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Abstract—This paper addresses the problem of efficient and
effective parameter variation modeling and sampling in computer
architecture simulations. While there has been substantial progress
in accelerating simulation time for circuit designs subject to
manufacturing variations, these approaches are not generally
suitable for architectural studies. Toward this we investigated two
complementary avenues: (1) adapting low-discrepancy sampling
methods for use in Monte Carlo architectural simulations. We
apply techniques previously developed for gate-level circuit models
to higher level component models and in so doing drastically
reduce the number of samples needed for detailed simulation;
(2) applying multi-resolution analysis to appropriately decompose
geometric regions of a chip, and achieve more effective description
of parameter variations without increasing computational com-
plexity. Our experimental results demonstrate that the combined
techniques can reduce the number of Monte Carlo trials by a factor
of 3.3, maintaining the same accuracy while significantly reducing
the overall simulation run-time.

I. INTRODUCTION

In both architecture and design automation communities, large

scale Monte Carlo simulations are widely used to investigate

the probabilistic impacts of manufacturing variation [1]. These

variations follow complex, random behavior and influence the

behavior of circuits and architectures in profound manner,

limiting the applicability of analytical models and steering

researchers toward Monte Carlo simulation. Typically, a single

Monte Carlo experiment consists of generating hundreds or

thousands of random parameter variation scenarios and simu-

lating either a circuit or processor design under each of those

scenarios. However, the total simulation cost for many parameter

variation studies can be enormous. In the realm of architecture,

each Monte Carlo simulation would require running a detailed

architecture simulator for anywhere from one hundred million

to one billion instructions – a task which may take hours. Given

that most recent studies in the architecture community may

incorporate ten or more individual benchmark programs [2]–[4],

the full set of Monte Carlo simulations may require thousands

of compute-hours.

If left unaddressed, the burdensome architectural simulation

time associated with parameter variation studies may have

adverse impacts. At the risk of reducing simulation accuracy,

researchers may choose to use fewer Monte Carlo samples,

simulate a smaller window of program execution (e.g. 10 million

instead of 100 million instructions), select a faster but cruder and

less detailed simulator model, or subset the benchmark suite. As
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previous work has shown (e.g., [5], [6]), corner-cutting in the

name of reducing simulation time can have disastrous effects on

accuracy of architecture studies and in some extreme cases may

draw researchers to incorrect conclusions.

While there have been successful attempts to reduce Monte

Carlo simulation time in the circuit domain, these approaches

cannot directly be applied to architecture [7]. The circuit

approaches attempt to reduce the simulated samples while

retaining the same statistical properties. In particular, circuit-

level studies assume knowledge of circuit structure and model

variation at the gate level while architecture studies are at a

much higher semantic level and investigate designs with billions

of gates. We address this problem by bridging this semantic gap

and making the approach scalable to architecture.

At the heart of the motivation for this work is the observation

that significant gains in the efficiency of variation-aware archi-

tecture simulation can be achieved if better sampling methodol-

ogy for parameter variation is accommodated. Specifically, we

postulate that we can reduce the number of samples needed to

achieve statistically sound results if we use sequences that are

guaranteed to give faster convergence than Monte Carlo. To do

this we must bridge a gap in understanding between circuit and

architecture. We adapt several existing circuit-level techniques

to make them suitable for this domain and introduce several

novel approaches that further improve simulation efficacy. The

main contributions of this paper can be summarized as follows:

(1) Adapting Low-Discrepancy Sampling Methods to Architec-

tural Simulation: Low-Discrepancy (LD) sampling techniques

generate quasi-random samples defined to have lower integration

errors than true Monte Carlo sequences [8]. By implementing

low-discrepancy techniques into variation map generation, the

sample space of parameter variation can be covered by fewer

samples relative to Monte Carlo sampling approaches. This

efficient sampling methodology leads to large reduction in

architectural simulation time.

