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Abstract: 
We present a run-time system for a multi-grained reconfigurable pro-
cessor in order to provide a dynamic trade-off between performance 
and available area budgets for both fine- as well as coarse-grained 
reconfigurable fabrics as part of one reconfigurable processor. Our 
run-time system is the first implementation of its kind that dynamical-
ly selects and steers a performance-maximizing multi-grained instruc-
tion set under run-time varying constraints. It achieves a performance 
improvement of more than 2x compared to state-of-the-art run-time 
systems for multi-grained architectures. To elaborate the benefits of 
our approach further, we also compare it with offline- and online-
optimal instruction-set selection schemes. 

1. Introduction and Related Work 
Reconfigurable computing may be categorized into coarse-grained 
and fine-grained [1][2]. A coarse-grained reconfigurable processor 
uses an array of reconfigurable ALUs coupled with the core proces-
sor, which is amenable to data-dominant applications with streaming 
and (sub) word-level processing (e.g. add, subtract, multiply etc.). 
Prominent examples are ADRES [3], PACT XPP [4], Montium Tile 
Processor [9], and ElementCXI’s ECA computing fabric [10]. These 
architectures target specific domains like multimedia and communica-
tion etc. However, they are performing inefficiently when it comes to 
control-dominant applications with bit/byte-level processing. Fine-
grained reconfigurable processors (like Chimaera [15], XiSystem 
[16], and RISPP [6]) deploy an embedded FPGA as an extension to 
core processor, to accelerate control-dominant applications and 
bit/byte-level processing (bit shuffling, packing, merging, etc.). How-
ever, these fine-grained may architectures underperform for data-
dominant applications on word level. 
As future embedded applications possesses heterogeneous processing 
behavior (i.e. both control- and data-dominant), therefore, recently so-
called multi-grained reconfigurable architectures (like 4S [7], MOR-
PHEUS [8] and KAHRISMA [5]) have evolved that integrate both 
fine- and coarse-grained reconfigurable fabrics on a single chip. 
These processors accelerate both data- and control-dominant applica-
tions, thus offering further flexibility and efficiency compared to sole-
ly coarse-grained or solely fine-grained architectures. Often real-
world applications consist of diverse functional blocks that may con-
tain diverse computational kernels1. Instruction Set Extensions (ISEs) 
for reconfigurable processors are employed to accelerate the kernels 
of different applications. These ISEs consist of data paths that may be 
reconfigured on a coarse-grained and/or a fine-grained reconfigurable 
fabric. A kernel can have different ISEs that offer different perfor-
mance improvements for different utilizations of the reconfigurable 
fabric. This brings flexibility but realization of such scheme requires 
additional computational time and resources. 

The challenge is to determine at run time which ISEs should be re-
configured using which type of fabric (coarse- or fine-grained) in or-
der to achieve the highest performance for a particular kernel for a 
given amount of (coarse- and fine-grained) reconfigurable fabric. 
State-of-the-art approaches (e.g. [7], [8], [13]) select the ISEs at com-
pile time after performing an extensive evaluation of an applications’ 
processing behavior. However, the decisions undertaken at compile 
time hamper these approaches to perform efficiently (in terms of per-
formance, for instance) when considering run-time variations of (a)                                                  

                                                

1 the compute-intensive loops, which are executed most often in a program. 

the application execution properties (i.e. execution frequency of 
ISEs), (b) the available fine- and coarse-grained reconfigurable fabric 
(shared among various tasks), and (c) input data properties (e.g., in 
audio or video processing applications). 

The scheme in [11] manages coprocessor reconfigurations on a 
fine-grained reconfigurable fabric at run time. However, this scheme 
operates at the task level and thus suffers from inefficiency when tar-
geting applications that exhibit adaptivity at a finer level of granulari-
ty, e.g. at the functional block level. The fine-grained RISPP architec-
ture [6] offers run-time adaptivity at functional block level but it is 
less efficient when executing applications that are suited for coarse-
grained architectures. Apart from lack of support for the coarse-
grained fabrics, another reason for the inefficiency of approaches [11] 
and [6] when targeting multi-grained ISEs is their cost function. 
These approaches are aimed to optimize considering the longer recon-
figuration time of the fine-grained reconfigurable fabric (in ms), thus 
they do not provide good results when considering the significantly 
less reconfiguration time (in µs) of coarse-grained fabrics. 

