
A Unified Methodology for Pre-Silicon Verification
and Post-Silicon Validation

Allon Adir, Shady Copty, Shimon Landa,
Amir Nahir, Gil Shurek, Avi Ziv

IBM Research - Haifa, Israel
Email: {adir, shady, shimonl, nahir, shurek, aziv}@il.ibm.com

Charles Meissner, John Schumann
IBM Server and Technology Group

Austin, TX, USA
Email: {cmeissner, johnschu}@us.ibm.com

Abstract—The growing importance of post-silicon validation in
ensuring functional correctness of high-end designs increases the
need for synergy between the pre-silicon verification and post-
silicon validation. We propose a unified functional verification
methodology for the pre- and post-silicon domains. This method-
ology is based on a common verification plan and similar lan-
guages for test-templates and coverage models. Implementation
of the methodology requires a user-directable stimuli generation
tool for the post-silicon domain. We analyze the requirements
for such a tool and the differences between it and its pre-silicon
counterpart. Based on these requirements, we implemented a
tool called Threadmill and used it in the verification of the IBM
POWER7 processor chip with encouraging results.

I. INTRODUCTION

The size and complexity of modern hardware systems have
turned the functional verification of these systems into a
mammoth task [1]. Verifying such systems involves tens or
hundreds of person years and requires the compute power of
thousands of workstations. But even with all this effort, it is
virtually impossible to eliminate all bugs in the design before
it tapes-out. In fact, statistics show that close to 50% of chips
require additional unplanned tape-outs because of functional
bugs. Moreover, in many cases, project plans call for several
planned tape-outs at intermediate stages of the project before
the final release of the system. As a result, an implementation
of the system on silicon running at real-time speed is available.
This silicon is used, among other things, as an intermediate
and final vehicle for functional validation of the system in
what is known as post-silicon validation.

Post-silicon validation is not a new idea and has been used
for many years in many places. It can be credited with the
findings of many functional bugs that escaped pre-silicon ver-
ification. However, in general, functional verification method-
ology for pre-silicon is still more varied and mature than for
post-silicon platforms. Very little is published on post-silicon
verification methodologies (e.g., [2]), and most research in
post-silicon validation has centered on on-line checking and
debugging capabilities of the silicon platforms (e.g., [3]–[7]).

In recent years, we have seen more evidence that pre- and
post-silicon verification cannot achieve their goals on their
own; pre-silicon, in terms of finding all the bugs before tape-
out, and post-silicon, in terms of finding the bugs that escaped

978-3-9810801-7-9/DATE11/ c©2011 EDAA

pre-silicon. This creates an increasing need to bridge the gap
between these two domains by sharing methodologies and
technologies and building a bridge allowing easier integration
between the domains.

We propose a unified methodology for pre- and post-silicon
verification. The methodology extends the well-established
coverage-driven verification (CDV) methodology [8] to the
post-silicon verification domain. CDV is based on three main
components: A verification plan comprising a large set of
features in the Design Under Verification (DUV) that need
to be verified; random stimuli generators directed towards
the verification goals using test-templates [9] (i.e., general
specifications of the desired test structure and properties);
and coverage analysis tools [10] that detect the occurrence of
events in the verification plan and provide feedback regarding
the state and progress of the verification process.

The unified methodology calls for pre- and post-silicon
to share the same verification plan, use similar languages
to define test-templates for both domains, and use the same
coverage models to measure the status and progress of the ver-
ification process. The methodology provides many advantages
to users. It provides commonality and enables sharing of effort
in the creation of the verification plan. It can also facilitate
mutual feedback between the two domains, for example, in
the activity of bug hunting.

While our goal is to create a unified methodology for the
pre- and post-silicon domains, the major differences between
the platforms dictate differences in the respective implemen-
tation of the methodology. One difference is that post-silicon
platforms provide significantly higher execution speeds, which
has implications on the verification tools that need to be
adjusted for the best utilization of the available speed (see
section IV). Another difference between the platforms is that
common pre-silicon simulation platforms, including software
simulators and hardware acceleration platforms (which per-
form the simulation on dedicated hardware and therefore offer
much higher simulation speeds than software simulators) sup-
port a detailed level of observability into the state of the design
as it is being tested [11], [12]. The silicon provides fewer
opportunities to observe the behavior of the system. Therefore,
bridging the gap between the pre- and post-silicon verification
domains cannot be done blindly by copying methodologies
and technologies from one domain to the other.



