
Loop Distribution for K-Loops
on Reconfigurable Architectures

Ozana Silvia Dragomir and Koen Bertels
Computer Engineering, EEMCS, TU Delft, The Netherlands

Email: {o.s.dragomir, k.l.m.bertels}@tudelft.nl

Abstract—Within the context of Reconfigurable Architectures,
we define a kernel loop (K-loop) as a loop containing in the
loop body one or more kernels mapped on the reconfigurable
hardware. In this paper, we analyze how loop distribution can
be used in the context of K-loops. We propose an algorithm for
splitting K-loops that contain more than one kernel and intra-
iteration dependencies. The purpose is to create smaller loops (K-
sub-loops) that have more speedup potential when parallelized.
Making use of partial reconfigurability, the K-sub-loops can take
advantage of having more area available for multiple kernel
instances to execute in parallel on the FPGA. In order to study
the potential for performance improvement of using the loop
distribution on K-loops, we make use of a suite of randomly
generated test cases. The results show an improvement of more
than 40% over previously proposed methods in more than 60%
of the cases. The algorithm is also validated with a K-loop
extracted from the MJPEG application. A speedup of maximum
8.22 is achieved when mapping MJPEG on VirtexIIPro with
partial reconfiguration and 13.41 when statically mapping it on
the Virtex-4.

I. INTRODUCTION

Loop distribution, also known as loop fission or splitting,
is a fundamental transformation used for optimizing the exe-
cution of loops. Loop distribution consists of breaking up a
single loop (loop nest) into multiple loops (or loop nests), each
of which iterates over distinct subsets of statements from the
body of the original loop. The placement of statements into
loop must preserve its data and control dependencies.

This transformation has been used traditionally for the
following purposes: i) to break up a large loop that does not
fit into cache ([1], [2]); ii) to improve memory locality in
a loop that refers too many different arrays ([2], [3]); iii)
to enable other optimization techniques such as loop fusion,
loop interchange, loop permutation ([2]–[4]); iv) to eliminate
dependencies in a large loop whose iterations cannot be run
in parallel, by creating multiple sub-loops, some of which can
be parallelized (automated vectorization).

In this paper, we address the use of loop distribution, to-
gether with previously addressed loop optimizations, on kernel
loops (K-loops) in order to increase processing performance.
In our research, we define a K-loop as a loop containing in the
loop body one or more kernels mapped on the reconfigurable
hardware. The K-loop may contain code that is not mapped
on the FPGA, but will always execute on the General Purpose
Processor (GPP). The performance increase comes from run-
ning multiple kernel instances in parallel on the reconfigurable

978-3-9810801-7-9/DATE11/ c©2011 EDAA

hardware, while there is also the possibility of concurrently
executing code on the GPP. Our framework is the Molen
machine organization [5] implemented on the VirtexIIPro and
Virtex-4, allowing concurrent kernels/applications execution.

The contributions of this paper are: a) An algorithm to split
K-loops with more than one kernel such that the maximum
degree of parallelism can be achieved for the K-sub-loops;
b) A study of the potential for performance improvement of
applying loop distribution on K-loops by randomly generated
test sets that simulate large K-loops; c) Validation of our
algorithm using a real world application, MJPEG.

In the field of reconfigurable computing, loop distribution
has been used to break a loop into multiple tasks [6]. Loop
dissevering, a method for breaking the loop into multiple
tasks for temporal partitioning has been presented in [7]. Each
individual task will then be mapped onto the FPGA, making
it possible to implement applications that exceed the size
constraint of the FPGA. Differently from our work, there was
no exploitation of parallelism to increase the performance.

In [8], loop fission is applied in conjunction with loop
unrolling, and across multiple loops. The advantage of consid-
ering unrolling and fission of all loops globally is that unrolled
sub-loops from various loops can be potentially executed
in parallel. Our work is different in several ways: a) Loop
granularity – in [8], the addressed loops are the application
kernels. The K-loops in our work contain the application
kernels inside them. b) The mapping and scheduling strategy
– in [8], different instances of the same task can be scheduled
on different Processing Elements (PEs) after unrolling. In our
work the opposite is true, tasks are predefined (after profiling)
as software or hardware tasks. In [8], parallel execution of
different PEs is considered, but in our work we also consider
parallel execution on the same PE (e.g. the FPGA). c) Area
reuse – in [8], (partial) reconfigurability is not considered,
while in our work is.

