
Hyper-Graph Based Partitioning to Reduce DFT
Cost for Pre-Bond 3D-IC Testing

Amit Kumar Sudhakar M. Reddy
Electrical and Computer Eng. Dept.

University of Iowa
Iowa City, IA 52242, USA

Irith Pomeranz
School of Electrical and Computer Eng.

Purdue University
W. Lafayette, IN, 47907, USA

Bernd Becker
Institute for Computer Sci.
Albert Ludwigs University
Freiburg, 79110, Germany

Abstract— 3D IC technology has demonstrated significant per-
formance and power gains over 2D. However, for technology to
be viable yield should be increased. Testing a complete 3D IC
after stacking leads to an exponential decay in yield. Pre-bond
tests are required to insure correct functionality of the die. In
this work we propose a hypergraph based biased netlist par-
titioning scheme scheme for pre-bond testing of individual dies
to reduce extra-hardware (flip-flops) required. Further reduction
in hardware is achieved by a logic cone based flip-flop sharing
scheme. Simulation results on ISCAS89 benchmark circuits and
several industrial benchmarks demonstrate the effectiveness of
the proposed approach.

I. INTRODUCTION

Through Silicon Via (TSV) based 3D-IC’s have several
advantages over traditional two dimensional IC’s [17], [6],
[1]. Fig. 1 shows a typical 3D IC. These advantages can be
summarized as:

1) Footprint for the 3D IC is small in comparison to their
two dimensional counterparts, resulting in more compact
chips.

2) Interconnect length can be drastically reduced leading
to better timing performance.

3) Less power consumption is a direct implication of
shorter wire length and more functionality packed on
the chip itself.

4) Various die layers can be made using different processes,
for example in a 3D microprocessor caches can be made
using a different technology than the rest of the chip.

However 3D-IC technology is still in its infancy and faces
many problems [11], [13], [1]

1) Yield for 3D IC’s is very low, resulting in increased cost.
2) There is lack of 3D specific CAD tools. Mostly 2D tools

are modified to work on 3D IC designs. Available 3D
IC automation is for backend.

3) It is difficult to test a die independently, costly approach
of probing is required.

4) Thermal management and heat dissipation is a challeng-
ing issue in 3D IC’s.

Yield for 3D-IC’s is comparatively lower than 2D processes.
Main reason for low yield is lack of schemes to test individual
dies before bonding. Pre-bond test is therefore important for

978-3-9810801-7-9/DATE11/ c©2011 EDAA

Device Layers

Metal layers

TSV

Fig. 1. A TSV based 3D IC.

improving yield. In [8], [9] authors use scan-island based
approach for pre-bond testing of dies. However, no CAD
algorithm for partitioning was presented. Various circuit blocks
were placed on different layers of the design. The above
approach has the following drawbacks:

1) Block based partitioning can result in excessive die
area. Various blocks in the circuit can have varying size
and architectural partitioning may lead to improper area
usage.

2) No formal approach was presented for circuit parti-
tioning [8] to reduce number of inter-die interconnects,
which may lead to increased TSV numbers. Since yield
for TSV is low and area requirements are very high [17],
number of TSV’s should be minimized.

3) Large number of additional flip-flops may be required
for the incoming and outgoing connections to a die from
other dies of the circuit.

In this work we propose a DFT method for pre-bond testing
of 3D ICs using a hypergraph [4] based netlist partitioning
scheme. Hypergraph based netlist partitioning is a method that
has been used for various applications in VLSI design, for
example design packaging, HDL synthesis, design optimiza-
tion and design partitioning [4], [5]. In general the approaches
have to be adapted to the problem at hand to work in a
sufficiently efficient and effective way. Here, this is done for
the first time in the context of partitioning a design to facilitate
pre-bond testing of 3D-ICs. We show the efficiency of our
approach by experimental evaluations and comparison to the

Existing Circuit FF Additional FF for
Pre-Bond Testing

Layer1

Layer2

Test Pad

No additional
FF needed for
pre-bond testing

One additional
FF needed for
pre-bond testing

Scan Chain 1

Scan Chain 2

TSV

Fig. 2. Scan island based approach for pre-bond testing.

results of applying an earlier partitioning procedure [4]. The
main features and advantages of the proposed scheme are
summarized below:

1) Proposed partitioning scheme leads to equal cluster/die
sizes. All dies have approximately same amount of logic,
resulting in saving in terms of area.