In fact, the limited observability of the silicon raises the
need to use accelerators as a third platform in the proposed
methodology, in addition to simulation and the silicon itself.
Accelerators are fast enough to run simple post-silicon tools,
and are observable enough to allow coverage measurement.
This allows us to measure coverage of the post-silicon tools
in a silicon-like environment.

The focus of the paper is the stimuli generation aspect of
the unified methodology. We show how many of the concepts
and technologies that made constrained random test generators
successful in pre-silicon verification can be adapted to the
post-silicon domain. Specifically, we discuss how a user-
directable tool that uses declarative test-templates can be used
in post-silicon validation. The differences between the pre- and
post-silicon platforms mean that we cannot simply convert a
successful pre-silicon generator into a post-silicon tool. For
example, to avoid spending too much time on generation
compared to execution of the tests, the heavy sophisticated
generation engine used in pre-silicon generators needs to be
replaced with a lighter and much faster engine. In addition, to
avoid long loading time, the post-silicon solution needs to be
in the form of an exerciser, that is, a tool that continuously
generates test cases, executes them, and check their results.

We implemented the proposed methodology in a tool called
Threadmill [13]. Threadmill is a bare-metal exerciser, i.e.,
an exerciser that operates on the silicon itself without the
support of an operating system. Threadmill fulfills the above
requirements; it is a directable random generator with a simple
and fast generation engine. In addition, it meets other require-
ments of exercisers, such as providing mechanisms to assist in
checking. Threadmill also addresses technical challenges, such
as how to replace the reference model, which is an essential
part of both generation and checking in pre-silicon.

The proposed unified methodology and Threadmill were
used for the first time in the verification and bring-up of the
IBM POWER7 processor with encouraging results. The use
of Threadmill (and other exercisers) on accelerators provided
significant help to the pre-silicon verification effort in finding
many bugs, some of them severe. The coverage feedback
at this stage provided a means for building a good set of
test-templates for the bring-up team, which helped ensure a
smooth bring-up and reduced the number of escapes from
the first tape-out [11]. In addition, the user’s ability to direct
Threadmill through test-templates aided in recreating some
bugs found on silicon in a pre-silicon environment, which
helped analyze and fix these bugs.

The rest of the paper is organized as follows: in Section II,
we describe the main properties of a pre-silicon stimuli gener-
ator, as a reference. In Section III, we define the requirements
for a directable post-silicon stimuli generator. Section IV
describes the proposed unified methodology. Section V de-
scribes Threadmill, our post-silicon directable exerciser. Sec-
tion VI shows our experience with the unified methodology
and Threadmill in the verification of the POWER7 processor.
Section VII concludes the paper.

Test Program Template Test Program
Variable: addr = 0x100 Resource Initial Values:
Variable: reg R6=8, R3=-25,.. R17=-16
Bias: register-dependency 100=7, 110=25,.. 1F0=16

Instructions:
Instruction: Store R5 → ? 500: Store R5 → FF0
Repeat (addr < 0x200) 504: Load R4 ← 100

Instruction: Load reg ← addr 508: Sub R5 ← R6-R4
Select 50C: Load R4 ← 110

Instruction: Add ? ← reg + ? 510: Add R6 ← R4+R3
Bias: sum-zero :

Instruction: Sub ? ← ? - ? 57C: Load R4 ← 1F0
addr = addr + 0x10 580: Add R9 ← R4+R17

Fig. 1. test-template and corresponding test

II. PRE-SILICON STIMULI GENERATION

A pre-silicon stimuli generator has to provide the user with
the ability to specify the desired scenarios in some convenient
way, and produce many valid high-quality test cases according
to the user’s specification. These scenario specifications -
known as test-templates - are written in a language that should
enable an easy and accurate way for specifying the scenarios
from the verification plan. Figure 1 shows an example of a test-
template that defines a table-walk scenario (on the left) and an
example of a test generated from this template (on the right).
The test-template is written in the test-template language of
GenesysPro- [14] - IBM’s well-established test generation tool
for the functional verification of processors using a software
simulator platform. The rest of this section describes Genesys-
Pro’s approach to test generation.

