 6,93% 0,70%
Misc 0,07% 1,20% 0,68% 1,46%
Mov 21,51% 7,42% 14,01% 15,48%
Mul 0,00% 0,24% 0,13% 3,30%

but for the remaining scenarios, they are rather rare. In fact,
during normal operation, the share of logic operations is at
maximum 6,93%.

For linear codes, this has minor consequences. Their only
native operation is the exclusive-or and hence using three
encoders is inevitable. However, for multi-residue codes, the
share of non-native operations is roughly 7%. Thus, using only
one encoder, but three cycles for every non-native operation
would cause a time overhead of about 14%. The resulting
savings in area are discussed in Section IV.

IV. HARDWARE RESULTS

Taking the observations and results from above into ac-
count, we synthesized two code-protected ALUs and one
DMR ALU using Cadence’s RTL Compiler 8.1 and the AMS
C35b4 standard cell library. The first design incorporates linear
codes according to Figure 1. The second one implements
the optimized multi-residue code based datapath according to
Figure 2. The DMR ALU consists of two standard ALUs, two
register files and one comparator.

A. Area of the Combinatorial Part

In Table II, it can be seen that a DMR ALU occupies
1763 gate equivalents (GE). The linear code ALU is 41%
larger when incorporating three encoders. The multi-residue
code ALU on the other hand is around 74% larger than the
DMR ALU. A multi-residue code ALU with three encoders
would be even 164% larger. However, by adding 14% time
redundancy and thus removing two encoders from the design,
it was possible to reduce the area overhead by 90% points.
This shows that code-protected ALUs with large redundancy
introduce a significant overhead in the combinatorial part of
the circuit compared to a DMR ALU.

At first glance, it looks peculiar that the standard ALU for
the linear-code design is much larger. The reason for this
is that we needed to access the internal carry vector of the
adder. Therefore, we had to implement this adder as an array
of full adders instead of using the optimized instance of the
standard cell library. As a result, this ALU is 68% larger
than the others. Considering that most structures within the
multi-residue encoders and the multi-residue ALU are also
unoptimized full-adder arrays, it might be possible to also
decrease their area significantly by having optimized carry-
save adders.

TABLE II
AREA REQUIREMENTS IN GE.

DRM ALU Residue ALU Linear ALU

1. ALU 641 ALU 649 ALU 1080
2. ALU 641 Res ALU 721 Lin ALU 110
Controller 481 Encoder 791 1. Encoder 283

Checker + Reg. 301 2. Encoder 283
Controller 611 3. Encoder 283

Controller 447
1763 3073 2486

TABLE III
ABSOLUTE AND RELATIVE AREA SAVINGS COMPARED TO THE DMR ALU

INCLUDING THE REGISTER FILE.

Registers Absolute Relative savings Relative savings
memory savings multi-res. codes linear codes

4 580 GE -18% -4%
8 1160 GE -2% 7%

16 2320 GE 9% 14%
32 4640 GE 16% 19%

B. Total Area

By just looking at the combinatorial part of the circuit,
implementing an ALU using coding techniques does not seem
to be very attractive. However, looking at the whole datapath,
that is ALU plus register file, it has an important advantage.
Using coding techniques, the amount of redundancy can be
adapted to the application’s needs. For our design decisions,
we assumed that a redundancy of 16 bits is sufficient to
counteract global fault attacks. Compared to DMR approaches
this means that the register file becomes 25% smaller. Since
registers occupy a significant part of the area, also these sav-
ings are significant. Looking at an architecture which features
32 registers, the register file of the code based approach is 4640
GE smaller (see Table III)2. In general, a code based approach
pays off from 5 registers upwards for linear codes and from
9 registers upwards for multi-residue codes. Furthermore, the
savings of both approaches converge towards the 25% percent
limit as the number of registers increases.

C. Timing Behavior

Besides the required area, another interesting property of
a hardware implementation is the timing behavior. Also the
comparison of the timing delay is difficult due to the same
optimization reasons as stated in Section IV-A. The DMR
based ALU showed a delay of 19.6ns in the critical path. The
linear code based ALU had a critical path of 31.8ns. Within
the critical path for the linear code based design lies the adder
and the encoder. This is because the encoder has to wait for
the carry vector during an addition. Out of these 31.8ns, the
encoder and the parity ALU account only for 3.8ns. Again it
should be noted that the full adder array introduces a higher
delay than the adder instantiated by the synthesizer. In fact the

2As the actual realization of a register file is very context specific, we
settled for a basic flip-flop based implementation.

delay difference is about 10ns. The critical path of the multi-
residue code design is 28.7ns long. Here, the adder and the
encoder lie within this path but not the residue ALUs as they
operate independently for arithmetic operations. The encoder
itself introduces a delay of 10ns.

