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Abstract12—Heterogenous datapaths maximize the utilization of 
functional units (FUs) by customizing their widths individually 
through fragmentation of wide operands. In comparison, slices in 
large functional units in a homogenous datapath could be 
spending many cycles not performing actual useful work. Various 
fragmentation techniques demonstrated benefits in minimizing 
the total functional unit area. Upon a closer look at 
fragmentation techniques, we observe that the area savings 
achieved by heterogenous datapaths can be traded-off for power 
optimization. Our specific approach is to introduce choices for 
functional units with power/area trade-offs for different 
fragmentation and allocation choices, for reducing power 
consumption while satisfying the area constraint imposed on the 
heterogenous datapath. As low power FUs in literature produce 
an area penalty, a methodology must be developed in order to 
introduce them in the HLS flow while complying with the area 
constraint. We propose an allocation and module selection 
algorithms that pursue a trade-off between area and power 
consumption for fragmented datapaths under a total area 
constraint. Results show that it is possible to reduce power by 
37% on average (49% in the best case). Moreover latency and 
cycle time will be equal or nearly the same as in the baseline case, 
which will lead to an energy reduction, too. 
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I.  INTRODUCTION 
The power dissipated by a circuit can be optimized at 

different levels of abstraction. However, the potential impact of 
strategic decisions made at the higher levels is likely to be most 
significant [1-2]. High-Level Synthesis (HLS) techniques have 
therefore tackled power minimization in various ways. 
Majority of these techniques focuses on the dynamic power 
consumption. Although dynamic power still dominates the total 
power envelope, leakage power is becoming an increasingly 
larger fraction of total power. Leakage optimizations are 
generally addressed through lower level design optimizations 
such as dual threshold gates or reverse body biasing [3-4]. HLS 
also has some indirect impact on power, for example by 
minimizing the number of clock cycles at which a given 
resource is idle or by minimizing the total amount of resources 
employed in a datapath. Dynamic power, on the other hand, is a 
function of switching activity, supply voltage level, and the 
switched capacitive load. Various HLS techniques address 
these parameters for optimization. However those focused on 
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reducing voltage [19] or frequency [20] require significant 
changes in the design process and impact technology 
parameters. Alternatively, other techniques only aim to 
minimize switching activity or the effective amount of 
resources required without the need to impose any limitations 
on circuit and technology parameters. For instance, binding 
operations with correlated switching activity on the same 
resource in consecutive cycles diminishes switching activity 
[21]. However, this may not be sufficient for modules 
composed of a large amount of logic, e.g. a combinational 
multiplier. Internal signals within such a complex component 
can behave differently depending on the specific 
implementation, even though consecutive inputs supplied to the 
component at the primary ports are correlated.  

Similar to some aforementioned HLS techniques, 
fragmentation [16-18] would have an indirect impact on power; 
mainly thanks to the fact that the total effective amount of 
hardware used at a given clock cycle is reduced. Useless 
switching activity is produced when executing a narrow 
operation in a bigger FU. This is the case of heterogeneous 
specifications, where different sizes and data types are taken 
into account. Traditional HLS allocation techniques select FUs 
able to execute the widest operations in the specification and 
hence, there will be some wasted FU parts when computing 
narrower operations. Hence, removing these useless parts is a 
way of reducing both area and power. Fragmentation 
techniques have been developed in order to tackle this problem. 
Fragmentation mainly aims to allocate a set of functional units 
with various width configurations that can execute operations 
in the specification. The goal is to minimize the total amount of 
hardware used and in this process some wide operations can be 
divided into fragments such that they can be executed on a 
narrow width FU. Scheduling techniques have been proposed 
to accompany fragmentation, where fragments of the same 
operation could be scheduled in non-consecutive cycles 
[17,18]. Thereby, a small set of effective FUs would be utilized 
to the maximum extent across all clock cycles.   

Fragmentation and associated scheduling techniques 
mentioned above indeed help reduce total area, however, they 
will also increase circuit latency and frequency. The increase in 
frequency is obvious, since reduced cycle time (thanks to 
reduced critical path lengths of the fragmented FUs) will 
produce this effect. The circuit latency will increase when at 
least one operation in the critical path is divided into fragments, 
each of them scheduled in different csteps, for the sake of 
balancing and maximizing the use of the FU set.  