The scenario of figure 1 starts with a Store and then a
sequence of Loads, each followed by either an Add or a
Sub instruction. The memory locations accessed by the Load
instructions are contiguous in memory as seen in the Resource
Initial Values section of the test (addresses 0x100–0x1F0).
This is managed by a test-template variable addr.

The use of test-templates thus separates the test planning ac-
tivity from the generator’s development activity. The language
consists of four types of statements: basic instruction state-
ments, sequencing-control statements, standard programming
constructs, and constraint statements. Users combine these
statements to describe complex tests that capture the essence
of the targeted scenarios, leaving out unnecessary details.

The generated test cases must be valid according to the
processor’s architecture, and satisfy the user’s request specified
in the template. In addition, they should also be different from
each other as much as possible. This is done by specifying
the rules determining the validity of a test case, as well as the
user’s requests as constraints. The generator then produces a
test case by random sampling of the solution space to the
resulting constraint satisfaction problem [15].

The distribution of the generated tests should not be uni-
form, as we want to favor tests that include interesting
verification events (e.g., register dependency, memory colli-
sions), especially ones that are extremely unlikely to occur
under uniform distribution. This is done by having knowl-
edge embedded in the generator, allowing it to bias random



Fig. 2. Threadmill Vs. Genesys-Pro tool flows

decisions towards stimuli that cause interesting events [15].
This testing knowledge defines the interesting verifications
events, including the stimuli that trigger them. As the stimuli
for some interesting events depend on the processor’s state,
the generator also employs a reference model of the DUV,
simulating on it every generated instruction. This way the
generator maintains an accurate view of all the architectural
resources, and takes them into account during the generation
of interesting events. This scheme is shown in the lower part
of Figure 2.

Genesys-Pro has been in use by IBM for over ten years.
It has proven to be effective in meeting users’ requirements,
enabling them to write test-templates implementing the core
verification plans of IBM’s complex processors [16].

III. POST-SILICON STIMULI GENERATION

The characteristics of the post-silicon platform and the dif-
ferences between it and pre-silicon software simulators dictate
differences in the best ways to use this platform for functional
verification in general, and to stimuli generation specifically.
The first important characteristic is the long loading and
initialization time of the silicon. Consider, for example, a
test-case of 10,000 instructions. Such a test-case takes less
than one millisecond to complete on an advanced processor.
On the other hand, preparing the processor for the execution
(i.e., performing a power-on sequence, loading the test-case to
memory, etc.) can take more than a minute. This results in a
execution utilization of less than 0.002%.

As a result, post-silicon validation tends to rely more on
longer running solutions. One commonly used solution of this
type is the use of available applications, including operating
systems. Another solution is the use of exercisers, which are
programs that run on the DUV and “exercise” it by testing
interesting scenarios. An exerciser is a self-contained solution.
It generates the test-cases, runs them, does the checking, and
contains OS services required by the test-cases. The exerciser
runs in an endless loop which makes it a good post-silicon
solution since it is only loaded once on the DUV.

The difference in speed between pre- and post-silicon plat-
forms affects the way the platform cycles are utilized. While
pre-silicon test-generators strive to use the scarce simulation
cycles as effectively as possible by using extensive testing
knowledge to generate very high-quality test-cases, the silicon
platform is anything but short on run-time cycles. Therefore
to divert the resources from generation to execution, a post-
silicon exerciser should spend less effort in generating precise
interesting scenarios and instead generate more general test-
cases using a lightweight generator. This loss of precision is
compensated by an increase in number of tests generated.

Another area where the pre-silicon platforms differ from the
silicon platform is the level of observability. This has a deep
impact both on the ability to perform checking and the ability
to measure coverage. Pre-silicon checking techniques include
for example scoreboards, and assertions [1] which depend on
a high level of observability into the design which is not
available in typical silicon platforms. Similarly, the ability to
measure coverage on the silicon is very limited due to the low
observability. We overcome this problem by running our post-
silicon exerciser on the acceleration platform where coverage
can be measured as detailed in Section IV.