In this paper, we generalize the work in [9] where kernel
loops with only one kernel were analyzed. For these types of
loops, algorithms based on loop unrolling and loop shifting
were proposed. We address the general case of K-loops with
more than one kernel inside that can be split into smaller
K-sub-loops. The unrolling and shifting techniques are then
applied to the K-sub-loops. Intra-iteration dependencies are
allowed in between the kernels. Randomly generated tests
prove that splitting followed by unrolling and shifting performs
better than just unrolling and shifting in most of the cases. For

for (i = 0; i < N ; i + +) do
SW1(blocks[i]) ; // sw function
K1(blocks[i]) ; // hw mapped kernel
SW2(blocks[i]) ; // sw function
K2(blocks[i]) ; // hw mapped kernel
SW3(blocks[i]) ; // sw function

Figure 1: K-loop with 2 kernels

the MJPEG K-loop, the proposed technique gives more than
100% improvement over unrolling and shifting.

The rest of this paper is organized as follows. In Section II,
we present the motivation behind our research. Section III
introduces the algorithm for loop distribution, while experi-
mental results are presented in Section IV . Final conclusions
are presented in Section V.

II. MOTIVATION

The work in [9] focuses on simple kernel loops containing
only one hardware kernel that would be accelerated on the
FPGA and some software code that will always execute on the
GPP. For this kind of loops, the authors proposed algorithms
based on loop unrolling and loop shifting with the purpose of
maximizing parallelization and performance. The purpose of
this paper is to extend the optimization framework to K-loops
with an arbitrary number of kernels and pieces of software
code occurring in between the kernels. The number of kernels
in the loop determines the K-loop size. An example of a size
2 K-loop containing two hardware mapped kernels and three
software functions illustrated in Fig. 1.

The K-loop in the example contains several functions – the
SW j functions will always execute on the GPP, while the
Kj functions are the application kernels that are meant to be
accelerated in hardware. This K-loop can be viewed as a task
chain, where we assume that there are dependencies between
consecutive tasks in the chain, but not between any two tasks
from different iterations. Inter-iteration dependencies can be
handled with other loop transformations such as loop skewing
and are not within the scope of this paper. The software
functions situated before and after a kernel are called the
kernel’s pre- and post- functions. The loops that result from
the splitting of the original K-loop are called K-sub-loops.

It is obvious that for large K-loops, unrolling and/or shifting
have limitations in regard to exposing the available parallelism.
In the case of loop unrolling, different kernels in the K-
loop may benefit from different unroll factors, due to various
factors: the kernel’s I/O, the kernel’s area requirements, the
kernel’s acceleration factor, the relation between the kernel and
its pre-/post- software functions. In the case of loop shifting,
only the first and the last kernels in the K-loop will execute
concurrently with their pre- or post- software functions. It
is proven in [9] that it is always beneficial to apply loop
shifting wherever the data constraints allow it. This means
that performance can be further improved if loop shifting is
applied on smaller K-loops.

In this paper, we propose a method for splitting a K-loop
with more than one kernel, such that maximum performance is

S = Loop.ComputeSpeedup() Klist.OrderKernels()
Llist.Init()
K = Klist.First()
while (K! = NULL) do

if (!K.added) then
L = new Loop();
L.AddKernel(K); L.AddSwFunc(K);
Stemp = L.ComputeSpeedup();
if (Stemp < S) then

next = K.GetNext();
prev = K.GetPrev();
while (next && !next.added && Stemp < S) do

L.AddKernel(next); L.AddSwFunc(next);
next = next.GetNext();
Stemp = L.ComputeSpeedup();

while (prev && !prev.added && Stemp < S) do
L.AddKernel(prev); L.AddSwFunc(prev);
prev = prev.GetPrev();
Stemp = L.ComputeSpeedup();

Llist.AddLoop(L);

K = Klist.Next();

Figure 2: The distribution algorithm

obtained when applying unrolling and shifting to the resulted
K-sub-loops. Because of intra-iteration dependencies, the or-
der of the functions is preserved when splitting the K-loop.