In this paper, we propose a new flow for allocation and 
binding for fragmented datapaths to explicitly address power 
optimization instead of relying indirectly on area reduction for 
power improvement. Besides, to lessen the abovementioned 



 

adverse impacts of existing fragmentation-based flows on 
power we propose a different scheduling approach to comply 
with the original latency constraint of the homogenous 
datapath. We start out by utilizing the main principle of 
fragmentation as a tool for minimizing hardware used per cycle 
[18]. However, instead of scheduling several fragments of the 
same operation in different control steps (csteps), as practiced 
by prior techniques [17,18], FUs are fragmented, but operations 
are executed in a set of linked FUs in the csteps when they 
were originally scheduled [16]. In this way we keep a similar 
execution time to the common case, which combined with the 
power reduction will produce an overall energy decrease.  

Next, we observe that the area savings achieved by 
fragmentation can be traded-off systematically for power 
reduction. Our specific approach is to introduce choices for 
FUs with power/area trade-offs for different fragmentation and 
allocation styles. A resource allocation algorithm has been 
developed, which pursues a trade-off between area and power 
consumption for fragmented datapaths under total area 
constraints. Our experimental results show that it is possible to 
reduce power by 37% on average (49% in the best case).  

The rest of the paper is organized as follows: section II 
discusses the related work, section III presents an example in 
order to motivate our techniques, section IV explains in more 
detail the allocation and module selection algorithms, section V 
describes the area and power models, and the FU library used 
in the module selection algorithm and finally sections VI and 
VII present our experimental results and final conclusions. 

II. RELATED WORK 
Usually in datapaths multipliers are the biggest and most 

power consuming modules. Previous works [5-9] try to 
minimize power produced by multipliers. Authors propose to 
reduce switching activity in the partial product matrix with by-
passing logic in one dimension [5,7,8], two dimensions [6], or 
by using 2’s complement for some operands [9]. All these 
works reduce switching activity inside the multipliers for 
reducing power around 20-30% at the expense of an area 
increase that ranges between 10-25%, except for one case [6] 
where due to the bidimensional bypassing a significant 75% 
power reduction is achieved, but with 125% area overhead. 
These approaches that sacrifice a piece of area for diminishing 
power are becoming widespread and also adders present a low 
power version [10], reducing 55% power with 8% area penalty. 
Note that these LP-FUs present a similar, or even lower delay 
than the corresponding non-LP-FUs. Therefore achieving the 
same latency as in the common implementation will be enough 
for complying with the baseline execution time. 

Another approach [11] proposes to bind operations that 
share some operands to the same FU and in consecutive csteps, 
thus reducing switching activity. Nevertheless, as this 
technique can only be applied to a specific subset of operations, 
it is quite restricted. In [12] authors present a methodology for 
reducing area, power or energy, but there is always one target 
function at a time. It is not clear how several parameters, e.g. 
area and power can be combined. Remaining parameters often 
suffer significant degradation while trying to reach optimality 
in the target metric. Area overhead when reducing power or 
energy exceeds 50% for some cases, and 25% on average. In 
[13] authors tradeoff area and power by different clock 

selections, but they relax the timing constraint T, producing 
circuits with 1.5T-3.5T. 

In [14,15] authors propose to customize DSP or FPGA 
multipliers depending on the constants of the applications, 
obtaining area, power and latency reductions. This idea is more 
suitable for structures with abundant resources such as FPGAs 
and DSPs. This is not usually the case of ASICs, where 
datapaths must be highly optimized in order to comply with the 
designer constraints. Besides, this approach creates highly 
instruction-specific FUs. However, our objective is to use non-
specific FUs, because the instruction-specific ones will 
diminish FU sharing and therefore it could introduce some 
additional modules, with the corresponding area penalty.  