Another requirement for a post-silicon exerciser is sim-
plicity. Hardware failures are hard to debug and therefore
simple software must be used to ease the effort. In addition,
we’d like to deploy the tool during very early stages of the
post-silicon validation effort when OS can’t be run on the
DUV and operations such as reading files from an I/O device
are not supported. Another requirement is to keep the ratio
between time spent in generating and checking the test-case
and the time spent running it as low as possible. For example,
while embedding a reference model in an exerciser could
improve its checking capability, the reference model itself
is complicated software that would significantly reduce the
platform’s utilization. Examples of checking techniques that
don’t use a reference model are mentioned in Section V.

IV. A UNIFIED VERIFICATION METHODOLOGY

To better integrate post-silicon validation to the overall
verification process and improve its synergy with pre-silicon
verification, we need a unified verification methodology that is
fed from the same verification plan source. A key ingredient
for the success of such methodology is providing common
languages for the pre- and post-silicon aspects of it in terms of
test specification, progress measure, etc. Figure 3 depicts such
a methodology. This verification methodology leverages three
different platforms: simulation, acceleration, and silicon. The
methodology requires three major components: a verification
plan, directable stimuli generators suited to each platform, and
functional coverage models. Note that important aspects in
any verification methodology, such as checking, are omitted
from the figure to maintain focus on the main aspect of our
contribution, namely stimuli generation.

The verification plan includes a long list of line-items, each
targeting a feature in the DUV that needs to be verified.
Each such feature is associated with coverage events that the



Fig. 3. A unified verification methodology

verification team expects to observe during the verification
process and the methods to be used to verify the feature. The
verification plan is implemented using random stimuli gener-
ators that produce a large number of test-cases, and coverage
tools that look for the occurrence of events in the verification
plan. The random stimuli generators are directed towards the
verification goals by using test-templates. The test-templates
allow the generators to focus on areas in the DUV ranging
from large generic areas, like the floating-point unit, to very
specific areas, like a bypass between stages of the pipeline.
Coverage analysis identifies gaps in the implementation of the
plan. Its feedback is used to modify test-templates that do not
fulfill their goals, and create new ones.

Extending this methodology to post-silicon validation is
difficult because the limited observability of the silicon does
not allow to measure coverage on the silicon. To overcome
this problem, we leverage the acceleration platform to measure
coverage of post-silicon tools. To take advantage of the
coverage information collected by the accelerators and use it
in the post-silicon, shortly before first silicon samples come
back from the fab, a regression suite of exerciser test-templates
is created based on the coverage achieved on the accelerators.
This regression suite is then used to continue the verification
process on the silicon platform.

With the unified methodology, we attach to each of the line-
items in the verification plan one or more target platforms on
which it will be verified. These line-items are converted to
test-templates in the languages of the generation tools used by
each platform. A key ingredient for the success of the unified
methodology is similar operation of the stimuli generators.
In this sense, we would like the generators to use the same
test-template language, and when provided with the same test-
template, we would like the tools to produce similar (though
not identical) test-cases. Of course, the different platforms pro-
vide different opportunities and put different constraints and
requirements on the generation tools, but whenever possible,
there are advantages to having similar tools. First, the pre- and
post-silicon teams can share the task of understanding the line-
items in the verification plan and planning ways to test them.
In addition, the common language allows for easier adaptation
of test-templates from one platform to another. For example,
when a bug is detected on the silicon platform, narrowing
down the test-template and hitting it on the simulation platform
eases the root-cause analysis effort.

It’s important to note that the differences between platforms

also dictate differences in the way test-templates are written
for pre- and post-silicon tools. A test-template could be very
specific and describe a small set of targeted tests or it could
be more general leaving more room for randomization. The
validation engineer writing test-templates for a post-silicon
exerciser must bear in mind the fact that the test-template is
used to generate a huge number of test-cases and get many
processor cycles. To effectively use these test cycles, the test-
template must allow for enough interesting variation. A test-
template that is too specific will quickly “run out of steam”
on silicon and start repeating similar tests. A pre-silicon test-
template on the other hand would typically be more directed
to ensure that the targeted scnearios are reached within the
fewer cycles available on simulation.

V. THREADMILL

Threadmill was developed to enable the unified method-
ology described in Section IV, i.e., to support a verification
process guided by a verification plan by enabling validation
engineers to guide the exerciser through test-templates. The
high-level tool architecture of Threadmill is depicted in Fig-
ure 2, along with the flow of Genesys-Pro [9] - the pre-silicon
test generator tool described in Section II.