2) Partitioning algorithm assigns weights on hyperedges
such that cut obtained is biased towards placing a flip-
flop at cut, resulting in savings of additional flip-flops
required at each connection coming in/out of the die
from another die.

3) Further saving of hardware is achieved by sharing flip-
flops [3] at the incoming and outgoing connections of a
die.

In section II we give the motivation for this work followed
by basic definitions. Basic concepts related to hypergraph
based netlist partitioning are presented in Section III. The pro-
posed hypergraph based biased netlist partitioning algorithm
is presented in Section IV. Section V deals with the flip-flop
sharing scheme. In section VI we discuss experimental results
obtained. We conclude the paper is section VII.

II. MOTIVATION

Testing of 3D-IC’s poses similar kind of problems as of
MCM’s [10], [9]. Present strategy for testing is to bond
and test, resulting in loss of yield. 2D test techniques can
be applied for testing after bonding. Pre-bond test needs
some tailor-made 3D specific solutions [16], [13], [7]. Major
differences between 2D and 3D IC testing are:

1) Primary inputs have full controllability and primary
outputs have full observability in 2D IC testing. This
is not true for inputs and outputs coming from another
module for pre-bonded 3D-IC die.

2) Only method to access pre-bond 3D-IC is using probing.
Probing is a costly technique. We are required to reduce
the number of probe points which are very expensive in
terms of area [11].

Faceside probing is preferred as it does not require wafer to
be thinned [9]. We name input and output connections coming
into and going out of a die as pseudo-primary input and
pseudo-primary output respectively, in this work.

DEC APLHA 21364 [2] uses a segmentation technique
in which the circuit was divided into individual segments

with registers at the border. During test mode registers isolate
each segment, in normal mode they allow free movement of
data from one segment to another. In [2], the entire circuit
netlist is partitioned into several smaller circuit blocks called
scan islands. Each island houses parallel local scan-chains
and can be controlled and observed independently during test
mode. Similar architecture for pre-bond 3D IC testing has
been proposed in [9]. Fig. 2 shows a scan-island based test
architecture, layer1 and layer2 form two different scan-islands
(on different dies) and both can be tested independently of
each other. Extra flip-flops are added at all the incoming and
out-going connections of a die from another die, if a flip-
flop is not present on the interconnection. All flip-flops on
a die are stitched together to form a scan-chain. Hypergraph
based biased netlist partitioning and flip-flop sharing scheme’s
proposed in this work, use scan-island based architecture. In
pre-bond test individual dies forms independent scan-islands.
The advantages of scan-island architecture are:

• Pseudo-primary inputs are completely controllable.
• Pseudo-primary outputs are observable.
• Number of test pads required are minimal.

III. BASIC CONCEPTS RELATED TO HYPERGRAPH BASED
NETLIST PORTITIONING

In this section we present some basic concepts and defini-
tions used in this work.

A Hypergrah H = (V,E) is a set of vertices V and a set
of hyperedges E, where each hyperedge is a subset of the
vertex set V [4], [5]. E is the set of m hyperedges which are
used to represent the nets of the circuit. The set E is a subset
of the power set of 2V of the vertices V in H . A weighted
hypergraph has non-negative numeric weights associated with
each vertex, each hyperedge, or both. Conventional graphs are
a special case of hypergraphs, where all edges are defined by
subsets of vertices of size two. Fig. 3 shows a circuit and its
corresponding hypergraph.

Hierarchical Clustering: Let

Ci : V −→ 2V , i = 1, . . . , l

be a family of l mappings where Ci maps the vertices of H
into |Vi| clusters Ci1, Ci2, . . . , Ci|Vi| such that Ciu ∩Civ=φ if
u 6= v and

⋃|V i|
j=1 Cij=V . The family of mappings mentioned

above defines the hierarchical clustering [14] of vertices in H
whenever |Vi| > |Vi+1| for all i = 1, . . . , l − 1.