Therefore, the inclusion of Low Power (LP) modules in the 
design flow seems to be the most suitable technique for 
reducing power, while maintaining cycle time and latency 
constraints.  However, the area overhead should be traded-off 
in a systematic way. In order to diminish area, existing 
techniques [16-18] apply fragmentation techniques while 
executing operations in different [17,18] or in their original 
cstep over a set of linked FUs [16]. Some of these algorithms 
[17,18] are especially oriented to diminish cycle time. 
Executing all fragments of operations in the same csteps as the 
corresponding non-fragmented operation in the original  
scheduling specification [16] is more suitable, if our target is to 
maintain both cycle time and circuit latency. Our approach 
aims to use fragmentation to save area and give it back to 
introduce LP-modules. 

III. MOTIVATIONAL EXAMPLE 
In order to describe how to achieve a low power design in a 

fragmented datapath while respecting area constraints, consider 
the example given in figure 1a). A DFG scheduling is shown. 
Operands are labeled as X1 through X16, while the operand 
size is depicted on the edge that feeds into the operand.  

In figure 1b) the number of FUs, estimated FU-area, and 
FU-power are shown. In the leftmost column the allocation 
method is shown. Four different allocation methods have been 
considered: heterogeneous allocation, heterogeneous allocation 
+ LP (considering Low Power FUs, in this case we include one 
LP multiplier in the resource set), an allocation with 
fragmentation (fragmented allocation), and fragmented 
allocation + LP (including one LP multiplier in the resource 
set). Note that the last, i.e., the fifth allocation follows the same 
allocation as the fourth, but this time including two LP 
multipliers in the resource set. In the remaining columns the 
number of adders, multipliers, estimated FU-area and estimated 
FU-power are depicted. We will explain in detail how the area 
and power values are derived in our actual experiments in 
section V. However, in order to simplify the illustration in this 
example, we will assume that both area and power are 
computed in terms of the number of Full Adder (FA) cells used 
across all units. 

In the heterogeneous allocation, it is clear that 2 adders and 
2 multipliers are needed. Their sizes will be decided later 
during the binding stage, selecting the greatest size among the 
operations bound to the FU under question. In this example 
independently from the binding, a 24-bit and a 16-bit adder, 
and a 16x8 and a 8x8 multiplier are required. In the fragmented 



 

allocation, the 24-bit adder is divided into a 16-bit adder and an 
8-bit one. However, only two 8x8 multipliers are needed. This 
is due to the fact that the original 16x8 multiplier has been 
fragmented in two 8x8 multipliers and an additional 16-bit 
adder for composing the final result. 

Figures 1 c) and d) show the scheduling and binding for 
heterogeneous and fragmented allocations. In figure 1 c) the 
operands that are smaller than the FU where they have been 
bound are extended with ‘0’s. With signed numbers the sign 
would be extended. In the second cycle of figure 1 d) we 
observe how the original product X5*X6 has been decomposed 
into two sub-products and one final addition that are executed 
in the same cstep where the original product was scheduled. 
Similarly, the original addition X7+X8 in cycle 3, has been 
divided into two fragments of lengths 16 and 8 bits, 
respectively, but executed in the same cstep. Therefore, after 
applying fragmentation, operations will maintain their original 
scheduling. The difference is that they will be bound to a set of 
linked FUs, instead of only one FU. 

Finally let us examine the estimated FU-area and FU-power 
shown in the two rightmost columns of figure 1 b). We have 
considered that a LP multiplier occupies 20% more area, while 
consuming 30% less power, similar to a design presented in 
literature [5]. In the heterogeneous+LP allocation a 16x8 LP 
multiplier is considered. In the case of fragmented+LP 
allocations, we consider two cases, in the fifth and sixth rows 
of the table in figure 1b), respectively: the use of only one 8x8 
LP multiplier, and the use of two LP 8x8 multipliers. As it is 
observed, the utilization of LP-FUs in heterogeneous datapaths 
increases area with respect to the original implementation, i.e. 
it violates the area constraint. Fragmentation reduces the area, 
so on the one hand there will be less resources consuming 
power, especially in the case of big modules such as 
multipliers, and on the other hand this area reduction can be 
exploited in order to save even more power through use of LP-
modules while still respecting the initial area constraint.  