Like Genesys-Pro, the main input to Threadmill is a test-
template that specifies the desired scenarios. For reasons
mentioned in Section IV, the templates used for pre- and post-
silicon tests have different characteristics. The test-template
language of Threadmill is very similar to the language of
Genesys-Pro. However, to adhere to the simplicity and gen-
eration speed requirements, several constructs that require
long generation time, such as events, are not included in
Threadmill’s language. Other inputs to Threadmill include the
architectural model and testing knowledge and the system
topology. Again, for simplicity reasons, many testing knowl-
edge items that are included in Genesys-Pro models are not
used by Threadmill.

The Threadmill execution process starts with a builder
application that runs off-line to create an executable exerciser
image. The role of the builder is to convert the data incorpo-
rated in the test-template and the architectural model into data
structures that are then embedded into the exerciser image.
This scheme eliminates the need to access files or databases
while the exerciser is running.

The exerciser image is composed of three major compo-
nents: a thin, OS-like layer of basic services required for
Threadmill’s bare-metal execution; a representation of the
test-template, architectural model, and system configuration
description as simple data structures; and fixed (test-template
independent) code that is responsible for the exercising. The
executable image created by the builder is then loaded onto
the silicon platform where the exerciser indefinitely repeats
the process of generating a random test case based on the
test-template, the configuration, and the architectural model,
executing it, and checking its results.

In the case of Genesys-Pro, the test generation process
is carried outside of the simulation environment (say on a



dedicated server) and only the generated tests are loaded and
run on the simulation platform. Simulation cycles would be
too slow to allow generation during simulation. The “off-line”
generation, on the other hand, can afford to spend time on
sophisticated generation and checking, for example, by using
a reference model as seen in Figure 2 for Genesys-Pro. Thread-
mill’s test generation component was designed to be simple
and fast. The generation is therefore static, i.e., without the use
of a reference model. Reference models provide the generator
information about the state of the processor before and after
the generation of each instruction. This information is used for
checking but also to create more interesting events. Reloading
resources, such as registers, can be a partial replacement to the
reference model, but this solution potentially interferes with
the generation of the requested scenarios. For data-oriented
events, such as divide-by-zero, a simple yet effective solution
is to reserve registers to hold interesting values. Of course,
the generator has to ensure that the reserved registers are not
modified during the test.

Execution of the same test case multiple times is used
as a partial replacement for checking done by the reference
model. This is done by comparing certain resource values,
such as registers and part of the memory, for consistency in
different executions of the test case. Running the same test
case multiple times may result in different results even when
bugs are not present. For example, when several threads write
to the same memory location, the final value at this location
depends on the order of the write operations. This requires
that certain mechanisms be implemented in the generator to
restrict the number of unpredictable resources. Although the
multi-pass comparison checking technique is limited, it has
proven to be effective when control-path-oriented bugs, or
bugs that reside in the intersection of the control- and data-
paths, are concerned. To increase the probability of exposing
such bugs, it is beneficial to introduce some kind of variability
into the different execution passes, while making sure that
the variability maintains the predictability of the compared
resources. This can be done, for example, by changing the
machine mode, or changing thread priorities.

VI. POWER7 EXPERIENCE

The proposed unified methodology and Threadmill were
used in the verification of IBM’s POWER7 processor. The
POWER7 processor implements the 64-bit IBM Power Archi-
tecture. Each POWER7 chip incorporates eight SMT processor
cores with three levels of caches, memory and I/O controllers,
and other support and management logic. The processor cores
are out-of-order superscalar cores supporting up to four simul-
taneous threads. Each core contains twelve execution units
that are shared between the threads. This section highlights
some of the results and lessons learned from this first use of
the unified methodology and Threadmill in a large industrial
project. It focuses on the core verification of the POWER7.

POWER7 was verified using three platforms: simulation,
acceleration, and silicon. Traditional pre-silicon simulation-
based verification was used throughout the lifetime of the

project with the goal of revealing as many defects as possible.
As soon as the core was sufficiently stable, the Exercisers
on Accelerators (EoA) phase started and was executed in
parallel to simulation. Following every tape out, a post-silicon
validation phase started. This process was accompanied by
a supporting effort on both the simulation and acceleration
platforms to assist the analysis of bugs that were initially
detected on the silicon and the verification of the bug fixes.