III. METHODOLOGY

In this section, we propose a method for splitting a K-
loop containing interleaved kernels and software functions.
A K-sub-loop will contain one or more kernels. The K-loop
breaking points are considered to be the points between two
subsequent kernels that will be placed in different K-sub-
loops. Assuming that the software functions and the kernels
are placed evenly within the K-loop such that between any
two kernels there is a software task, a decision has to be taken
whether to distribute the software task with the first kernel or
with the second one. This kind of decision is needed at each
breaking point of the loop.

The algorithm uses the profiling information about memory
transfers, execution times for all the software and hardware
functions (in GPP cycles), area requirements for kernels,
memory bandwidth and available area.

The algorithm proposed in this paper for K-loops distribu-
tion is a Greedy type of algorithm, applied to the sorted list
of kernels. The sorting is performed according to a heuristic
based on the hardware execution time, the memory constraints
and the relation with the pre-/post- software function for each
kernel. The first kernel in the list is the most promising kernel
in terms of speedup. The kernel speedup is defined as the ratio
between its software execution time and its hardware execution
time. The K-loop speedup is defined as the ratio of the K-loop
execution time with all kernels running in software and the K-
loop’s execution time with the kernels running in hardware.
The algorithm is illustrated in Fig. 2.

The sorted list of kernels is processed in a Deep First Search
manner. Since each function (either kernel or software) can

belong to only one K-sub-loop, the function will be processed
(added to the current K-sub-loop) only if it has not been
previously selected in a K-sub-loop. The order of the functions
is preserved in the distributed K-loop because of intra-iteration
dependencies. We will call a function that does not belong to
a K-sub-loop a ‘free’ function. For each free kernel in the list,
the following steps are performed.

1) A K-sub-loop is created (denoted by L), containing the
current kernel. The pre- and post- functions are added
to L if they are free.

2) While the speedup of L is less than the speedup of the
original K-loop, and while the next kernel and its pre-
function are free, they are added to L.

3) While the speedup of L is less than the speedup of the
original K-loop, and while the previous kernel and its
post- function are free, they are added to L.

4) L is saved in the list of K-sub-loops.
The following considerations apply regarding the software

functions.
1) If the first function in the K-loop is a software function,

it will always be grouped with the first kernel.
2) If the last function in the K-loop is a software function,

it will always be grouped with the last kernel.
3) The software functions that are called in between kernel

functions will be grouped with either the previous or the
following kernel function. This decision is taken at the
stage of kernel ordering.

A. Reconfigurability issues

The loop distribution can be performed either considering
that all kernel instances should fit on the FPGA or considering
that the FPGA will be (partially) reconfigured in between K-
sub-loops to accommodate the new kernels.

Of course trying to fit all kernel instances on the FPGA
imposes severe area constraints, especially in the case of small
FPGAs such as the VirtexIIPro-XC2VP30. This may result
in poor or no improvement when parallelizing the split loop
because of the limitations imposed on the unroll factors.

However, larger FPGAs such as the Virtex4-XC4VLX80
may offer enough space for configuring all the needed kernel
instances at once. Then the true potential for performance
improvement of loop distribution can be seen.

Reconfiguration (either partial or total) can be expensive in
terms of CPU cycles. Although part of the reconfiguration
time can be hidden by the K-sub-loops prologue/epilogue
(that appear because of loop unrolling and loop shifting), the
reconfiguration overhead might be so big that the performance
decreases instead of increasing. Because of the different tech-
nologies involved, different platforms have different reconfig-
uration times, as follows.

a) Reconfiguration on Virtex II Pro: The Virtex-II Pro
configuration memory is arranged in vertical frames, that are
the smallest addressable unit; therefore, all operations must
act on whole configuration frames [10].