Therefore, assuming that the area constraint is 208 basic 
cells (the total area for the heterogenous design), using LP-FUs 
in combination with a heterogeneous allocation is not enough 
to satisfy the area constraint. However, after optimizing the 
design with a fragmented allocation, there will be some 
available FU-area slack for including LP FUs. 113.6 and 177.6 

power and area units, respectively, are estimated for the 
Fragmented+LP and Fragmented+LP(2) allocations, in the last 
row of the table, which is around 45.5% less power and still 
14.5% less area than the baseline heterogeneous datapath. 

This example illustrates the opportunities available in the 
design process for fragmented datapaths. In this paper, we aim 
to develop a module selection algorithm to take advantage of 
this opportunity to design low power datapaths. 

IV. PROPOSED TECHNIQUES 
In order to reduce power we propose two strategies. On the 

one hand, useless area and switching FU parts will be removed 
by means of operator fragmentation in the allocation stage. On 
the other hand, low power FUs will substitute the baseline 
modules while respecting area constraints. 

A. Fragmentation in the allocation stage 
In the allocation stage operator fragmentation is performed 

in order to remove the useless switching parts. In our case the 
basic fragementation step has been carried out with an 
algorithm similar to existing techniques [16]. In our 
evaluations, we will then compare our low power module 
selection algorithm built on top of this, with an alternative flow 
which uses the fragmentation approach described in [18] in its 
initial step. If fragmented operations are still executed 
following the original scheduling it is possible to maintain a 
similar cycle time and not to increase latency. By contrast, 
dividing an operation in different fragments and rescheduling 
them may produce a latency increase, but on the other hand it 
decreases cycle time and benefits the FUs sharing, diminishing 
area too. Nevertheless there could appear some extra registers 
for keeping intermediate results and routing elements in order 
to complete the original operation, which would lessen this area 
reduction. 

Multiplier allocation is performed first. This will produce a 
set of multipliers and a set of adders as well, due to the fact that 
after fragmenting one multiplier, some additions are needed in 
order to compose the final result. Next, adder fragmentation is 
realized. This will produce a list of FUs, which are able to 
comply with the scheduling performed before allocation, and 
binding performed after allocation. 

This stage is really useful because it will allow substituting 
a)

c)

Figure 1. a) DFG scheduling, b) FUs, and estimated area and power with different allocation techniques c), d) Scheduling, binding
after applying heterogeneous and fragmented allocation, respectively

b)

d)

888

816

X1 X2 X3 X4

X5 X6

X7

8x +

24
X8x

+
24

24

X9

Cycle 1

Cycle 2

Cycle 3

16

X10 X11

+

+
16

16 X15

X16

16

X14

8
x

8

16
X12 X13

+24 +16 16x8 8x8
Cycle 1 X3 + X4 0X1 * 0X2 X10 * X11
Cycle 2 X12 + X13 X5 * X6
Cycle 3 X7 + X8 X14 + X15

Allocation Adders Multipliers Area Power
Heterogeneous +24, +16 16x8, 8x8 208 208
Heterog + LP +24, +16 LP 16x8, 8x8 233.6 169.6

Fragmentation 2 +16, +8 2 8x8 152 152
Frag + LP 2 +16, +8 LP 8x8, 8x8 164.8 132.8

Frag + LP (2) 2 +16, +8 2 LP 8x8 177.6 113.6

+16 +16 +8 8x8 8x8
Cycle 1 X3 + X4 X1 * X2 X10 * X11
Cycle 2 X12 + X13 Comp(X5 * X6) X5[7..0] * X6 X5[15..8] * X6
Cycle 3 X14 + X15 X7[23..8] + X8[23..8] X7[7..0] + X8[7..0]

a)

c)

Figure 1. a) DFG scheduling, b) FUs, and estimated area and power with different allocation techniques c), d) Scheduling, binding
after applying heterogeneous and fragmented allocation, respectively

b)

d)

8888

816

X1 X2 X3 X4

X5 X6

X7

88x +

24
X8x

+
24

24

X9

Cycle 1

Cycle 2

Cycle 3

16

X10 X11

+

+
16

16 X15

X16

16

X14

8
x

8

16
X12 X13

+24 +16 16x8 8x8
Cycle 1 X3 + X4 0X1 * 0X2 X10 * X11
Cycle 2 X12 + X13 X5 * X6
Cycle 3 X7 + X8 X14 + X15