Hence a run-time system for multi-grained reconfigurable pro-
cessors is desirable that can cope with the distinct reconfiguration and 
the processing nature of heterogeneous reconfigurable fabrics support-
ing multi-grained ISEs. Such a run-time system needs to determine the 
selection and execution decisions of multi-grained ISEs for each func-
tional block by jointly considering all of its kernels at run time. 

To demonstrate the effects of run-time varying scenarios (which 
have an impact on the available reconfigurable fabric and the kernel 
execution frequency) on the selection of multi-grained ISEs, we first 
discuss a case study of a real-world example of the Deblocking Filter 
from an H.264 video encoder [17]. 

2. Motivational Case Study 
The ISEs for the H.264 Deblocking Filter are composed of two types 
of data paths with distinctive computational properties: 
a) a control-dominant condition data path with bit-level operations 

suitable for fine-grained reconfigurable fabric, and 
b) a data-dominant filter data path with arithmetic (sub) word-level 

operations suitable for coarse-grained reconfigurable fabric. 
Depending upon the available area of the coarse- and fine-grained re-
configurable fabrics, different ISEs may be realized for the H.264 
Deblocking Filter, each providing a certain area vs. performance 
trade-off. For simplicity, this case study only discusses the following 
three ISEs: 
ISE-1: The filter and condition data paths are implemented on fine-

grained reconfigurable fabric. 
ISE-2: The filter and condition data paths are implemented on 

coarse-grained reconfigurable fabric. 
ISE-3: The condition data path is implemented on the fine-grained 

reconfigurable fabric and the filter data path is implemented 
on the coarse-grained reconfigurable fabric. 

Due to varying computational properties and reconfiguration latencies 
of the two fabrics2, the execution- and reconfiguration latencies of 
these ISEs differ from each other, which leads to different perfor-
mance improvements. Eq.1 formulates the Performance Improvement 
Factor (pif) of each ISE, where sw_time represents the time to ex-

 
2 reconfiguration time of a single data path in fine-grained reconfigurable fa-

bric is around 1.2ms, while the reconfiguration of the same data path on 
coarse-grained fabric takes approximately 0.00015ms. 
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ecute the kernel in RISC-mode3 and hw_time is the time to execute 
the kernel on the reconfigurable fabric using ISEs. 

 _ *
_ + _ *

sw time executionspif
reconfiguration latency hw time executions

=  (1) 

Since the reconfiguration latency represents a fixed overhead, the 
overall performance improvement depends upon the total number of 
kernel executions (that may vary at run time, as we will discuss later 
in this section).  

Fig. 1 shows the pif of the three ISEs for varying number of kernel 
executions. Each particular ISE has a higher pif value than the other 
two in a certain range of kernel executions (as highlighted by the 
three different regions). Due to its lower reconfiguration time, ISE-2 
provides a higher pif for a lower number of executions when com-
pared to ISE-1 and ISE-3. On the contrary, ISE-1 outperforms the 
others for a relatively large number of executions, where its longer re-
configuration time can be amortized. ISE-3 is a compromise between 
the above two scenarios. Fig. 2 shows the excerpts of execution beha-
vior of the Deblocking filter over time, where the plotted values cor-
respond to the execution numbers in each subsequently encoded 
frame (showing different iterations of the kernel). It can be observed 
that the performance-wise best ISE during one iteration of the kernel 
does not remain the best option for the next iteration as the number of 
executions within an iteration may change due to changing workload 
characteristics of the application. The experimental setup for the case 
study in Fig. 1 and Fig. 2 is explained in Section 5.1. 