Coarsened Hypergraph: A coarsened hypergraph [14] Hi =
(Vi, Ei) is the set of vertices Vi and hyperedges Ei such that:
1) v ∈ Vi is a cluster (subset) Cij of vertices from V as
defined by the mapping Ci (Note: to simplify notation, v may
also be denoted by the corresponding cluster Cij) and 2) a
subset e of Vi is a hyperedge of Hi if and only if there exists a
hyperedge e′∈ E such that e′ has nonempty intersection with
each cluster represented by the vertices in e.

k-way hypergrah partitioning: A k-way partitioning
P k={C1, C2, . . . , Ck} consists of k clusters (subsets of V),
C1, C2, . . . , Ck such that C1∪C2∪ . . . Ck = V and Ci∩Cj=φ

FF

BUF

PI NOT

V
PI
V
PI
V
PI

V
BUF

V
FF

V
NOT

V
PI
V
PI
V
PI

V
BUF

V
FF

V
NOT

V
PI
V
PI
V
PI

V
BUF

V
FF

V
NOT

(I) (II) (III) (IV)

WA=
10

WB=1

Fig. 3. Transformation of a circuit G in to hypergraph H . (i)Circuit G. (ii)Vertices of hypergraph H . (iii) Hyperedges added to H . (iv) Weight added to
hyperedges.

for 1 ≤ i ≤ k and 1 ≤ j ≤ k. if k= 2 we refer to P 2 as
bipartitioning.
Cutsize or Cost of Cut : The set of hyperedges cut by

cluster C is given by E(C)=e ∈ E s.t. 0 < |e ∩ C| < |e|,
i.e., e ∈ E(C) if at least one, but not all, of pins of e are in
C. The set of nets cut by a partitioning solution P k can be
expressed as E(P k) =

⋃k
h=1E(Ci) or equivalently E(P k)=

{e ∈ E|∃u, v ∈ e, h 6= l with u ∈ Ch and v ∈ Cl}. We say
that |E(P k)| is the cost or size of cut P k.

With balance constraints the problem of k-way hypergraph
partitioning is known to be NP complete [4], [5]. The proof of
NP completeness can be derived from mapping the problem
instance to subset-sum problem [15]. We propose a partition-
ing algorithm that attains the dual goal of reducing cut size
and biasing the cut, such that majority of nets on the cut are
driven by a flip-flop. Any hyperedge e on cut maps into a
costly TSV in 3D IC. In this work we focus on bi-partitions,
i.e. division of V into two partitions (dies) V1 and V2 such
that V1 ∪ V2 = V , V1 ∩ V2 = φ and |V1| ≈ |V2|.

IV. K-WAY HYPERGRAPH BASED BIASED NETLIST
PARTITIONING ALGORITHM

We now present hypergraph based biased netlist partitioning
algorithm in this section. The proposed method is used for
partitioning a design across k dies (partitions). For the sake
of simplicity we discuss in detail two way partitoning in this
work.

A. Algorithm Description

The algorithm can be broadly divided into four parts,
transforming circuit netlist to a weighted hypergraph, merging
phase followed by a random bisection phase. Later an un-
coarsening and a refinement phase are run.

1) Hypergrah Construction from Netlist and Selective
Weight Assignment: Hypergraph [4], [5], [14] construction
for a circuit netlist is discussed below . An integer index is
allocated to each node v and edge e in hypergraph H .

Consider a circuit netlist G with n cells (combinational-
gates /buffers /primary-inputs /flip-flops). Allocate an index to
every cell G=(g1, g2, . . . , gn). Every net of circuit G originates
at a cell gi and feeds a given number of say p cells.

Vertex

Hyperedge A Vertex V
A
 obtained

by merging V
1
 & V

2

Hyperedge C
(I) (II) (III)

Merged Vertices

H
1

H
2

H

W
A
=12

W
B
=5

W
C
=11

v1

v2

v3

v4

v5

V
A

v3

v4

v5

V
A

V
C

V3

Hyper-
edge B

Fig. 4. An illustration of heavy edge merging in hypergraph.

1) For every cell gi in G there exists a vertex vi in the
hypergraph H . Fig 3(ii) shows the vertices of hypergraph
H corresponding to circuit G in Fig 3(i).

2) Every Hyperedge in H corresponds to a net in circuit
G. Fig 3(iii) illustrates hypergraph H with hyperedges
added. Each hyperedge ei, corresponds to a net, fed by
cell gi. Index i for hyperedge in ei in H is the same as
cell gi.

3) A weight of 1 is assigned to hyperedge hi if gi is driven
by a flip-flop, else, hi is assigned a weight of w > 1.
Fig 3(iv) shows weight assignments to hyperedges of H .
In our implementation we used w = 10.