Allocation Adders Multipliers Area Power
Heterogeneous +24, +16 16x8, 8x8 208 208
Heterog + LP +24, +16 LP 16x8, 8x8 233.6 169.6

Fragmentation 2 +16, +8 2 8x8 152 152
Frag + LP 2 +16, +8 LP 8x8, 8x8 164.8 132.8

Frag + LP (2) 2 +16, +8 2 LP 8x8 177.6 113.6

+16 +16 +8 8x8 8x8
Cycle 1 X3 + X4 X1 * X2 X10 * X11
Cycle 2 X12 + X13 Comp(X5 * X6) X5[7..0] * X6 X5[15..8] * X6
Cycle 3 X14 + X15 X7[23..8] + X8[23..8] X7[7..0] + X8[7..0]



 

smaller FUs when introducing LP-FUs. Hence area penalty will 
be lower. 

B. Using low power FUs 
After the binding is performed, we need to decide on how 

many low power resources to use. In order to minimize power 
while complying with the area constraints, we have developed 
a variation of the greedy version of the knapsack problem [24]. 
In the knapsack problem there is a set of objects O={oi}, each 
of them with a weight wi and a value vi, and a knapsack with a 
maximum allowed weight Wmax. The objective is to maximize 
the sum ∑(vi) = V, so that the sum ∑ (wi) = W <= Wmax.  

In our case power must be minimized while complying with 
the area constraints, so our values vi will be the inverse of 
power. Hence, the problem can be reformulated as: 

Given a set of FUs, F={fi}, each of them with an area ai and 
a power pi, and given a maximum area Amax, the objective is to 
maximize ∑(1/pi)=Pinverse, so that ∑(ai)=A <= Amax. 

Obviously, maximizing ∑(1/pi) is not the same as 
minimizing ∑(pi). However, using 1/pi as the values vi’s is a 
good approach because the main target is to use FUs with low 
power consumption. As in the greedy knapsack problem the 
solution consists in ordering the objects according to their 
quality, qi. For every object oi, the quality is defined as qi=vi/wi. 
After ordering the objects in decreasing order of quality, we 
choose those that satisfiy the weight constraint. In our case we 
order the FUs according to their quality qi=1/(pi*ai). Now, 
supposing that there are N FUs, the best N-1 non-repeated fi’s 
are chosen while respecting the Amax constraint. The Nth fi will 
be the one which minimizes the violation of the Amax constraint. 
In this way the algorithm can achieve good solutions in 
general, while keeping a low complexity. Finally, note that this 
algorithm can be extended to consider several FUs with 
different power-area (P,A) tradeoffs. 

Figure 2 illustrates an example, which explains the stages of 
our algorithm. Let us suppose that after the allocation process 
two FUs are required, and suppose we have the (P,A) tradeoffs 
given by the topmost box. First, we perform a normalization of 
(P,A) values with respect to the baseline case, and second, 
quality values are calculated and ordered. Finally, supposing an 
area constraint Amax=84 we would choose the pairs (FU2,1.28) 
and (FU1,1), corresponding to the pairs (40,80) and (4.4). Note 
that normalization with respect the baseline values of area and 
power is needed in order to select the most power-area efficient 
modules. If no normalization were performed, due to numeric 
reasons the smallest modules would always be located first in 
the list, which could avoid bigger and more consuming 
modules to be substituted.  

There are still two points to be explained: on the one hand, 
how to choose the Amax constraint, and on the other hand how 
to perform the area and power estimations. In order to choose 
properly a value for Amax we must take into account that after 
the fragmentation in the allocation stage, area will be reduced 
with respect to the original implementation, so Amax should be 
the estimated area as if a common heterogeneous allocation had 
been performed. The area and power models will be explained 
in more detail in the next section. 

V. MODELLING FUNCTIONAL UNITS 
Area and power models have been developed in order to 

give area and power information to the algorithm before 
synthesizing the datapaths. This will be described in 
subsections A and B, while in subsection C a brief overview of 
the considered modules will be given. 