(2) Introducing Multi-Resolution Grid Maps: To better represent

sensitive geographic regions of the chip, we divide it into a non-

uniform grid. For processor components that are more sensitive

to the parameter variation, we assign a finer grid resolution, and

apply coarser granularity to those components which are less

sensitive. In total, we improve the effectiveness and efficiency

of the parameter variation representation, while maintaining the

same overall complexity of representation.

(3) Comprehensive Experimental Evaluation:We implement and

evaluate the proposed methodologies. Our results demonstrate



(a) Standard Monte Carlo (b) Quasi-Monte Carlo

Fig. 1. Comparing 2D sequences generated with standard Monte Carlo and
Low-Discrepancy techniques. The two examples have an equal number of points.

that for the selected microarchitecture level timing error and

leakage power estimation, the low-discrepancy sampling and

multi-resolution grid model give at least 3.3× faster convergence

than Monte Carlo sampling.

The rest of this paper is structured as follows. In Section

II we recollect some necessary background for understanding

the proposed techniques, which we elaborate upon in Section

III. Section IV details the quantitative benefits of our work by

presenting the results of our experimental evaluations. Section

V concludes the article and outlines directions for future work.

II. BACKGROUND

Predicting the impact of manufacturing variation on circuit

and architecture designs has become a challenging and increas-

ingly important task for several reasons [1], [9]. The fabrication

process introduces prominent variations to the threshold voltage,

Vth, and the effective gate length, Leff of transistors [1], [10],

[11]. These parameter variations include both true random

components which are independent and systematic components

that are a function of the chip geometry and exhibit complex

correlation patterns [12]. Modeling and simulation approaches

must correctly account for the way that the parameter variation

impacts circuit delay while capturing the spatial correlations.

Due to the probabilistic nature of manufacturing variations,

and the complex interactions between transistor parameters,

stochastic methods including Monte Carlo(MC) experiments

based on repeated trials have become powerful tools for studying

the consequences of parameter variation and developing archi-

tectural and circuit innovations to counter them [3], [13]. At a

high-level, the approach consists of generating two-dimensional

fields which represent random parameter variation which obey

the before mentioned statistical properties and then running

detailed simulation for each one of these scenarios. For gate-

level Statistical Static Timing Analysis (SSTA), a natural way

to model spatially correlated parameter variation is with a

correlation matrix which captures the statistical relationship

between every pair of transistors in the circuit [7]. Many random

parameter fields can then be generated using this correlation ma-

trix as a starting point. In the case of SSTA, SPICE simulations

are run with each field sample. Since the total number of samples

needed to guarantee convergence can be quite large, the number

of MC trials becomes the biggest factor in simulation run time.

At the circuit-level, some innovative sampling techniques

have been able to drastically reduce this factor and improve

simulation runtime. Singhee et al. [7], [14] recognized that with

conventional random field generation, Monte Carlo techniques

require many samples to guarantee convergence because its

accuracy obeys a O(n−0.5) proportionality with sample set size

Fig. 2. Process flow for generating n LD variation maps

n [15]. They further noticed that comparing to true random

sequences, some classes of Quasi-Monte Carlo sequences with

the same number of samples have better coverage for the

sample space, hence give faster convergence. In particular, Low-

Discrepancy (LD) methods are known to generate high quality

deterministic patterns that are guaranteed to give approximately

O(n−1) [8] convergence, a significant improvement over ran-

dom sequences. Figure 1 illustrates the difference between the

coverage natures of conventional Monte Carlo points and low-

discrepancy points in a two-dimensional space. The conventional

Monte Carlo samples show both clusters and sparse regions

while the low-discrepancy samples give much better coverage

of the space. One can imagine extending this concept to higher

dimensional spaces where each dimension might represent a

physical factor (e.g. Vth for each transistor in a circuit).

However, low-discrepancy sequences alone cannot replace

Monte Carlo sequences in generating parameter variation sam-

ples for even small circuits. For a design with n gates, one would

need to generate a low-discrepancy sequence with dimension-

ality of n. Current best low-discrepancy sequence generators

offer practical advantage over standard Monte Carlo sequences

only in the early r dimensions (r ≤ 12 [16]). Consequently, for

efficient parameter variation modeling of circuits, we apply the

Karhunen-Loeve Expansion (KLE) [17], a model simplification

technique similar to Principle Component Analysis (PCA) [7].