2) Merging Phase: The initial merging phase is based
on hierarchal clustering [4]. Vertices connected with heavier
hyperedges are merged first. We randomly select hyperedges
for merging if more that one hyperedge has the same weight.
Fig. 4 shows an example of heavy hyper-edge based merging
scheme. Since hyperedges not driven by a flip-flop are heavier,
they have a higher probability of getting merged. Heavy edge
merging increases the possibility of a biased bipartition, with
more flip-flops on the cut.

Example: Consider a hypergraph H(V,E), shown in Fig.
4(i), with 5 vertices V =(v1, v2, v3, . . . , v5) and 3 hyperedges
E=(A,B,C), with weights wA=12, wB=5, wC=11, respec-
tively. Heavy hyperedge merging algorithm will merge vertices
v1, v2 corresponding to hyperedge A (heaviest hyperedge) into
vertex vA, as shown in Fig. 4(ii) to form hypergraph H1. In
the next step vertices’s v4, v5 corresponding to hyperedge C
with weight 11 are merged to form vertex vC , as illustrated
in Fig. 4(iii) to form hypergraph H2. After merging k

From other
 layer

Design (functional) flip-flop Added flip-flop for pre-bond testing

Non-over-lapping output logic cones

a. Before Input FF
 Sharing

b. After Input FF
 Sharing

Shared input ff

From other
 layer

A

B

A

From other
 layer

A

B

(I) (II)

Non-over-lapping
output logic cones

(III)

a. Before Input FF
 Sharing

b. After Input FF
 Sharing

Scan chain

Scan chain

Non-over-lapping output logic conesFrom other
 layer

Scan chain
Scan chain

Scan
chain

Shared input ff

B

A
A

B

From other
 layer

Multiplexer

B

Fig. 5. Various cases in flipflop sharing for two structurally input independent pseudo-primary inputs: (i) Ff sharing with one a flip-flop on cut (ii) Flip-flop
sharing with no design flip-flops on cut (iii) No flip-flop sharing required if two design-flops are present on cut.

hyperedges original hypergraph H (corresponding to netlist
G) is reduced to a smaller hypergraph Hk. A bisection of
the merged hypergraph is created and the solutions are refined
using Kernighan-Lin algorithm. Kernighan-Lin (KL) algorithm
[4] takes a greedy approach to interchange elements of two
partitions to find a better solution i.e. reduce cut size. KL
algorithm are known to be quite effective in refining solution
of hyperedges with small number of vertices and inefficient
for large number of vertices.

3) Random Bisection: A bisection of the hypergraph Hk

is obtained for a coarser hypergraph Hk with approximately
200 nodes, such that it has a small cut size, and divides the
vertices V into two equal parts [14]. Since this hypergraph has
a very small number of vertices, the time to find a partition
(of netlist G) using any of the heuristic algorithms tends to be
small. Note that it is not useful to find an optimal partition of
this hypergraph Hk, as the initial partition will be substantially
modified during the refinement phase [5]. In our procedure
we derived several cuts and only the best one was further
processed.

4) Desplitting and Refinement: During the desplitting
phase, we start with merged vertices of the coarser hypergraph
Hk (obtained from merging k hyperedges of original hyper-
graph H). Merged vertices are uncoarsened (un-merged) again
to form original hypergraph H (the graph before merging
phase) in k successive steps. Only one hyperedge is unmerged
in one step. Cut size of merged hypergraph Hk remains same
as that of un-merged (original) hypergraph H i.e. circuit netlist
G with partitions. All incoming hyperedges to merged vertices
were connected to final merged vertex during the merging
phase, resulting in the same cut size of hypergraph Hk and H .
Cut sizes of intermediate hypergraphs Hm−1, . . . ,H (obtained
during various steps in demerging phase) are further reduced
by use of the Fiduccia-Mattheyses (FM) algorithm [4], [5]. The
FM algorithm makes linear time passes to iteratively improve
cut sizes by moving each vertex exactly once. FM works by
prioritizing moves by gain. A move changes to which partition
a particular vertex belongs and the gain is the corresponding
change to the cut size. After each vertex is moved, gains for
connected modules are updated.

B. Complexity Analysis for Partitioning Algorithm

We take an incremental approach for complexity analysis
of hypergrah partitioning algorithm discussed above. Merging
phase consists of merging vertices with heaviest hyperedges,
which can be done in O(V) times. Heaviest hyperedge can be
found in O(log(E)). Overall complexity of merging operation
is O(V log(E)). Random Bisection of a merged hypergaph
is an O(V) operation. Desplitting and Refinement is the
last step. Desplitting takes same time as that for merging.
However, refining the partitions created using FM algorithm
takes O(V 2). Therefore the overall complexity of the algorithm
is of the order of O(V 2).