D. Adding a Multiplier

Until now, we did not consider the protection of a mul-
tiplier. However, as some 32-bit smart cards already feature
a multiplier (e.g. the ST33 family is based on the ARM
Cortex-M3 platform) and further multi-residue codes support
multiplication natively, adding such instructions seems to be
very appealing. Additionally, the complexity of multiplying
the residues is much smaller than for the actual data itself,
thus we expect significant area savings.

Basically, we can use the fact that the product of the data
part is congruent to the product of the residues. However, this
only holds for the full 64-bit result. Within the microcontroller,
we need to store the result as two 32-bit words and thus we
have to derive their residues before storing these values. In
the following we use the hi(·) function to get the upper 32
bits of the 64-bit value and lo(·) to get the lower half of the
product. We can observe that lo(c) = c − hi(c) · 232 and
hi(c) = (c− lo(c)) ·2−32. Analog to that, we can calculate the
residues with plo(c) = pc − (hi(c) mod m) · (232 mod m)
and phi(c) = (pc − (lo(c) mod m)) · (2−32 mod m).

The calculation of the auxiliary values (hi(c) mod m)
and (lo(c) mod m) is inevitable. Fortunately, we can spare
the calculation of (232 mod m) and (2−32 mod m). This
is because we chose the base m in a way such that the
multiplications and divisions can either be spared completely
or expressed by constant rotations which just need rewiring.

The multiplication itself needs two cycles as we have to
write back each word of the result separately. During each
cycle we have to perform an encoding and a subtraction in
order to get the residue-vector. Additionally, we need to check
the encoded result itself against the calculated residues. In
order to perform everything within two cycles and to keep the
critical path as short as possible, we use the following strategy:

In the first cycle, the product c is computed and the upper
32 bits of the result (hi(c)) are written back. For the residue
calculation we need to encode the lower 32 bits (lo(c)). These
bits are ready before the upper ones. As a result, we can
interleave the encoding with the multiplication. Of course, the
encoding and the subtraction still take longer than the carry
propagation inside the multiplier, but we save the delay of a
32-bit carry propagation. By now we only encoded the lower
32 bits, thus we cannot check the upper bits before writing
them back. Instead, we store the values phi(c) and (lo(c)
mod m) in separate check registers.

In the second cycle we encode the upper bits of the product
and subtract the result times 232 from pc in order to get the
residues for the lower bits. In this case we can directly access
the product without delay, thus the second cycle does not lie
in the critical path. In addition to writing back the lower bits

and their residue-vector, we store the values plo(c) and (hi(c)
mod m) in separate check registers.

Until now, we only calculated the residues and wrote
them back to the register file but did not check the result.
This is done via the four separate check registers. They are
permanently connected to a comparator which checks if the
two hi-registers and the two lo-registers hold the same value.
The result of this comparison is ANDed with the global ok s
signal, except for the two multiplication cycles where the
comparison would fail.

E. Area and Timing with Multiplier

The DMR based ALU without register file and with two 32-
bit multipliers occupies 13134 GE. The multi-residue ALU on
the other hand occupies only 9950 GE. This means that our
code based approach is 24.2% smaller.

The critical path of the DMR based approach is 32.2ns
long. The multi-residue ALU takes 35.1ns to compute the
result. The encoding and the subtraction itself take 15.2ns, but
by interleaving the multiplication and the residue calculation
the critical path increases only by 2.9ns instead of 15.2ns. In
percent this means that the critical path of the multi-residue
approach is only 9% longer than in the DMR design.

V. CONCLUSION

In this article we discussed code protected datapaths as a
more robust alternative to dual modular redundant designs. In
terms of security, the code protected designs are superior to
a theoretical DMR based approach because they detect errors
of small multiplicity with certainty. In the case of the linear
ALU all errors up to a multiplicity of five are detected. The
multi-residue ALU on the other hand detects all errors up to
a multiplicity of three with certainty. However, it should be
noted that it is data dependent whether the desired error can
even be injected in the case of multi-residue codes. Within the
code protected designs, the multi-residue approach is superior
for two reasons. First, it has no direct weak points, like the
linear ALU has with the carry generation, where theoretically
a single-bit fault would succeed, unless further measures are
taken. Second, it allows to incorporate a multiplier.

In terms of area, both basic ALU designs are larger than a
DMR approach. However, when also considering the area of
the register file, both code protected designs become smaller
than the DMR design. Additionally, the synthesizer showed
to be very good at optimizing standard structures, but did not
recognize for instance carry-save adders or full-adder arrays as
such. Therefore, there should be potential to further optimize
the multi-residue design as a great deal of its area is occupied
by such structures.