Recall that a correlation matrix can be used to represent gate-

level variations across the chip. This serves as a very precise

description for high-dimension model of the chip. The first r

(r ∼ 25) components of KLE, composed of the r-dimenional

random (or quasi-random) sequence and the r most significant

eigenpairs of the correlation matrix, is an accurate estimate of

KLE [7]. This effectively reduces a large number of correlated

variables – in this case transistor parameters which are geomet-

rically correlated – into a much smaller number of values and

hence lower dimensionality. With a drastically reduced repre-

sentation of the parameter variation, low-discrepancy techniques

can be safely applied to reduce the number of required samples.

III. VARIATION MODELING AND SAMPLING

As described in the previous section, Quasi-Monte Carlo

sampling methods have been applied to accelerate gate-level

SSTA simulations under parameter variation [7], [14] in the

circuit domain. Designs with Ω(104) gates are evaluated for

these studies, where spatial correlations of these gates can be

captured in a correlation matrix of tractable size. However, these

techniques do not directly scale to architectural simulations for

a few reasons. First, gate-level descriptions of most modern

processors are unavailable for academic researches where they



are obviously available for circuit-level designs. Second, even

if a complete processor could be modeled at the gate-level, the

netlist of the design, which may contain hundreds of millions

to billions of gates, exceeds the capacity of existing gate-

level algorithms which have O(n2) spatial complexity for n

gates. Finally, most computer architects work on a higher and

more abstract level, and architectural simulations aim for more

complex and comprehensive evaluations for the system. For

example, recent work at the architecture level has examined

whole-chip leakage power and timing error rates as functions

of parameter variations [1]. These studies must include program

state and microarchitecture-level models that are fundamentally

different from transistor-level simulations in SSTA.

To address these challenges, our proposed techniques have

special considerations for architectural variation simulations.

First, instead of gate-level, we model parameter variations at

block/grid level. Grid size here poses a tradeoff between the

computational complexity and the modeling accuracy. Second,

within the processor each structural block will have its own

susceptibility to and distinct behavior under parameter variation.

We leverage the fact that some components may have a greater

overall impact on the system than others and introduce multi-

resolution modeling of parameter variation. Figure III gives a

process flow for generating n LD samples. In the following

section, we first demonstrate how to model a block/grid vari-

ation map with Quasi-Monte Carlo methods. Then, we discuss

algorithms that generate grid structures with the best accuracy-

complexity tradeoffs.

A. Compact Systematic Variation Representations

Our parameter variation modeling approach assumes a high-

level physical model for microarchitectural components nomi-

nally described via a floorplan. Depending on the application,

one may choose to model structures within a single processor

pipeline, or cores and caches in a many-core chip. Given this

floorplan, we represent the physical variation of parameters

such as Leff and Vth for diverse usages and abstractions. Either

block-based variation model is applied, where we assume the

parameter within each component is a constant and use its

centroid for correlation calculation, or we further decompose the

blocks into regular grid regions and generate variation samples

with finer granularity. Note that, although block level models

may lose some accuracy comparing to grid level models, they

are still acceptable models for certain architectural study [1].

B. Implementing Quasi-Random Samples

Figure III shows how to generate our Quasi-Monte Carlo

samples. First, given the block floorplan and grid resolution,

the correlation matrix is calculated for KLE decomposition. To

maintain consistency with [1], here the matrix concerns purely

the covariance factor between grid regions. This differs from

the circuit-level approach in [7] where the correlation factors

are normalized by grid area. Second, there are many possible

methods for constructing LD sequences. We select Niederreiter’s

sequence, which has been proved to have less integration error

[18] than Sobol’s sequence which was used by [7], [14]. This

LD sequence is then combined with KLE to generate an original

set of systematic parameter variation samples. Finally, before

(a) Single-Resolution grids. (b) Multi-Resolution grids.