Different ISEs require different amount/type of reconfigurable fabric 
and offer different performance improvements. The problem of selecting 
the performance-maximizing set of ISEs becomes complex when an ap-
plication consists of multiple functional blocks where each functional 
block may have several kernels. Each kernel may be accelerated by us-
ing one out of multiple possible ISEs, as each ISE can be composed of 
different data paths that may be used in different quantities. In the above 
example, we focused on one functional block of the H.264 encoder. The 
complete encoder contains in fact three functional blocks where the big-
gest one contains more than six kernels. Moreover, there are cases where 
the number of ISEs may reach up to 60 for a single kernel. 
Summarizing: From this case study we can conclude that a runtime 
system is desirable that is able to: 
o select a set of ISEs that provides a good trade-off between area and 

performance by exploring the search space of multi-grained ISEs 
during run time and 

o provide the demanded adaptivity to cope with changing application 
requirements at run time without influencing the performance im-
provement procured by ISEs. 

Our Novel Contributions: We present a run-time system for multi-
grained reconfigurable processors (like [5], [8]). It dynamically se-
                                                 
3 executing the kernel using the basic instruction set of the core processor.  

lects a set of ISEs of a given functional block under (above-
mentioned) run-time changing scenarios while maximizing the overall 
application performance. In particular, the proposed run-time system 
enables adaptivity in a multi-grained reconfigurable processor 
through: 
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Fig. 1: Performance improvement factor of three different In-
struction Set Extensions (ISEs) Fig. 2: Execution behavior of the H.264 Deblocking filter 

o dynamically exploring the search space of multi-grained ISEs 
and selecting a set of ISEs that provide – at run time – a good 
trade-off between performance and available fine- and coarse-
grained reconfigurable fabric under varying constraints, 

o a profit function, to determine the benefit of each ISE while con-
sidering the reconfiguration latency, performance improvement, 
and the distinct computational properties of the coarse- and fine-
grained reconfigurable fabrics, and 

o an Execution Control Unit that steers the execution of applica-
tion kernels by using intermediate ISEs (of the selected ISE) that 
require less reconfigurable fabric but still procure considerable 
performance improvement compared to RISC-mode execution.  

We present a detailed evaluation of our approach for diverse reconfi-
gurable processors and provide a comparison with state-of-the-art ap-
proaches MORPHEUS [8] and RISPP [6] (see Section 5). The results 
in Section 5.2 also demonstrate the suitability of our run-time system 
for different reconfigurable processors. 

Before proceeding to our core idea, we present a brief overview of 
our multi-grained reconfigurable processor [5], which is required to 
introduce our novel run-time system in Section 4. 

3. The model of a Multi-Grained Reconfigurable Processor 

 
Fig. 3: Multi-Grained Reconfigurable Processor 

Fig. 3 presents an overview diagram of our multi-grained (MG) re-
configurable processor [5] integrated with our novel run-time system 
(mRTS). It constitutes a core processor, memory system, and an array 



of tightly coupled fine-grained (FG) and coarse-grained (CG) reconfi-
gurable fabrics. The two ALUs can be used in parallel. The FG-fabric 
is realized as an embedded FPGA, which consists of partial reconfi-
gurable parts donated as Partially Reconfigurable Containers (PRCs). 
Both FG- and CG-fabrics have dedicated scratch pad memories – 
connected to the memory hierarchy – to allow for fast data access and 
to store intermediate results. 
A core processor hosts the main application while different FG- and 
CG- fabrics may be combined at run time to realize CG-, FG- or MG-
ISEs of kernels. Fig. 3 presents combination scenarios for three dif-
ferent kernels (Kernel-A, Kernel-B, Kernel-C) to realize their CG-, 
MG, and FG- ISEs, respectively. 