In terms of performance, both code based designs are slower
than a comparable DMR approach as the result of the standard
ALU is always fed into an encoder and sometimes further into
the parity/residue ALU. The critical path increases by 62% for
the linear ALU and by 46% for the multi-residue ALU.

However, as soon as we introduce a 32-bit multiplier in the
design, things change in favor of the multi-residue ALU. That

is, since the residue multiplications are much less complex
than the full 32-bit multiplication, the multi-residue ALU
now becomes 24.8% smaller than a comparable DMR ALU.
Furthermore, it is now possible to interleave the multiplication
and the encoding and thus decrease the timing overhead to 9%.

We conclude that the multi-residue ALU is superior in
terms of robustness and provides the best security/area tradeoff
for a standard ALU. When more complex operations like
multiplications are implemented it is definitely the best choice.

REFERENCES

[1] R. J. Anderson and M. G. Kuhn, “Tamper Resistance - a Cautionary
Note,” in Proceedings of the 2nd USENIX Workshop on Electronic
Commerce, Oakland, California, November 18-21, 1996. USENIX
Association, November 1996, pp. 1–11, ISBN 1-880446-83-9.

[2] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” in Advances in Cryptology, CRYPTO ’97, LNCS 1294.
Springer, 1997, pp. 513–525.

[3] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract),” in
Advances in Cryptology, EUROCRYPT ’97, LNCS 1233. Springer,
1997, pp. 37–51.

[4] M. Boreale, “Attacking Right-to-Left Modular Exponentiation with
Timely Random Faults,” in Fault Diagnosis and Tolerance in Cryptog-
raphy, FDTC 2006, LNCS 4236. Springer, October 2006, pp. 24–35.

[5] I. Elliott and I. Sayers, “Implementation of 32-bit RISC processor
incorporating hardware concurrent error detection and correction,” in
Computers and Digital Techniques, IEE Proceedings E, vol. 137, Jan
1990, pp. 88–102.

[6] S. T. J. Fenn, M. Gössel, M. Benaissa, and D. Taylor, “On-Line Error
Detection for Bit-Serial Multipliers in GF(2m),” in J. Electronic Testing,
vol. 13, no. 1, 1998, pp. 29–40.

[7] C. H. Kim and J.-J. Quisquater, “Fault Attacks for CRT Based RSA:
New Attacks, New Results, and New Countermeasures,” in Information
Security Theory and Practices. Smart Cards, Mobile and Ubiquitous
Computing Systems, First IFIP TC6 / WG 8.8 / WG 11.2 International
Workshop, WISTP 2007, LNCS 4462. Springer, 2007, pp. 215–228.

[8] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in Advances in Cryptology, CRYPTO
’96, LNCS 1109. Springer, 1996, pp. 104–113.

[9] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Advances in Cryptology, CRYPTO ’99, LNCS 1666. Springer, 1999,
pp. 388–397.

[10] T. Malkin, F.-X. Standaert, and M. Yung, “A Comparative Cost/Security
Analysis of Fault Attack Countermeasures,” in Fault Diagnosis and
Tolerance in Cryptography, FDTC 2006, LNCS 4236. Springer,
October 2006, pp. 159–172.

[11] M. Medwed and J.-M. Schmidt, “Coding Schemes for Arithmetic and
Logic Operations - How Robust Are They?” in 10th International
Workshop on Information Security Applications, WISA 2009, LNCS
5932. Springer, 2009, pp. 51–65.

[12] T. Rao, “Biresidue Error-Correcting Codes for Computer Arithmetic,”
Computers, IEEE Transactions on, vol. C-19, pp. 398–402, May 1970.

[13] H. J. Reinheimer, “Error Detecting and Correcting System and Method,”
U.S. Patent 3,699,323, October 17, 1972.

[14] M. M. Schaffer, “Residue Checking Apparatus for Detecting Errors
in Add, Subtract, Multiply, Divide and Square Root Operations,” U.S.
Patent 4,926,374, May 15, 1990.

[15] J.-M. Schmidt, M. Hutter, and T. Plos, “Optical Fault Attacks on AES:
A Threat in Violet,” in Fault Diagnosis and Tolerance in Cryptography,
FDTC 2009, IEEE-CS Press, September 2009, pp. 13–22.

[16] J.-M. Schmidt and M. Medwed, “A Fault Attack on ECDSA,” in Fault
Diagnosis and Tolerance in Cryptography, FDTC 2009, IEEE-CS Press,
September 2009, pp. 93–99.

[17] S. P. Skorobogatov, “Semi-invasive attacks - A new approach
to hardware security analysis,” Ph.D. dissertation, University of
Cambridge - Computer Laboratory, 2005.

[18] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in Cryptographic Hardware and Embedded Systems, CHES
2002, LNCS 2523. Springer, 2003, pp. 2–12.