V. FLIP-FLOP SHARING TO REDUCE ADDITIONAL
HARDWARE REQUIREMENT

Prime objective of flip-flop sharing scheme is to reduce
additional hardware requirements for pre-bond IC testing,
without reducing fault coverage. Flip-flop sharing [3] allows
two pseudo-outputs or pseudo-inputs to share flip-flops, thus
saving on additional scan flip-flops needed for scan-island
architecture. Sharing scheme is based on logic cones. In this
section, a brief explanation of our proposed flip-flop sharing
methodology is presented. In the latter part of this section we
present an approximation algorithm[15] for flip-flop sharing.

A. Flip-flop Sharing at Pseudo-Primary Inputs

Structurally Independent Inputs: If there is a path from node
a to b then node b is said to be in the output cone of a. Two
input nodes a and b are said to be structurally independent if
output cones of a and b do not intersect. If two circuit inputs
are structurally independent any test vector for a combinational
fault does not require to simultaneously satisfy constraints on
inputs a and b. Structural independence at inputs allows us to
combine inputs a and b with no loss of required controllability.
In case inputs a and b are driven by a scan-flop, a single
scan-flop can be shared between both inputs a and b, with
no loss in controlabillity and fault-coverage. An extra mux is
required for sharing. Our goal is to identify optimal groups
of pseudo-primary inputs whose output cones do not overlap.
All pseudo-primary inputs with non-overlapping outputs can
be connected to the same flip-flop (scan-cell) output.

Example: Referring to Fig 5 (i)a, without flip-flop sharing,
an additional flip-flop is required at input B for pre-bond scan-

Additional flip-flop for pre-bond testing

Non-over-lapping
Input Logic Cones

a. Pre-bond testing without
 flip-flop sharing

D

C

To other
 layer

Non-over-lapping
Input Logic Cones

b. Pre-bond testing with XOR
 based flip-flop sharing

D

C

 XOR
Scan
chain

To other
 layer

 Scan
 chain

Fig. 6. Flipflop sharing at pseudo-primary outputs.

island based testing. Pseudo-primary input A already has a
design flop on cut. Since, inputs A and B have non-overlapping
output cones of influence, flip-flops at the input of A and B
can be shared. A is a design flip-flop therefore, additional flip-
flop for pre-bond testing is not needed at pseudo-primary input
B. B can share the flip-flop present at pseudo-primary input
A as shown in Fig.5(i) b. Fig. 5(ii) illustrates the case when
no design flip-flop is present at both A and B. In Fig. 5(iii)
no flip-flop sharing is required as both flip-flops at pseudo-
primary inputs A and B are design flip-flops. A and B are
flip-flops are required for functional operation of the circuit.

B. Flip-flop Sharing at Pseudo-Primary Outputs

Structurally Independent Outputs: If there is a path from
node a to b then node a is said to be in the input cone of b. Two
output nodes a and b are said to be observability independent
if input cones of a and b do not intersect. In case of pseudo-
primary outputs that do not have a flip-flop on the cut we need
to add an extra flip-flop as shown in Fig. 6(a). A hardware
efficient approach is to add an XOR gate for pairs of two
structurally independent outputs, followed by an additional
flip-flop as shown in Fig. 6(b). A 2 input XOR guarantees
detection of a single fault on its inputs [12]. Assuming single
fault model, a 2 input XOR guarantees observability of a
fault present in the non-overlapping input cones of a pseudo-
primary output. If p is the number of pairs of structurally
independent outputs using 2-input XOR reduces additional
flip-flop count by p. We can also use an XOR tree connected
to p > 2 independent outputs to further reduce the need for
additional scan-cells.

C. Approximation Algorithm for Flip-flop Sharing at Pseudo-
Primary Inputs

Let every pseudo-primary input I =(i1, . . . , in) be a ver-
tice in G(I, E). An edge e exists between vertices if their
output cones do not overlap. Problem of flip-flop sharing
reduces to finding cliques in the graph. Flip flops, already
present on the cut are first processed. Nodes in a clique
can share a flip-flop. An overview of steps in the algorithm
FF IP SHARE APPROX(G) are given below.

1) Consider the sub set I =(i1, . . . , if) of pseudo-primary
inputs of graph, with flip-flops on the cut.