4. mRTS: Run-Time System for Multi-Grained Fabrics 
A key to adaptivity in multi-grained reconfigurable processors is our 
novel run-time system (see Fig. 3), which dynamically selects an ISE for 
each kernel in a given functional block to maximize the overall perfor-
mance. The run-time system reacts to different scenarios while consider-
ing the system’s constraints, the current workload on the system, and the 
utilized resources. It therefore enables the possibility to operate the sys-
tem to perform efficiently at any time during execution (better than a 
static analysis, which do not have accurate run-time information). We 
will discuss the details on the associated overhead of the run-time system 
in Section 5.4. In the following, we will focus on its functionality and de-
sign flow. Fig. 4 presents the high-level view of the run-time system 
showing its three main components, i.e. the Monitoring & Prediction 
Unit (MPU), the ISE selector, and the Execution Control Unit (ECU). 
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Fig. 4: Overview of our run-time system for multi-grained fabrics 
At compile time, different ISEs for each kernel of an application are 
arranged4. We use our proprietary automatic tool chain to generate the 
CG- FG- and MG-ISE of prepared ISEs by designing their data paths 
for CG-fabric or FG-fabric. Each of these ISEs require different 
amounts and type of resources (FG- or CG-fabrics, thus require dif-
ferent reconfiguration latency) and provide different levels of perfor-
mance improvement over the RISC-mode execution (i.e. kernel ex-
ecuting on the core processor without any accelerating data paths). At 
compile time, the amount of reconfigurable fabrics is fixed and 
known. Therefore, all non-fitting ISEs (requiring more fabric than 
available) are filtered out at this stage.  
The application programmer embeds so-called Trigger Instructions 
into the application binary (incorporated as of assembler instructions) 
to forecast the kernel executions in the upcoming functional block. 
These trigger instructions contain the IDs of the requested kernels, 
their corresponding expected/estimated number of executions, and the 
average time between two consecutive kernel executions. The relative 
correctness of these numbers affects the quality of the run-time selec-
tion decision. They are initially obtained from an offline profiling and 
                                                 
4 For further details about compile-time instruction-set extensions see the ap-

proaches proposed in [18] and [19]. 

at run time the MPU monitors and updates them. Since the number of 
kernel executions may change at run time (due to, for example, 
changing input data), we have implemented a lightweight error back-
propagation scheme [12] in our run-time system that updates the mo-
nitored values. Apart from keeping the track of execution counters, 
the MPU also keeps the track of the available amount of reconfigura-
ble fabric at any time during execution. 

In the following sections, we will discuss the two key components 
(i.e. ISE selector and ECU) of our run-time system in detail. 
4.1. Instruction Set Extension Selector 
The objective of the Instruction Set Extension (ISE) selector is to 
maximize the performance of a given functional block by jointly con-
sidering the ISEs of the kernels predicted in the trigger instruction. 
The core processor activates the ISE selector when it encounters a 
trigger instruction. The ISE selector uses the information available in 
the trigger instruction and the amount of available reconfigurable re-
sources to select a set of ISEs, while considering the reconfiguration 
overhead and performance improvement provided by different ISEs. 
The number of CG-fabric (NCG) and the total number of PRCs in all 
FG-fabrics (NPRC) are known to the ISE-Selector while the set of trig-
ger instructions is provided as input to the ISE selector. The trigger 
instructions are represented as 4-tuples {Ki, ei, tfi, tbi}, where Ki is the 
ith forecasted kernel in the functional block, ei is the corresponding 
expected number of executions, tfi is the time until the first execution, 
and tbi is the average time between two consecutive executions as vi-
sualized in Fig. 5 (details will be explained later in this section). The 
task of the ISE selector is to find the set ‘S’ of ISEs considering the 
following constraints: 
o the selected set of ISEs in the set S must fit into the available 

CG- and FG-fabrics 
o for each kernel there is exactly one ISE in the selected set S 

To find the best solution, we need to use an optimal algorithm. It in-
volves a) evaluating all combinations of ISEs, b) calculating the profit 
of each combination, and c) selecting the combination with the best 
profit while meeting the resource constraint. An optimal algorithm 
prunes the combinations of ISEs that do not meet the resource con-
straints. We learned from our experiments that for six kernels of the 
H.264 video encoder, there are more than 78 million combinations. 
Due to its high computational overhead, such an optimal algorithm is 
not feasible when considering the run-time nature of the ISE selec-
tion. Therefore, we use this optimal algorithm merely to evaluate the 
quality of our proposed ISE selector. 