The influence of the unified methodology on the POWER7
verification started in the EoA phase. Exercisers and acceler-
ators have been used in previous projects [16], but POWER7
was the first time in which the EoA effort was tightly inte-
grated in the overall verification effort of the core. Each ex-
erciser was assigned several line items in the core verification
plan and was asked to provide test cases that cover the events
associated with these line items. The coverage measured on the
accelerators was incorporated in the project coverage reports
together with unit and core simulation coverage. Accelerator
coverage was also used to harvest high-quality test-templates
for post-silicon validation.

Threadmill was not the only exerciser used in POWER7.
Several other exercisers were also used, and each of the
exercisers was assigned its own items in the verification plan,
based on its capabilities. Each exerciser created test cases for
the verification items in its own way. Some exercisers used
modification of their base software; others used parameters,
tables, and macros for that purpose. Threadmill was the only
exerciser that used declarative test-templates. This provided
Threadmill with several advantages. First, it provided a con-
venient way for tool users to specify the desired scenarios. It
also allowed easy sharing of knowledge between Threadmill
and Genesys-Pro due to the use of a similar language. Finally,
it provided a means for easier transfer of bug information
between the platforms for bug recreation and fix validation.

The use of EoA provided several advantages to POWER7.
First, the EoA process caught some high impact bugs. One
such bug detected by Threadmill shortly before the first
tape out was a show-stopper bug that would have totally
undermined the first post-silicon validation process and would
have required an additional tape out. In terms of coverage, the
EoA effort obtained results that are comparable with the core
simulation effort. Table I shows the coverage results shortly
before the first tape out for unit simulation, core simulation,
and EoA. The table shows that for control-oriented units,
such as the fetch unit (IFU) and sequencing unit (ISU), EoA
coverage is almost similar to the core simulation coverage.
This is an indication of the exercisers’ ability to reach inter-
esting scenarios even in a small number of acceleration cycles
(compared to the silicon platform).

The shared verification plan and the EoA effort gave a boost
to the post-silicon validation phase. The organized verification
plan and the harvested test-templates provided the bring-up
team with a good starting point to their effort and a means
to track progress. The heavy use of the exercisers in EoA
also helped improve their readiness for the bring-up. All
this supported a much shorter bring-up phase. In addition,



DUV Unit Unit Sim Core Sim EoA Total
IFU 96.79 96.77 94.99 98.65
ISU 96.48 92.49 92.78 97.42
FXU 99.60 84.72 85.85 99.85
FPU 97.44 98.15 90.20 99.58
LSU 94.33 91.04 85.32 98.66
PC 92.51 76.95 55.23 93.51
Core Total 96.18 92.78 88.70 98.06

TABLE I
POWER7 COVERAGE RESULTS

compared to previous projects, a larger percentage of complex
bugs were found earlier in the bring-up process and by bare-
metal tools, which are easier to debug.

The unified methodology and the similar test definition
languages of Genesys-Pro and Threadmill provide another
advantage in the ability to hasten root-cause analysis of bugs
and validation of bug fixes. This process produced a synergy
between platforms where each task in the recreation, analysis,
and fix validation of the bug was performed on the most suit-
able platform. For example, the relative speed of accelerators
compared to simulators was used to look around a complex
bug found by Genesys-Pro in simulation. This was done by
generalizing and adapting the test-template that produced the
bug to Threadmill. Another example started with a bug that
was found on silicon. The test case that found the bug (that
was not found by Threadmill) and basic observations from the
silicon caused the designer to speculate on a reason for the bug.
The next step was to create test-templates for Threadmill (on
the accelerator) to test that theory. Once the bug was recreated
on the accelerator, the test-template was narrowed down and
the bug was recreated in simulation. Finally, after the bug was
fixed, all the test-templates created for its recreation were used
on the appropriate platforms to ensure that the fix was correct.

The success of the unified methodology was evident in the
bug shift from silicon to acceleration and in the productivity
improvements that it gave to the post-silicon, acceleration, and
pre-silicon teams. The verification of POWER7 is considered
by experts to be the best executed in IBM in recent years.
The low number of bugs that escaped to silicon and escaped
from the first to the second tape out provides good supporting
evidence of this. We believe that the wour work has made a
significant contribution to POWER7’s success.