Configuring the entire device takes approx. 20ms. However,
Virtex-II Pro devices allow partial reconfiguration – rewriting

a subset of configuration frames. We consider that the time
needed to reconfigure only a part of the device is proportional
to the size of the module to be configured.

b) Reconfiguration on Virtex-4: The configuration archi-
tecture for the Virtex-4 FPGA family has a different layout
than the earlier families, but it is still frame-based [11].
The number of frames that need to be configured determines
the size of the reconfiguration bitstream. There is also a
configuration overhead of 1312 words. In order to compute
the configuration time, the throughput must also be known.

The idealized throughput on the Virtex-4 chip is 400MB/s,
at 100MHz. The work of Liu et al [12] proposed a DMA
engine design that yields a throughput of 399MB/s. Consid-
ering that the size of a frame is 41 words, the reconfiguration
time is 0.411µs/frame. When adding the overhead, the total
reconfiguration time is

Treconfig = Number_of_frames ∗ 0.411 + 13.15(µs) (1)

IV. EXPERIMENTAL RESULTS

In order to study the potential for performance improvement
of distributing K-loops, a random test generator has been
developed. The results of applying the distribution algorithm
to the randomly generated tests are shown in Subsection IV-A.
The algorithm is also validated with a K-loop extracted from
the MJPEG application in Subsection IV-B.

A. Distribution on random K-loops

A suite of randomly generated tests has been used in order
to study the impact of loop distribution on K-loops with sizes
between 2 and 8. For each loop size, 1500 tests have been
generated. For each test we compare the performance improve-
ment when distributing the K-loop using the above algorithm
and applying unrolling and shifting to the resulted K-sub-loops
to the performance achieved by previously presented methods,
based only on unrolling and shifting. For these experiments,
the reconfiguration latency is not taken into account.

Each test case is determined by the following parameters:
• N - the number of iterations;
• Tsw[j] - the execution time for each software function
SWj (cycles);

• MAX(sw) - the maximum of the execution times of the
software functions (cycles);

• TK(sw)[i] - the execution time in software for each kernel
Ki (cycles);

• S[i] - the speedup for Ki kernel (S[i] ∈ R);
• TK(hw)[i] - the execution time in hardware for Ki (cycles):

TK(hw)[i] ∗ S[i] = TK(sw)[i]

• A[i] - the area occupied by Ki in hardware, in percents:∑
(A[i]) ≤ 90%, (A[i] ∈ R);

• Tr[i], Tw[i], Tc[i] - the memory read time, memory write
time and computation time for Ki running in hardware,
respectively (cycles).

Tr[i] + Tw[i] + Tc[i] = TK(hw)[i];

 100%

K=2 K=3 K=4 K=5 K=6 K=7 K=8

P
e
rc

e
n
ta

g
e
 o

f
im

p
ro

v
e
m

e
n
t

K−Loop size

 	 > 50 %
40 − 50 %
30 − 40 %
20 − 30 %
10 − 20 %
 5 − 10 %
 0 − 5 %
 0.00 %

 0%

 20%

 40%

 60%

 80%

(a) Area requirements between 1.2% and 12%

 100%

K=2 K=3 K=4 K=5 K=6 K=7 K=8

P
e
rc

e
n
ta

g
e
 o

f
im

p
ro

v
e
m

e
n
t

K−Loop size

 	 > 50 %
40 − 50 %
30 − 40 %
20 − 30 %
10 − 20 %
 5 − 10 %
 0 − 5 %
 0.00 %

 0%

 20%

 40%

 60%

 80%

(b) Area requirements between 1.2% and 60%

Figure 3: Performance distribution for the random tests

Table I
PARAMETER VALUES

Parameter Min. value Max. value

N 64 256*256
Tsw[j] 0 800

TK(sw)[i] 1.5 * MAX(sw) 41.5 * MAX(sw)

S[i] 2.0 10.0
A[i] 1.2% 12.0% / 60%
Tr[i] 1 1

3
∗ TK(hw)[i]

Tw[i] 1 1
6
∗ TK(hw)[i]

The values for the presented parameters have been generated
according to the Table I. Note that in some cases, the max-
imum value of a parameter depends on the generated value
of another parameter (for instance, the kernel time for read is
at most one third of the total execution time of the kernel in
hardware, otherwise the I/O intensive kernel would not be a
candidate for hardware acceleration).