The multi-grained ISE selection is implemented using a heuristic algo-
rithm. We have learned from our experiments that the number of kernel 
executions differs within each functional block due to changing input da-
ta. Consequently, not all of the kernels equally contribute to the overall 
performance improvement of the functional block. We aim to assign 
more resources to the kernels that contribute more towards the overall 
performance improvement. In summary, the following is required: 
a) a profit function that calculates the performance improvement 

contribution of each ISE while considering its reconfiguration 
time and possible number of executions and  

b) a selection algorithm that finds ‘good’ results and is referred to as 
the ISE selection algorithm throughout this paper. 

Analyzing the profit function: 
The expected profit of an ISE is actually the performance improve-
ment offered by it in a given functional block. It corresponds to the 
difference(cycles saved) between the time required by an ISE and the 
RISC-mode execution of a kernel. Intermediate ISEs are the exten-
sions that are realized using a subset of data paths of a specific ISE. 
They may become available due to the completed reconfiguration of a 
subset of data paths of a specific ISE, or due to the completed recon-
figurations of other ISEs that share some data paths with the specific 



ISE. Therefore, several intermediately available ISEs may be used for 
the execution of a kernel before the selected ISE is completely recon-
figured. Since the reconfiguration of data paths of each ISE is com-
pleted at different points in time, the profit is the sum of potential per-
formance improvements by the ISE and its intermediate ISEs. Fig. 5 
presents an example scenario of the execution pattern of a kernel. The 
inputs to the profit function are e, tfi, and tbi, that are obtained from the 
trigger instruction. The ISE1, ISE2, …, ISEn-1 are the intermediate 
ISEs and ISEn is the ISE with all of its data paths reconfigured. 

 
Fig. 5: The execution behavior of an ISE 

The sizes of the rectangular boxes in Fig. 5 symbolize the kernel 
execution time. The rectangular boxes become smaller with every 
data path configured to symbolize the reduced execution latency. 
NoERM denotes the number of the RISC-mode executions. NoEISEi 
are the executions using {Data path1, Data path2, …, Data pathi} 
of the ith intermediate ISE. Performance improvement (per_imp) 
of the ith intermediate ISE is given by Eq. 2. 

 
_ ( ) ( ) ( _ ( ) ( ));n iper imp i NoE i latency RM ISE latency ISE= × −

 The function NoE() returns the number of executions of the ith in-
termediate ISE, latency_RM() returns the number of cycles if the 
kernel was executed in RISC-Mode, and latency() returns the 
number of cycles required to execute the ith intermediate ISE. The 
term NoE changes during run-time of an application and it is cal-
culated in Eq. 3. 
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The function recT() returns the reconfiguration time of the ith in-
termediate ISE. Note that the term NoE depends on the input pa-
rameters tfi and tbi. If the reconfiguration time the of ith interme-
diate ISE is greater than tfi then it means it will only be executed 
as long as the (i+1)th intermediate ISE is not available. Therefore, 
dividing the difference between the reconfiguration time of the ith 
and (i+1)th intermediate ISE by the latency of a single execution 
will give the expected number of total executions. Similarly, when 
the reconfiguration time of the ith intermediate ISE is less than tfi 
then we take a difference between tfi and the reconfiguration time 
of the (i+1)th intermediate ISE as that is the time when the ith con-
figured intermediate ISE will be executed. While calculating NoE, 
we have also incorporated the average time between two consecu-
tive kernel executions as a part of denominator. Finally, the profit 
of an ISE is given by Eq. 4. 
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Eq.4 shows that the total expected profit of an ISE is the sum of 
performance improvements offered by the ISE and the interme-
diate ISEs with all its data paths reconfigured, where the number 
of ISE executions is obtained by the difference between the total 
executions of intermediate ISEs and the total number of expected 
executions ‘e’. 
ISE selection algorithm: 
The goal of our ISE selector is to select a set of ISEs while maximiz-
ing the combined profit of the ISEs of all kernels as shown in Eq.5. 