A. Area model 
We make an assumption similar to prior work [5-9] based 

on the replication of Full-Adders (FAs) in the structure of a FU. 
Thus, the FUs area is estimated in terms of number of FAs.  
Hence, an n-bits Ripple Carry Adder [22] occupies n basic 
cells, while a mxn parallel multiplier, like the Carry Save or 
Braun multiplier [22], occupies mx(n-1) basic cells. For low 
power modules, we have used area data reported in literature. 
The respective area penalties in LP designs reported in those 
studies have been used to scale the area costs of the baseline 
designs that are measured in terms of FAs.   

B. Power model 
The proposed power model estimates the dynamic power of 

the FUs that will be deployed in the datapath. As LP-FUs [5-
10] are mostly based on the reduction of switching activity, 
estimating dynamic power will be a good metric in order to 
select the best candidate with the FU selection algorithm. 
Hence, we have developed a program that simulates the 
datapath at RT level after receiving the information given by 
the allocation, scheduling, and binding stages.  

Dynamic power is calculated taking into account the size 
and switching activity of every module under consideration. 
Size is computed as the number of basic cells, like in the area 
model, while switching activity is a fraction that depends on 
the Hamming Distance between two consecutive operations 
bound to the same resource, which is computed with our 
simulator. Thereby, for every module dynamic power is 
estimated as the product of the switching activity and the size. 
Finally, this number is multiplied by a constant, which may be 
dependant on the technology. Note that this is similar to the 
traditional dynamic power Pswitching = α ∗ VDD

2 * f * CL formula 
[1]. Switching activity is α, while size should be proportional 
to CL. VDD and f are defined by the target technology, such as 
the constant in our formula. The respective power penalties 
reported in the [5-10] studies have been used to scale the power 
costs with respect the baseline designs. 
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C. FU library 
Our modules library is composed of the following ones: 
• Adders. We have used RCAs [22] as the baseline 

adder, and a LP version taking the (P,A) tradeoff 
information from published data [10]. Thus the LP-
RCA will consume 55% less power in exchange for an 
8% area overhead. 

• Multipliers. The Braun multiplier [22] has been our 
baseline multiplier. LP modules have been taken from 
published results [5-6]. [5-6] multipliers offer a 33.8% 
and 75% power reduction with an area penalty of 21% 
and 125%, respectively. 

VI. EXPERIMENTS 
In this section first we describe our experimental 

framework. Next, we discuss our experimental results. 

A. Framework 
We have used a Force Directed Scheduling based 

scheduling algorithm [23] and afterwards we have performed 
the allocation stage. As our baseline, a traditional allocation 
algorithm for heterogeneous datapaths [25] has been used. We 
also implemented the fragmented allocation algorithm 
explained in section IV.A. Finally a traditional resource 
constrained FU binding and a left-edge based register binding 
[1] is applied to both allocation solutions. 

Next, the information obtained from scheduling, allocation 
and binding, is introduced into our switching simulator in order 
to estimate both area and power and apply our FU selection 
algorithm described in section IV. B. Afterwards we generate 
the HDL via a VHDL code-generator that receives the 
scheduling, allocation, binding and module selection 

information. Then, Synopsys Design Compiler is used for 
synthesizing designs with a 65 nm library, and finally Synopsys 
Power Compiler calculates power. 

B. Synthesis Results 
In order to test the efficiency of our methods we have 

performed several experiments. Six benchmarks have been 
used for our evaluations. 

A study of the power consumption and area overhead has 
been performed. Figures 3a) and 3b) depict the power and area 
of the six benchmarks and the average values for seven 
allocation and module selection cases, namely: heteroneneous 
allocation (Het), that will be our baseline case, fragmented 
allocation utilizing an algorithm like the one described in [18] 
(Frag[18]), our fragmented allocation (Frag), heterogeneous 
allocation using LP multipliers from [5] (Het+LP[5]), 
heterogeneous allocation using LP multipliers from [6] 
(Het+LP[6]), a [18] fragmentation algorithm using LP 
multipliers from [5-6] (Frag[18]+LP[5-6]) and our fragmented 
allocation using LP multipliers from [5-6] (Frag+LP[5-6]).  