Fig. 3. The illustration of SR and MR grids distributed over a 4-block floorplan.
Both figures are with the same number of grids.

“publishing” the sample set, we adjust the set to improve the

sample space coverage. Systematic variation is supposed to have

a statistical mean µvar of zero and a specified standard deviation
σvar (according to this parameter’s given µ and σ/µ [1]).

For each block/grid region i, we apply linear normalization to

its variation values across all samples, so that µvar,i = 0 and

σvar,i = σvar. After doing this, the KLE-based LD variation

sample set are well positioned within the targeted statistical

range.

C. Enhancing Localization with Multi-Resolution Analysis

We make another observation relevant to microarchitectural

parameter variation studies, namely that some components of

the processor are known to be more sensitive to variation than

others. In this paper, we apply this to evaluate two important

architecturally relevant component properties that are strong

functions of parameter variation: timing error rate Pe and leakage

power Pleak. In an era where architects are considering timing

speculation as a way to improve performance and efficiency,

timing error rates are important properties of a design [2], [3],

[13]. In deep submicron technology, leakage power comprises

a significant portion of total chip power and therefore serves as

an essential design characteristic.

We first consider Pe, modeling an n-stage pipeline as a series

failure system. The total Pe can be represented as a weighted

summation of the error rate of each pipeline stage i:

Pe =
n

∑
i=1

(αi×Pei) (1)

αi is the activity factor of block i. Intuitively, pipeline stages

which have either high activity factors or error rates Pei are

more likely to produce timing errors and will have a greater

impact on total error rate. Activity factors are a strong function

of program characteristics (e.g. floating-point applications with

have high activity factors for their FP execution units while

integer programs will not) and in many cases activity magnitudes

can be predicted before simulation. We now consider Pleak. Chip-

wide leakage power can be seen as the integration of the leakage

power of each component i:

Pleak =
n

∑
i=1

Pleaki
(2)

Leakage for a component depends on both the temperature of

that block and its area. Since area is known a priori and tempera-

ture is dependent on activity, we can reasonably ascertain which

component blocks are likely to be dominant. As two of the

more important characteristics of a processor under parameter

variation, both of timing error rate and leakage power are in the

form of f = ∑n
i=1 fi. Let f0 and fi0 denote the true values of f

and fi, to optimize the estimation of f , we need to minimize

the estimate error ε:
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Fig. 4. The estimate error of Pe relative to 10,000 MC samples: for 15 cpu blocks, 100 MC samples, 20 LD samples, 50 LD samples and 100 LD samples

ε = | f − f0|/ f0 = |
n

∑
i=1

( fi− fi0)/ f0|= |
n

∑
i=1

(εi× fi0/ f0)| (3)

Equation 3 implies that for blocks with larger fi0 , the estimate

error εi needs to be smaller to minimize the total error. Hence

in this work, we introduce Multi-Resolution (MR) variation

sampling, in which the on-chip parameter map is composed

of blocks with varying grid density. The total number of grids

points G are distributed to each block i following the rule

Gi = ( fi0/ f0)×G, (4)

which intuitively means that the grid density within one block

is proportional to the “function” density within it, which we

can obtain from nominal emperical results. Figure 3 illustrates

this idea with both Single-Resolution (SR) and MR grids,

where block C has the greatest density of the targeting function

and block B has the least. As experimental results show, for

identically sized parameter maps, MR samples converge faster

than SR samples.

We conclude this section with a note that, combining the LD

and MR techniques, generating 1,000 samples typically takes

several seconds to a few minutes on a standard Linux desktop

system. The sample generation time is therefore negligible when

compared to the detailed simulation time which follows.