2) Find maximal clique at each node ik such that ik is
a node in the clique. Finding maximal clique, with a

given node ik included in the clique has a complexity
of O(n2), where n is the number of nodes in graph G.

3) Remaining m flip-flops: Divide the vertices of G into
l= m/log(m) blocks each containing log(m) vertices
(where m is the number of remaining vertices in the
graph).

4) For each block try all possible subsets of the vertices’s
to see if it forms a clique. If it does output it and stop.

FF IP SHARE APPROX(G) has a complexity of
O(n3). A similar procedure can be used to group structurally
independent pseudo outputs to feed into XOR tree.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A comprehensive set of experiments were performed on a
linux workstation with Intel Xeon 2GHZ, 8 core processor
and 16GB RAM. Experiments were performed on various
academic benchmarks and industrial circuits provided by NXP.
The proposed partitioning approach creates approximately
equally sized partitions with small cut size and large percent-
age nets on cut were driven by a flip-flop. This leads to low
TSV count and less number of additional flip-flops required
for pre-bond testing. Hypergraph is constructed directly from
the structural circuit. In this work we partition the circuit into
two parts, however k-way partitioning can be performed by re-
partitioning of already obtained partitions as discussed in [4].
A weight is assigned to each node in the hypergrah. Weights to
hyperedges are assigned according to the scheme presented in
Section III, a lower weight to hyperedges driven by a flip-flop
and a very large weight to other hyperedges.

We define weight ratio, w as the ratio of the weight
assigned to nets driven by gates/buffers/primary-inputs and
the weight assigned to edges driven by a flip-flop.. After
exhaustive experimentation we obsereved that use of w = 10
lead to a reduced cut size with large number of flip-flops on
the cut as desired. A very high value of w resulted in an
increased cut size (thus more TSV’s) and low value of w
resulted in reduced flip-flop count on cut. The cut size and
number of flip-flops on cut, using the proposed scheme, are
reported for two values of weight ratio (w) 1 and 10, respec-
tively in Table I. We also compare our results with that by
hmetis [4], [5], a hypergraph partitioning package available at
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview. The
allowed imbalance between partitions generated using hmetis
was set to 1% and is the same as that used in the proposed
procedure.

The proposed netlist partitioning scheme produced high
quality bi-partitions, typically more than 80% of nets on the
cut were driven by flip-flops. Considering circuit Indus-3,
for w = 10, cut size=223 and the number of flip-flops on
cut=214, i.e. approximately 96% of nets on the cut were
driven by design flip-flops. However, using hmetis, a cut size
of 273 and 22 flip-flops on the cut were obtained. Compared to
hmetis the proposed hypergraph based biased netlist partioning
scheme with w = 10 resulted in smaller cut sizes in 7 out
of 11 circuits. Additionally, as desired, considerably higher
portion of the cut by the proposed method includes flip-

TABLE I
CIRCUIT CUT SIZE AND FLIP-FLOPS ON CUT.

Proposed Approach hmetis
Circuit Size Cut size FFs on Cut Run Time Cut Size FFs on Cut Cut Size FFs on Cut Run Time

(w = 10) (w = 10) (w = 10) (w = 1) (w = 1)
Indus-1 45K 18 0 6.9s 18 0 39 6 3.3s
Indus-2 141K 457 218 18.2s 477 6 512 7 14.2s
Indus-3 240K 223 214 32.1s 332 29 273 22 27.5s
Indus-4 1000K 198 184 265.9s 206 102 191 96 214s
Indus-5 900K 294 243 197.2s 381 48 306 89 155.8s
Indus-6 3000K 158 62 1035.3s 164 0 154 0 837.3s
s38417 38K 72 59 1.1s 81 47 76 48 1.7s
s15850 15K 29 22 0.4s 44 12 50 16 0.4s
b17 22K 5 1 2.6s 5 1 6 1 2.1s
b18 50K 50 26 10.9s 58 5 44 0 9.5s
b12 12K 39 31 0.1s 46 13 34 19 0.1s

flops for all circuits. Table I shows that runtime for the
proposed procedure increases almost linearly with circuit size.
The proposed scheme was in general fast and a 3 million
gate circuit took approximately only 17 minutes to partition.
Runtimes for hmetis are shown in the last column of Table I.