Parallel hardware execution (enabled by loop unrolling) is
a great source of performance improvement. The kernels’ area
requirements influence the maximum degree of parrallelism,
thus the performance. To study the impact of the area re-
quirements, two sets of tests with K-loop sizes between 2
and 8 were used. For the first set, all kernels have small area
requirements (1.2 – 12%), that allows for a parallelism degree
of 7 or more. The results are illustrated in Fig. 3(a). For the
second set, the maximum area requirement for a kernel is 60%,
that can lead to no hardware parallelism. All kernels in a K-
loop should fit altogether on the available area, therefore the
sum of all areas should be less than the maximum allowed
(in our tests, this maximum is 90%, in order to avoid routing
issues). The results are illustrated in Fig. 3(b).

In Fig. 3 a) and b) we illustrate the performance improve-

ment of the loop distribution algorithm for different K-loop
sizes, compared to the previously presented methods based
on unrolling and shifting. For Fig. 3(a) the set of tests was
generated with small area requirements(SAR) for each kernel,
between 1.2% and 12%. In Fig. 3(b), the displayed results are
for the case of larger area requirements (LAR), maximum 60%
per kernel. The distribution algorithm brings no improvement
for K-loops of size 2 for 38% of the SAR cases and 24% of the
LAR cases, but these numbers decrease with the K-loop size,
down to less than 2% for K-loop size 8. Little performance
improvement (less than 10%) is shown for 11.2% of the SAR
cases and 3.6% of the LAR cases. An improvement of 10–20%
is shown for 23% of the SAR cases and 7% of the LAR cases.
A performance gain between 20–40% is shown for most of the
SAR cases (47.6%) and 19% of the LAR cases. A significant
performance improvement of more than 40% is shown for 12%
of the SAR cases and most of the LAR cases (67.3%).

The results show that the area requirements have a great
impact on performance when loop distribution is taken into
account. When the K-loop contains kernels with high area
requirements, it is beneficial to split it into smaller K-sub-
loops. This way, the smaller kernels can benefit from higher
unroll factors.

Also, a large K-loop size is a good reason for splitting the
loop. Having small K-sub-loops brings more benefit from loop
shifting, when the software and hardware execute concurrently.

B. Distribution on the MJPEG K-loop

The MJPEG main loop is illustrated in Fig. 4. The data
transmitted from task to task is a 8×8 pixel block. All
functions need to perform the reading and writing of each
pixel in the data block. The profiling information for all the
functions in the MJPEG K-loop is presented in Table II.
The software and hardware execution times for VLE that are
presented in the profiling information are the average of the
execution times of several instances of the VLE kernel. All
other functions have constant execution time.

The application kernels are the DCT, Quantizer and VLE
functions. Although the ZigZag function has a quite large
execution time, it is a software only function as it is I/O
intensive and implementing it in hardware would not be
beneficial.

The compiler used to compile the MJPEG K-loop is based
on GCC 4.3.1 and extended to support the MOLEN program-
ming paradigm [5]. The VHDL code for the all kernels has
been automatically generated with the DWARV [13] tool and
synthesized using Xilinx XST tool of ISE 11.2 for the Xilinx
VirtexIIPro-XC2VP30 and Virtex4-XC4VLX80 boards. The
two chips’ characteristics are complementary, making them
suitable for illustrating the proposed method – The VirtexIIPro
has small area and high reconfiguration time, while the Virtex-
4 has large area and small reconfiguration time. The synthesis
results for the MJPEG kernels are presented in Table III. The
code was executed only on the Virtex II Pro-XC2VP30 board
and the execution times were measured using the PowerPC
timer registers.