IV. EVALUATION

Our Quasi-Monte Carlo and Multi-Resolution variation mod-

els are suitable for examining the impact of parameter variation

on many aspects of a microarchitecture. In this section, we

evaluate our variation model and sampling methodology by

applying it to two aspects of high-performance processor design

which are extremely sensitive to parameter variation: (1) timing

errors associated with timing speculative architectures [2] and

(2) chip leakage power. Our first application examines trade-offs

in observed timing errors versus clock frequency and compares

convergence rates of timing error rates under low-discrepancy

sequences versus standard Monte Carlo samples. In the second

application, we examine the on-die leakage power variations

with both SR-LD sampling and MR-LD sampling comparing to

MC. Both applications are compared against VARIUS [1] Monte

Carlo samples as a baseline case, which has been widely adaped

for architectural parameter variation sampling [2], [4].

For the timing error estimation, we use the VARIUS timing

model. It adopts the Alpha-Power Law [19] to relate threshold

voltage Vth and effective gate length Leff to gate delay:

Tg ∝
LeffV

µ(V −Vth)
α

(5)

where V is the supply variation, the µ is carrier mobility and α
is an empirically derived constant. The gate delay is then used

to estimate the timing error rate for logic and memory structures

under process, voltage, and temperature variations. For leakage,

we apply the HotLeakage [20] model which suggests that

Ileak ∝ (
kT

q
)2e

q

−V
th

−V
off

ηkT , (6)

and the leakage power is proportional to Ileak. A factor of

the total leakage power across the chip can be obtained by an

integration of Equation 6, where k is the Boltzmann Constant, q

is the electron charge, and Voff and η are empirically determined

parameters. We adopt these parameters from [1], [21] and [22]

and scale them to 32nm technology.

We model a single core design featuring an Alpha 21264

processor scaled to a 32nm technology and use a floorplan

detailing the microarchitectural structures of this design. In

our experiments, we model random and systematic variation.

A spherical correlation model [1] is used for all the variation

samples. We assume Vth and Leff are highly correlated [1],

and use identical systematic variation samples for the two

parameters. Our models apply σ/µ of parameter variation,

nominal supply and threshold voltage, and the decomposition of

systematic and random components which follow that of [1].

These parameters are suitable for modeling high-performance

designs in a 32nm technology.

A. Low-Discrepancy Variation Samples

To evaluate the effect of low-discrepancy sampling, we apply

block-based LD variation samples to the VARIUS [1] timing

error model, and estimate the distribution of the resulting timing

error rates Pe for all the pipeline stages of a processor floorplan

under a sequence of clock frequencies.

For comparison, the process is repeated with several sets of

VARIUS Monte Carlo samples. The results of a large Monte

Carlo set with 10,000 samples are used as a gold standard. This

is a sample set size sufficiently large that sample mean and

variance are very close to true distribution mean and variance.

Note, that these sample sizes are prohibitively large for most

simulation studies – they represent a best case result.

Although [4] suggests that 100 Monte Carlo samples show

enough convergence when applying to VARIUS timing error
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model, our experiments show that on average any group of 100

MC samples still have considerable error when compared to

the gold standard. On the contrary, Low-discrepancy samples

produce high fidelity results. Figure 4 presents the error of 100

MC, 20 LD, 50 LD and 100 LD samples relative to 10,000

MC samples when estimating the mean of Pe of each processor

pipeline component. For 10 out of 15 components, 20 LD

samples have better accuracy than 100 MC samples, and 50 LD

samples outperforms 100 MC on all components. One can view

this in an alternative way. With the same number of samples,

100 LD gives an accuracy at least 75% better than 100 MC. This

experiment proves that LD samples converge much faster than

MC, which translates to either significant reduction of samples

needed or better accuracy with the same number of samples.

Since generating LD samples is a deterministic process, the

shown results are repeatable and consistent. MC trials in contrast

produce dramatic fluctuations for different runs and hence do not

guarantee fast convergence.

The LD estimate of the standard deviation (sd) also shows

faster convergence. Due to space limit, we only show in Figure

5 the estimate and convergence of standard deviation for the

Icache block. The two sets of curves intuitively show the

difference between the natures of LD and MC sampling, and are

consistent with our expectations. In summary, low-discrepancy

techniques allow much faster convergence, resulting in large

reductions in sample set size.