In Table II, results are tabulated for the number of flip-
flops that can be reduced by logic cone based flip-flop sharing
schemes for various circuits. We observed large number of
flip-flops can be shared if the circuit size is large and fewer
number of design (functional) flip-flops are present on the
cut. Above mentioned trend can be attributed to increased
probability of finding non-overlapping logic cones and larger
number of candidate flip-flops available for flip-flop sharing.
Each shared flip-flop reduces additional flip-flop requirement
for pre-bond test by one.

VII. CONCLUSION

In this paper, a pre-bond 3D IC testing scheme is proposed.
This technique uses hypergraph based biased netlist partition-
ing and flip-flop sharing. Biased netlist partitioning attains a
dual goal of keeping cut size low with large percentage of
nets on the cut were driven by flip-flops, thus reducing hard-
ware. Logic cone based flip-flop sharing approach allows con-
trollability and observability of pseudo-primary input/output
without adding any additional flip-flops. Experimental results
shows a significant reduction in the hardware required for
scan-island based pre-bond testing.

VIII. ACKNOWLEDGEMENT

Part of the work of AK and SMR was done at the Uni-
versity of Freiburg, Germany, during a stay supported by Von
Humboldt Foundation fellowships.

REFERENCES

[1] S. M. Alam, M. Ignatowski, and Y. Xie. Technology, cad tools, and
designs for emerging 3d integration technology. GLS VLSI, pages 1–2,
2008.

[2] D.K. Bhavsar and R.A. Davies. Scan islands - a scan partitioning
architecture and its implementation on the alpha 21364 processor. VTS,
pages 16 – 21, 2002.

TABLE II
FLIP-FLOPS ON CUT AND NUMBER OF SHARED FLIP-FLOPS.
Circuit Circuit Size Cut Size Num of

Shared ffs
Indus-1 45K 18 4
Indus-2 141K 457 39
Indus-3 240K 223 1
Indus-5 900K 294 13
s38417 38K 72 0
s15850 15K 39 1

[3] S.-C. Chang, K.-J. Lee, Z.-Z. Wu, and W.-B. Jone. Reducing test
application time by scan flip-flops sharing. Computers and Digital
Techniques, IEE Proceedings -, 147(1):42 –48, jan. 2000.

[4] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel
hypergraph partitioning: applications in vlsi domain. IEEE Trans. VLSI
Syst., 7(1):69–79, 1999.

[5] G. Karypis and V. Kumar. Multilevel k -way hypergraph partitioning.
DAC, pages 343–348, 1999.

[6] D. S. Kung and Y. Xie. Introduction: Opportunities and challenges of
3d integration. IEEE Design & Test of Computers, 26(5):4–5, 2009.

[7] H. S. Lee and K. Chakrabarty. Test challenges for 3d integrated circuits.
IEEE Design & Test of Computers, 26(5):26–35, 2009.

[8] D. L. Lewis and H.S. Lee. Testing circuit-partitioned 3d ic designs. In
ISVLSI, pages 139–144, 2009.

[9] D.L. Lewis and H.S. Lee. A scan island based design enabling prebond
testability in die-stacked microprocessors. ITC, pages 1 –8, oct. 2007.

[10] E. J. Marinissen. Testing tsv-based three-dimensional stacked ics. DATE,
2010.

[11] E. J. Marinissen, D. Y. Lee, J. P. Hayes, C. Sellathamby, B. Moore,
S. Slupsky, and L. Pujol. Contactless testing: Possibility or pipe-dream?
DATE, pages 676–681, 2009.

[12] S. Mitra and K. Sup Kim. X-compact: an efficient response compaction
technique. IEEE Trans. on CAD, 23(3):421–432, 2004.

[13] B. Noia, S. K. Goel, K. Chakrabarty, E. J. Marinissen, and J. Verbree.
Test-architecture optimization for tsv-based 3d stacked ics. ETS, pages
24–29, 2010.

[14] M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, and J.S. Deogun.
Multilevel cooperative search for the circuit/hypergraph partitioning
problem. IEEE Trans. on CAD, 21(6):685 –693, jun. 2002.

[15] V. Vazirani. Approximation Algorithms. Springer, Germany, 2003.
[16] X. Wu, P. Falkenstern, K. Chakrabarty, and Y. Xie. Scan-chain design

and optimization for three-dimensional integrated circuits. JETC, 5(2),
2009.

[17] J. Yang, K. Athikulwongse, Y. J. Lee, S. K. Lim, and D.Z. Pan. Tsv stress
aware timing analysis with applications to 3d-ic layout optimization.
DAC, pages 803 –806, jun. 2010.