for (i = 0; i < 16; i + +) do
for (j = 0; j < 8; j + +) do

PreShift(blocks[i][j]);
DCT(blocks[i][j]);
Bound(blocks[i][j]);
Quantizer(blocks[i][j]);
ZigZag(blocks[i][j]);
VLE(blocks[i][j]);

Figure 4: MJPEG main K-loop

Table II
PROFILING INFORMATION FOR THE MJPEG FUNCTIONS

Kernel TK(sw)(cycles) TK(hw)(cycles)

PreShift 3096 –
DCT 106626 37278
Bound 1953 –
Quantizer 12510 2862
ZigZag 8112 –
VLE 51378 6252

In the remaining text, we will use the notation u for the
unroll factor used for the whole K-loop. The ui notations are
used when the K-loop is split into several K-sub-loops and
each ui corresponds to the i-th kernel in the original loop.
Then, u1 is the unroll factor for DCT, u2 is the unroll factor
for Quantizer and u3 is the unroll factor for VLE.

When the MJPEG K-loop is parallelized with loop unrolling
or loop unrolling + shifting for parallelization, the same
parallelization factor applies to all kernels (namely, the unroll
factor). All kernel instances must be configured at the same
time, no reconfiguration is considered. The following perfor-
mance results can be obtained with unrolling and shifting:

• A maximum speedup of 12.93 for unroll factor u = 28
when there are no area constraints (unlimited area).

• A speedup of 3.56 for the VirtexIIPro chip. No unrolling
can be performed because of the limited area (u = 1).

• A speedup of 5.88 for Virtex-4. The area constraints
require that the maximum unroll factor is u = 2.

The loop distribution algorithm decides to partition the K-
loop into two K-sub-loops. The K-sub-loops (KL1 and KL2)
will be:

• KL1 = PreShift, DCT, Bound
• KL2 = Quantizer, ZigZag and VLE
The two K-sub-loops have now different optimal paralleliza-

tion factors. For KL1, the optimal factor (assuming no area
constraints) is u1 = 20, leading to a speedup of 22.11 for
KL1. For KL2, the optimal factor is u2 = u3 = 1, with
speedup of 8.23. The reason for this optimal unroll factor

Table III
SYNTHESIS RESULTS FOR THE MJPEG KERNELS

Kernel Area (slices) % VirtexIIPro %Virtex4
DCT 1692 12.35 4.72
Quantizer 409 2.98 1.14
VLE 10631 77.62 29.66

follows. Performing loop shifting allows the software functions
to execute in parallel with the hardware kernel. Since the
execution time of the software will then be approximately the
same as the execution time of the hardware VLE, there is no
gain in unrolling in the case of KL2.

The K-loop speedup depends now on whether we choose
to map all the needed kernel instances on the FPGA (no
reconfigurability) or map the K-sub-loops kernels separately
(partial reconfigurability before KL2).

Loop distribution with no reconfigurability.
No area constraints. The K-loop speedup for the optimal

factors u1 = 20, u2 = 1 is 13.53.
The VirtexIIPro area constraints allow no unrolling for

either KL1 or KL2, therefore applying loop distribution
would bring no improvement. The speedup is 3.56.

The Virtex-4 area constraints allow a maximum unroll factor
u1 = 13 for KL1, while KL2 does not benefit from unrolling,
hence the optimal factor is 1 (u2 = u3 = 1). The speedup for
KL1 will be 21.65, while the K-loop speedup after distribution
is 13.41. The final unroll factors are (u1, u2, u3) = (13, 1, 1).
Compared to the speedup of 5.88 when loop distribution is not
used on Virtex-4, this is a 228% performance improvement.

Loop distribution with partial reconfigurability.
It makes no sense to consider partial reconfigurability with

no area constraints, therefore we will analyze only the Vir-
texIIPro and Virtex-4 cases.

The VirtexIIPro area constraints allow for a maximum of
7 DCT kernels to be configured at a time (as mentioned
before, we aim at occupying no more than 90% of the area). If
reconfiguration overhead is not taken into account, the speedup
for the K-loop with unroll factors (7, 1, 1) is 12.71.