B. Low Discrepancy, Multi-Resolution Variation Samples

Now we evaluate the sampling of low discrepancy and multi-

resolution grids, and we do this by estimating the deviations

in chip leakage power. Multi-resolution analysis allows us to
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configure grid granularity within a component block according

to its importance. For this study, we focus on leakage power

and make grid densities proportional to power densities for all

blocks, as explained in Section III. Power density of a block

is determined by its temperature when with nominal Vth0, and

we use the temperature distribution from [23] for the processor

floorplan. After distributing the grid resolution we generate the

MR-LD variation samples with KLE-based LD methods.

We generate a set of MC, SR-LD and MR-LD samples for

comparison. For the three different modeling methodologies, all

samples are with the same sized parameter map (25×25), and

the resulting leakage estimates are compared to that of a gold

standard, 10,000 MC samples of resolution 50×50.

Figure 6 shows the number of samples needed to achieve the

targeting accuracies. For the mean, the LD samples show at least

4× faster convergence than MC. However, SR-LD and MR-LD

do not have significant difference themselves, which could be

possible because the estimate errors of the mean are already

low. We note that, although not shown in the figure, the average

error of MR-LD is 0.4% smaller than SR-LD. For the standard

deviation, LDs still converge faster than MC, and at the same

time, MR-LD outperforms SR-LD, with speedup of at least 3.3×
and 2.2× respectively. Figure 7 presents more intuition for the

estimate of sd as the number of samples grows (for clarity only

until 1000 samples are shown), which leads to the observation

that MR-LD converges to a better accuracy than SR-LD. Con-

sidering the fact that the difference between the computational

efforts of implementing single-resolution and multi-resolution

models is only distributing the grids with different density, the

potential of the multi-resolution model is attractive, especially

when accuracy is critical.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a collection of techniques to help

computer architects rethink the parameter variation model and

improve sampling methodology when applying Monte Carlo

simulations. Our key contributions were: (1) to develop spa-

tial variation representations that could be applied to study

architectural components while leveraging properties of the

low-discrepancy and (2) to introduce multi-resolution models

that adapt grid resolution to suit the relative importance of a

component. We evaluated our techniques using a series of Monte

Carlo experiments and found that in most cases our improved

modeling and sampling methodology can dramatically reduce

the number of samples needed to achieve convergence.
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As one of the most straightforward ways to decompose pa-

rameter variation, Karhunen-Loeve Expansion (KLE) is adapted

for the spatially correlated parameter variation model. However,

KLE is still Fourier-like, meaning that each orthogonal term in

the decomposition captures the information across the whole

spatial domain. Considering the target of the entire processor

where the pipeline stages’ characteristics differ from each other,

there might be other ways to decompose the parameter varia-

tion while taking the differences between different stages into

consideration. One possible way is wavelet decomposition, in

which each term localizes one specific part of the domain, and

hopefully this could lead to a better approach to represent the

different variation scenarios in different pipeline stages.

We evaluated our Multi-Resolution approach by distributing

the grid densities proportional to the target function densities.

While sharing a similar motivation as the multi-level grid files

from database research [24] used for selectivity estimation, in

this work we have a slightly different context. Namely, the

coarseness of the resolution is varied based on the sensitivity to

variations. For future work, we would like to further investigate

the problem of dynamic fine-tuning of the grid-map and sample

generation, in reaction to some (observed) changes in the param-

eters variation and component activity factors that may affect the

validity of the experiments. Towards that, we will try to apply

some of the techniques for streaming data management [25] in

our context.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers

for their helpful comments. This work is in part supported by

NSF grants CAREER CCF-0644332, CNS-0720820 and CNS-

0910952.

REFERENCES

[1] R. Teodorescu, B. Greskamp, J. Nakano, S. Sarangi, A. Tiwari, and
J. Torrellas, “Varius: A model of parameter variation and resulting timing
errors for microarchitects,” IEEE Trans on Semiconductor Manufacturing,
2008.