 
, :{ }

maximize ( , , ,
i

i fi bii ISE ISE S Kernel
profit ISE e t t

∀ ∈ ∩∑  (5) 

Fig. 6 shows the flow-chart of our ISE selection algorithm, which is 
based on the above-mentioned heuristic. The steps are: 

Step-1: Make a candidate list of the ISEs of all kernels in the TIs. 
Step-2: Remove ISEs from the candidate list that (a) require more 
reconfigurable fabric than available, and (b) are covered by data 
paths that are available from the already selected ISEs. 
Step-3: Compute the profit of each ISE in the candidate list and then 
select the ISE with the maximum profit. 
Step-4: Add the selected ISE to the output set, update the reconfi-
gurable hardware status, and remove all other ISEs of the same ker-
nel from the candidate list. 

We can see from the steps that the ISE with the maximum profit is se-
lected first; therefore, it obtains the required resources. Once the ISE 
is selected for a particular kernel, then it is considered as the final se-
lection even though there might be other combinations that could pro-
vide a better overall profit. 

The complexity of the above algorithm in Fig. 6 is reduced from 
O(NM) (as is the case in the optimal algorithm) to O(N*M), where N is 
the number of kernels within a particular functional block and M is 
the number of compile-time prepared ISEs for each kernel. After-
wards, the ISE selector forwards the set of selected ISEs to the recon-
figuration controller that manages the reconfiguration process and the 
configuration state of CG- and FG-fabrics. 

Fig. 6: Flow chart of our ISE selection algorithm 
4.2. Execution Control Unit (ECU) 
The ECU presents another aspect of adaptivity by steering the execu-
tion of kernels. The ECU exploits the flexibility that a kernel may be 
executed upon using different intermediate ISEs. The FG- and MG-
ISEs are only executable when the reconfiguration of their fine-
grained data paths is completed. The delay between the RISC-mode 
execution and the first accelerated execution using either intermediate 
ISE or selected ISE is significantly larger. To bridge this delay we 
have introduced a special kind of extension, which implements a full 
kernel on one of the free CG-fabrics. Such an extension is termed as 
monoCG-Extension. The monoCG-Extension uses both ALUs and 
register files of CG-fabric to expedite the kernel, which is still faster 
than a RISC-mode execution. Note, that the reconfiguration time of a 
CG-fabric is insignificantly low; therefore, it will be readily available 



after few RISC-mode executions. Fig. 7 summarizes the operational 
flow of the ECU. 
a) When a kernel is executed in the program binary, the core proces-

sor triggers the ECU. It first checks the availability of the selected 
ISE (i.e. it checks whether all constituting data paths of that ISE 
are completely reconfigured or not). 

b) If the selected ISE is available, the ECU will execute. Otherwise, 
the ECU checks for the availability of the intermediate ISEs. 

c) If no intermediate ISE is available, the ECU checks for a free CG-
fabric to realize a monoCG-Extension.  

d) In case no data path is reconfigured and no CG-fabric is available 
at a certain point in time during execution, the ECU executes the 
functional block in RISC-mode. 

 
Fig. 7: Flow of the Execution Control Unit 

5. Implementation, Experimental Results and Analysis 
In this section, we will present our experimental setup and the de-
tails of reconfigurable fabrics. Later we will provide the compari-
son with state-of-the-art and a detailed analysis of mRTS.  
5.1. Experimental Setup and Reconfigurable Fabric  
The core processor is a LEON processor, a 32-bit synthesizable pro-
cessor core based on the SPARC V8 architecture and the CG-fabrics 
are operating at 400 MHz, while the FG-fabrics (i.e. Virtex-4 FPGA) 
are operating at 100 MHz. The reconfiguration bandwidth of the FG-
fabric is 67584 KB/s. Each CG-fabric can store multiple contexts and 
a context switch takes 2 cycles. The instruction size of the CG-fabric 
is 80 bits. Instructions can be streamed into the context memory  that 
can store up to 32 instructions. Typical ALU operations like add, sub, 
or, etc. are executed in a single cycle while a multiply instruction 
takes 2 cycles. The divide instruction takes 10 cycles. Each CG-fabric 
provides a zero overhead loop instruction. The 32-bit load/store unit 
is virtually available to each CG-fabric, while each FG-fabric is pro-
vided with 128-bit load/store unit. There are two 32-bit register files 
with 32 registers per register file in each CG-fabric. Implemented is a 
point-to-point connection between the CG-fabrics. Communication 
between them requires 2 cycles. Communication within FG-fabric, 
i.e. between PRCs requires only a single cycle. 