The reconfiguration latency is not negligible in this case.
The VLE kernel from KL2 will need to be configured after
the DCTs have finished. Since the Quantizer takes only 2.98%
of the area and we are willing to minimize the reconfiguration
time, the Quantizer can be configured before the end of KL1,
since the DCTs occupy only 86.45% of the total area.

Considering the reconfiguration time of 19.39ms for the
whole board, it would take 14.93ms to map VLE onto the
FPGA. This means 985400 cycles at the recommended fre-
quency of 66MHz. The maximum VLE reconfiguration latency
that can be hidden by the epilogue of KL1 and prologue of
KL2 and that is equal to only 14880 cycles. The MJPEG
speedup increases when using loop distribution with partial
reconfiguration from 3.56 to 8.22.

The Virtex-4 area constraints impose an unroll factor
u1 = 18 for KL1. Ignoring the reconfiguration overhead,
the speedup for the K-loop with unroll factors (18, 1, 1) is
13.51. Similar to the case of VirtexIIPro, the Quantizer can
be configured before the end of KL1 and the VLE kernel
will need to be configured after the DCTs have finished. The
maximum VLE reconfiguration latency that can be hidden by
the epilogue of KL1 and prologue of KL2 and that is equal to
28551 cycles. It differs from the one computed for VirtexIIPro
because the KL1 epilogue is larger for u1 = 13 (Virtex-4)
than for u1 = 7 (VirtexIIPro).

Table IV
PERFORMANCE RESULTS FOR DIFFERENT AREA CONSTRAINTS AND
DIFFERENT METHODS ([1]-LOOP UNROLLING; [2]-LOOP SHIFTING;

[3]-LOOP DISTRIBUTION).

Area constraints (u1,u2,u3) methods reconfig. Speedup

∞ (28,28,28) [1]+[2] no 12.93
∞ (20, 1, 1) [3]+[1]+[2] no 13.53
VirtexIIPro (1, 1, 1) [1]+[2] no 3.56
VirtexIIPro (1, 1, 1) [3]+[1]+[2] no 3.56
VirtexIIPro (7, 1, 1) [3]+[1]+[2] yes 8.22
Virtex-4 (2, 2, 2) [1]+[2] no 5.88
Virtex-4 (13, 1, 1) [3]+[1]+[2] no 13.41
Virtex-4 (18, 1, 1) [3]+[1]+[2] yes 11.95

To load the VLE on Virtex-4, a total of 883.9KB need to be
transfered on the FPGA. The reconfiguration time of the VLE
kernel computed with (1) is 2.21ms at 100MHz, that is the
equivalent of 221000 CPU cycles. The K-loop speedup with
partial reconfiguration is 11.95, less than the speedup achieved
with static mapping of the kernels on the Virtex-4.

Table IV summarizes the results of mapping the MJPEG
K-loop onto reconfigurable hardware, using the presented
techniques and various area constraints. Note that ∞ means
no area constraints.

The results on VirtexIIPro show that loop distribution
with partial reconfiguration gives a significant performance
improvement when the area is very restrictive (speedup in-
crease from 3.56 to 8.22). Partial reconfiguration allows for
a higher unroll factor in the first K-sub-loop and thus more
parallelism. If the reconfiguration latency could be decreased,
the performance would improve with maximum 54% (up to
12.71 speedup on VirtexIIPro).

The results of mapping MJPEG on the Virtex-4 show
that loop distribution with no reconfigurability gives the best
performance when the area is not a big constraint. The
performance increased by 228%(from 5.88 to 13.41), that is
99% of the maximum speedup (13.53) that is possible with
infinite resources.

V. CONCLUSION

In this paper, we discussed the use of loop distribution in
the context of K-loops. When the kernels from a large K-loop
are distributed into smaller K-sub-loops, they can benefit from
different unroll factors and therefore more from the parallelism
enabled by unrolling and shifting.

The results of experimental data that was randomly gener-
ated show that the K-loop size and the area constraints have
a high impact on the performance. Splitting is very beneficial
for large K-loops and for K-loops that contain kernels with
high area requirements.