[2] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “EVAL: Utilizing
processors with variation-induced timing errors,” in IEEE/ACM Int. Symp.
on Microarchitecture. IEEE Computer Society, 2008.

[3] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen,
and C. Zilles, “Blueshift: Designing processors for timing speculation from
the ground up,” in Int. Symp. on High-Performance Computer Architecture,
2009.

[4] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Mitigating pa-
rameter variation with dynamic fine-grain body biasing,” in Int. Symp. on
Microarchitecture, 2007.

[5] D. Citron, “MisSPECulation: partial and misleading use of SPEC
CPU2000 in computer architecture conferences,” in Int. Symp. on Com-
puter Architecture. ACM, 2003.

[6] J. J. Yi, R. Sendag, D. J. Lilja, and D. M. Hawkins, “Speed and accuracy
trade-offs in microarchitectural simulations,” IEEE Trans. on Computers,
2007.

[7] A. Singhee, S. Singhal, and R. Rutenbar, “Practical, fast monte carlo
statistical static timing analysis: Why and how,” in Int. Conf. on Computer-
Aided Design, 2008.

[8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, 1992.

[9] C. S. Amin, N. Menezes, K. Killpack, F. Dartu, U. Choudhury, and N. H.
andYehea I. Ismail, “Statistical static timing analysis: How simple can we
get?” in Design Automation Conference, 2005.

[10] T. Karnik, S. Borkar, and V. De, “Probabilistic and variation-tolerant
design: Key to continued moore’s law,” 2004.

[11] E. Humenay, D. Tarjan, and K. Skadron, “Impact of parameter variations
on multi-core chips,” in Workshop on Architectural Support for Gigascale
Integration, 2006.

[12] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos,
“Modeling within-die spatial correlation effects for process-design co-
optimization,” in Int. Symp. on Quality Electronic Design, 2005.

[13] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner1, and T. Mudge, “Razor: A low-
power pipeline based on circuit-level timing speculation,” in Int. Symp.
on Microarchitecture, 2003.

[14] A. Singhee and R. Rutenbar, “From finance to flip flops: A study of
fast quasi-monte carlo methods from computational finance applied to
statistical circuit analysis,” in Int. Symp. on Quality Electronic Design,
2007.

[15] J. Kiefer, “On large deviations of the empirical d. f. of vector chance vari-
ables and a law of the iterated logarithm,” Pacific Journal of Mathematics,
1961.

[16] P. Bratley, B. Fox, and H. Niederreiter, “Implementation and tests of
low-discrepancy sequences,” ACM Trans. on Modeling and Compurter
Simulation, 1992.

[17] M. Loeve, “Probability theory,” 1977.
[18] T. Davies and R. Martin, “Low-discrepancy sequences for volume prop-

erties in solid modelling,” in CSG ’98 Conference, 1998.
[19] T. Sakurai and A. Newton, “Alpha-power law MOSFET model and its

applications to CMOS inverterdelay and other formulas,” IEEE Journal of
Solid-State Circuits, 1990.

[20] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“Hotleakage: A temperature-aware model of subthreshold and gate leakage
for architects,” University of Virginia, 2003.

[21] L. Zhang, L. S. Bai, R. P. Dick, L. Shang, and R. Joseph, “Process variation
characterization of chip-level multiprocessors,” in Design Automation
Conference, 2009.

[22] W. Zhao and Y. Cao, “New generation of predictive technology model for
sub-45nm design exploration,” in Int. Symp. on Quality Electronic Design,
2006.

[23] Y. Han, I. Koren, and C. A. Moritz, “Temperature aware floorplanning,”
in Workshop on Temperature-Aware Computer Systems, 2005.

[24] K.-Y. Whang, S. Kim, and G. Wietherhold, “Dynamic maintenance of data
distribution for selectivity estimation,” VLDB Journal, 1994.

[25] I. Sharfman, A. Schuster, and D. Keren, “A geometric approach to
monitoring threshold functions over distributed data streams,” in SIGMOD
Conference, 2006.