VII. CONCLUSIONS

The growing importance of post-silicon validation to the
verification process increases the need for synergy between
the pre- and post-silicon verification methodologies and tech-
nologies. This paper presented a unified verification method-
ology based on a common verification plan and coverage
models and that uses similar test-template languages. To
implement the methodology, we transferred and adapted the
pre-silicon stimuli generation methodology into post-silicon.
In this transition, we maintained the concepts of directed
random stimuli generator that is controlled via declarative

test-templates. Other aspects, such as the trade-off between
generation smartness and generation speed, were adapted to
better fit the requirements of the post-silicon domain.

The resulting tool, a bare-metal exerciser called Threadmill,
was used in the pre- and post-silicon verification of the
POWER7 processor chip. Results of this experience confirm
our beliefs about the benefits of the increased synergy between
the pre- and post-silicon domains and of using a directable
generator in post-silicon validation.

We see several ways to enhance the work described in
this paper. First, we would like to extend this “bridging
the gap” concept to other aspects of functional verification,
such as checking and coverage. In addition, we are working
to incorporate more testing knowledge into Threadmill. For
example, we are working to improve Threadmill’s ability to
create interesting address translation paths. This will enable
Threadmill to better exercise areas such as cache coherency
and the memory and I/O subsystems.

REFERENCES

[1] B. Wile, J. C. Goss, and W. Roesner, Comprehensive Functional
Verification - The Complete Industry Cycle. Elsevier, 2005.

[2] H. G. Rotithor, “Postsilicon validation methodology for microproces-
sors,” IEEE Design & Test of Computers, vol. 17, no. 4, pp. 77–88,
2000.

[3] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A reconfigurable design-for-debug infrastructure for socs,”
in Proceedings of the 43rd Design Automation Conference, July 2006,
pp. 7–12.

[4] K.-h. Chang, I. L. Markov, and V. Bertacco, “Automating post-silicon
debugging and repair,” in Proceedings of the 2007 international confer-
ence on Computer-aided design, November 2007, pp. 91–98.

[5] F. M. De Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang,
“Backspace: formal analysis for post-silicon debug,” in Proceedings of
the 2008 International Conference on Formal Methods in Computer-
Aided Design, November 2008, pp. 1–10.

[6] I. Wagner and V. Bertacco, “Reversi: Post-silicon validation system for
modern microprocessors,” in ICCD, 2008, pp. 307–314.

[7] K. Chen, S. Malik, and P. Patra, “Runtime validation of memory ordering
using constraint graph checking,” in HPCA, 2008, pp. 415–426.

[8] H. B. Carter and S. G. Hemmady, Metric Driven Design Verification:
An Engineer’s and Executive’s Guide to First Pass Success. Springer,
2007.

[9] M. L. Behm, J. M. Ludden, Y. Lichtenstein, M. Rimon, and M. Vinov,
“Industrial experience with test generation languages for processor
verification,” in DAC, 2004, pp. 36–40.

[10] A. Piziali, Functional Verification Coverage Measurement and Analysis.
Springer, 2004.

[11] A. Adir, A. Nahir, A. Ziv, C. Meissner, and J. Schumann, “Reaching
coverage closure in post-silicon validation,” in Proceedings of the 6th
Haifa Verification Conference, 2010.

[12] J. Darringer et al., “EDA in IBM: past, present, and future,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 19, no. 12, pp. 1476–1497, December 2000.

[13] Building a bridge: from pre-silicon verification to post-
silicon validation. [Online]. Available: http://es.fbk.eu/events/fmcad08/
presentations/tutorial moshe levinger.pdf

[14] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-Pro: Innovations in test program generation for
functional processor verification,” IEEE Design and Test of Computers,
vol. 21, no. 2, pp. 84–93, 2004.

[15] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, and
G. Shurek, “Constraint-based random stimuli generation for hardware
verification,” in AAAI, 2006.

[16] D. W. Victor et al., “Functional verification of the POWER5 micropro-
cessor and POWER5 multiprocessor systems,” IBM Journal of Research
and Development, vol. 49, no. 4, pp. 541–554, 2005.