In more than 60% of the random test cases, distributing the
K-loop lead to a significant performance improvement (more
than 40%) compared to when loop unrolling and shifting are
applyed to the K-loop without splitting it. Note that the partial
reconfiguration overhead was not taken into account for the
randomly generated tests because they were not designed for

any platform in particular. Since Virtex-4 family chips have a
small reconfiguration delay, we consider that for our tests this
delay can be hidden by the K-sub-loops prologue and epilogue
(resulted from loop unrolling and loop shifting).

The distribution algorithm proposed in this paper has been
validated with the MJPEG K-loop. Our method proves to be
efficient in both configurations: together with partial reconfig-
uration on small chips (the VirtexIIPro), as well as without
reconfiguration on large chips (the Virtex-4).

The performance of the MJPEG K-loop on VirtexIIPro
improved from 3.56 speedup without loop distribution to 8.22
speedup with loop distribution and partial reconfiguration in
between the K-sub-loops.

On the Virtex-4, the best performance is achieved with loop
distribution and static mapping of the kernels on the reconfig-
urable hardware (speedup of 13.41). This is a performance
increase of more than 100% compared to the speedup of 5.88
when the MJPEG K-loop is parallelized only by unrolling and
shifting.

ACKNOWLEDGMENT

This research is partially supported by Artemisia iFEST
project (grant 100203), Artemisia SMECY (grant 100230),
FP7 Reflect (grant 248976).

REFERENCES

[1] K. Kennedy and K. S. McKinley, “Loop Distribution with Arbitrary
Control Flow,” in Proceedings of the 1990 ACM/IEEE conference on
Supercomputing. Los Alamitos, CA, USA, 1990, pp. 407–416.

[2] ——, “Maximizing Loop Parallelism and Improving Data Locality
via Loop Fusion and Distribution,” in Workshop on Languages and
Compilers for Parallel Computing, vol. 768, 1993, pp. 301–320.

[3] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving Data Locality
with Loop Transformations,” ACM Trans. Program. Lang. Syst., vol. 18,
no. 4, pp. 424–453, 1996.

[4] M. Liu, Q. Zhuge, Z. Shao, C. Xue, M. Qiu, and E. H.-M. Sha,
“Maximum Loop Distribution and Fusion for Two-level Loops Con-
sidering Code Size,” Parallel Architectures, Algorithms, and Networks,
International Symposium on, vol. 0, pp. 126–131, 2005.

[5] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. M. Panainte, “The MOLEN Polymorphic Processor,” IEEE
Transactions on Computers, November 2004.

[6] M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss, “An Automated
Temporal Partitioning and Loop Fission Approach for FPGA Based
Reconfigurable Synthesis of DSP Applications,” in DAC 1999. New
York, NY, USA: ACM, 1999, pp. 616–622.

[7] J. M. P. Cardoso, “Loop Dissevering: A Technique for Temporally Par-
titioning Loops in Dynamically Reconfigurable Computing Platforms,”
in IPDPS 2003. Washington, DC, USA, 2003, pp. 22–26..

[8] Y. M. Lam, J. G. F. Coutinho, C. H. Ho, P. H. W. Leong, and W. Luk,
“Multiloop Parallelisation Using Unrolling and Fission,” International
Journal of Reconfigurable Computing, 2010.

[9] O. S.Dragomir, T. P. Stefanov, and K. Bertels, “Optimal Loop Unrolling
and Shifting for Reconfigurable Architectures,” ACM Transactions on
Reconfigurable Technology and Systems, 2009.

[10] Xilinx Inc., “Virtex-II Pro and Virtex-II Pro X FPGA User Guide.”
[Online].

[11] ——, “Virtex-4 FPGA User Guide.” [Online].
[12] S. Liu, R. N. Pittman, and A. Forin, “Energy Reduction with Run-Time

Partial Reconfiguration (abstract only),” in FPGA 2010, New York,
NY, USA: ACM, 2010, pp. 292–292.

[13] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and
S. Vassiliadis, “DWARV: DelftWorkbench Automated Reconfigurable
VHDL Generator,” FPL2007, Amsterdam, Netherlands,2007.