The complete system is simulated on our cycle-accurate instruction-
set-simulator. Its inputs (i.e. the data-path latency/reconfiguration cycles 
for FG- and CG-fabrics) are obtained after place-and-route using Xi-
linx-FPGA-tools and ASIC-synthesis-flow for TSMC using the same 
technology node (90nm), respectively. Our mRTS is executing on a 
dedicated CG-EDPE. For comparisons, we conducted simulations for 
different state of the art approaches, using an entire H.264 video encod-
er as it is a complex application and exhibits various compute-intensive 
kernels with both control- and data-flow dominant processing. 
5.2. Comparison to State-of-the-Art 
In our comparisons in Fig. 8, the x-axis of the 2D graphs shows dif-
ferent combinations of CG-fabrics and PRCs of FG-fabrics. The first 
combination represents the execution of the whole application in 
RISC-mode. The bars in Fig. 8 show the execution time of different 
approaches. The x-axis comprises 4 bars per combination, where the 

first bar represents a RISPP-like approach [6], the second bar shows 
the Offline-optimal selection approach, the third bar shows Mor-
pheus- and 4S-like approaches [8],[7], and the fourth bar presents the 
results for our novel mRTS approach. For fairness of comparison with 
state-of-the-art, the set of fabric combination, the application, and the 
application’s input data are the same for each competitor. 
Comparison with RISPP-like [6] approach: 
The RISPP run time system [6] only deals with FG-fabrics. Therefore, 
its profit function is more tuned for longer reconfiguration time and 
computational properties of the FG-fabrics. However, for the purpose 
of a direct comparison we have extended their selection approach to 
use CG-fabrics, too. Fig. 8 shows the execution time of RISPP and 
our approach for different resource combinations. In the best cases, 
when multi-grained ISEs are used, our approach is up to 1.8x (on av-
erage 1.3x) faster than the extended RISPP. The main difference is 
the ability of our profit function to provide a good selection for the 
multi-grained ISEs and the use of monoCG-Extension by the Execu-
tion Control Unit (see Section 4.2). From Fig. 8, we can also see that 
RISPP and our approach perform similar when no CG-EDPEs are 
available, which demonstrates the applicability of our approach for 
RISPP-like [6]  reconfigurable processors. 
Comparison with Morpheus & 4S project like approach: 
Approaches like Morpheus [8] and the 4S project [7] have already 
proposed solutions for multi-grained reconfigurable fabrics to achieve 
adaptivity for different application requirements. In both approaches, 
the decision of which fabric is assigned to which task or application 
is made at compile time. 4S [7]   and Morpheus [7] do the selection at 
task level because they are loosely coupled architectures, i.e. the 
communication possibilities between the CG- and FG-fabric are li-
mited. To model the loosely coupled approach of 4S [7]  and Mor-
pheus [8], we perform a combined offline selection for all functional 
blocks of an application in such a way that each kernel can be ex-
ecuted on either using CG-fabrics or FG-fabrics, therefore, no multi-
grained ISE can be used within a functional block. 
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Fig. 8: Comparison with state of the art approaches 
Fig. 8 shows an average speedup of 1.78x for our approach. In the 
best cases, our approach is up to 2.3x times faster. The main reason 
for the difference is that our mRTS performs selection for multi-
grained ISEs at functional block level. The ability to use intermediate 
ISEs during the execution of functional block is another reason of our 
approach’s edge over state-of-the-art here. It is noted that whenever 
the available resources are either FG or CG only, the mRTS results 
are similar to the results of Morpheus or 4S approach, as we can only 
choose either FG-ISE or CG-ISE , which brings our approach to the 
paradigm of loosely coupled architectures [7][8]  and demonstrates its 
applicability for loosely coupled architectures as well.  



Comparison with offline selection: 
We compare against the offline (optimal) selection for tightly coupled 
multi-grained fabrics. From Fig. 8 we can observe that on average, 
our approach is 1.45x times faster than the optimal offline selection, 
and at best it is up to 2.2x times faster. Especially when at least one 
CG-fabric is available good speedups are noticeable, as then the bene-
fits of monoCG-Extension come into effect. On the other hand, we 
can see diminishing profit as the total amount of resources increases 
because offline optimal can distribute the reconfigurable fabric judi-
cially among kernels and run-time replacement gets less important.  
5.3. In-depth Analysis of mRTS 
In this section, we present a detailed analysis of our ISE selection al-
gorithm as explained in Section 4.1. 

ISE Selection algorithm vs. optimal (run-time) algorithm: 
Fig. 9 shows the percentage difference between the performance im-
provements offered by the optimal algorithm at run-time and the pro-
posed heuristic based algorithm. We can see in Fig. 9 that in these ex-
periments the ISE selection algorithm performs equally well as com-
pared to the optimal algorithm. Only for certain resource 
combinations (in the cases when number of available PRCs are 4 or 
more than 4), the optimal algorithm performs noticeably better, as it 
can distribute the resources among the kernels of one functional block 
in a better way. On the contrary, the ISE selection algorithm tends to 
give more fabric to the kernel that contributes most towards the over-
all performance. Even for such unfavorable situations, the difference 
stays within around 3%, if at least one CG-fabric is available. The 
worst-case error, i.e. 11% difference in this experiment, occurs when 
only 4 PRCs are available. The reason is that during the execution of 
this application, the ISE Selection algorithm often assigns 3 out of 4 
PRCs to one kernel, while the optimal algorithm shares them equally 
between the two most important kernels of the functional block. 
General Speedup compared to the RISC-mode: 
Fig. 10 shows the application speedup compared to RISC-mode ex-
ecution at different resources combinations, sorted into groups of 
combinations, where only FG-, only CG- or a mix of both kinds of 
fabrics are available. The line shows the average speedup. 

It is noticeable that when the application is executed using only 
PRCs, the achieved speedup ranges between 1.8x and 2.2x. However, 
when multi-grained reconfigurable fabrics are provided, then the 
mRTS achieves more than 5x application speedup as it starts employ-
ing multi-grained ISEs and monoCG-Extension. This is demonstrated 
by the fact that the combination of 1 PRC and 1 CG-fabrics performs 
significantly better than even 3 PRCs or 3 CG-fabrics only.  
5.4. Implementation overhead of mRTS 
Our mRTS comprises of two major computational blocks that are 
fundamental to the ISE selector, i.e. the profit function and the ISE-
selection algorithm. The time to calculate the profit function depends 
on the number of intermediate ISEs, the number of intermediate ISEs 
that are covered by already available data paths, the number of differ-
ent data paths, and number of data paths that must be reconfigured for 
ISEi after ISEi-1 has already been reconfigured. Similarly, the execu-

tion time of ISE-selection algorithm depends on the number of ker-
nels in the functional block and number of candidate ISEs. 

In our experiments, the mRTS on average takes less than 3000 
cycles to select an ISE for each kernel in a functional block, which is 
about 1.9% of an average execution time of a functional block. This 
overhead is negligible, especially as it only affects the first selection. 
As soon the first ISE is selected, the reconfiguration process is started 
and the mRTS then starts the ISE selection for the next kernel in pa-
rallel, i.e. its calculation time is hidden by the reconfiguration process. 
6. Conclusion 
Our novel run-time system for multi-grained reconfigurable processors 
provides a dynamic trade-off between performance and available area 
of multi-grained fabrics. It achieves this trade-off by selecting multi-
grained instructions at run-time and steering them for enhanced perfor-
mance. Our results demonstrate that our approach is equally beneficial 
for various multi-grained reconfigurable processors. Compared to state-
of-the-art, our mRTS provides more than 2x performance improvement 
at the cost of an insignificant 1.9% performance overhead. 
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