LP-modules are selected with our FU selection algorithm. 
In both Frag[18]+LP[5-6] and Frag+LP[5-6] the Amax 
constraint is the estimated area of the Het case. Utilizing this 
algorithm with a heterogeneous allocation, such as Het+LP[5] 
and Het+LP[6], implies to choose an Amax value that violates 
the baseline area. Then we have chosen an Amax value of 10% 
and 40% with respect the baseline area estimation, respectively. 
In the case of Het+LP[5] as the area penalty is not too high, all 
the multipliers can be substituted by their LP version. On the 
other hand in Het+LP[6], as [6] area is too high, only the most 
switching multiplier of the datapath has been substituted. 

As it can be observed in figures 3a) and 3b), Frag achieves 
around 19% power reduction, which is nearly the same as the 
Het+LP[5] case. However, the LP-FUs introduce 12% area 
overhead with respect to the baseline case. This does not 
happen with Frag, which saves 20% in area with respect to 
Het. Thus, this area reduction can be given back in order to 
incorporate the LP-FUs. On the other hand, Frag[18] reduces 
area by 25.4%. Since resulting fragments are rescheduled in 
different csteps by Frag[18], some FUs can be removed, which 
would not be possible in our proposed method. However, we 
note that this reduction in FU area does not reflect to the final 
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Table 1. a) Latency and Cycle Time and b) Execution time and
Energy per iteration with heterogeneous, fragmented [18] and our

fragmented allocation stages

Benchmark Het [18] Ours Het [18] Ours
DiffEq 4 5 4 23.31 18.05 23.71
2EWF 14 16 14 17.86 13.99 18.14
DCT 10 12 10 17.55 13.74 17.83
IDCT 10 10 10 17.34 17.34 17.62

Lattice 9 9 9 11.89 11.89 11.89
LMS 9 12 9 23.58 18.19 24.14
AVG 9.33 10.67 9.33 18.59 15.58 18.89

Latency (cycles) Cycle Time (ns)

Benchmark Het [18] Ours Het [18] Ours
DiffEq 93.24 90.25 94.84 80.32 52.10 44.48
2EWF 250.04 223.78 253.96 121.29 70.76 69.18
DCT 175.50 164.87 178.30 201.40 176.67 157.38
IDCT 173.40 173.40 176.20 209.48 172.35 175.14

Lattice 107.01 107.01 107.01 50.21 25.52 25.52
LMS 212.22 218.24 217.26 337.11 243.74 200.58
AVG 168.57 162.92 171.26 166.64 123.53 112.05

Ex. time per iteration (ns) Energy per iteration (pJ)

a)

b)

Table 1. a) Latency and Cycle Time and b) Execution time and
Energy per iteration with heterogeneous, fragmented [18] and our

fragmented allocation stages

Benchmark Het [18] Ours Het [18] Ours
DiffEq 4 5 4 23.31 18.05 23.71
2EWF 14 16 14 17.86 13.99 18.14
DCT 10 12 10 17.55 13.74 17.83
IDCT 10 10 10 17.34 17.34 17.62

Lattice 9 9 9 11.89 11.89 11.89
LMS 9 12 9 23.58 18.19 24.14
AVG 9.33 10.67 9.33 18.59 15.58 18.89

Latency (cycles) Cycle Time (ns)

Benchmark Het [18] Ours Het [18] Ours
DiffEq 93.24 90.25 94.84 80.32 52.10 44.48
2EWF 250.04 223.78 253.96 121.29 70.76 69.18
DCT 175.50 164.87 178.30 201.40 176.67 157.38
IDCT 173.40 173.40 176.20 209.48 172.35 175.14

Lattice 107.01 107.01 107.01 50.21 25.52 25.52
LMS 212.22 218.24 217.26 337.11 243.74 200.58
AVG 168.57 162.92 171.26 166.64 123.53 112.05

Ex. time per iteration (ns) Energy per iteration (pJ)



 

overall area because of the additional registers and routing 
elements required by Frag[18]. However, due to the increase 
in frequency, power is only reduced by 7%. Het+LP[6] reaches 
a 28% power reduction, but since the area penalty  of the 
module LP[6] is high, the average area overhead increases by 
up to 47%. Frag+LP[5-6] saves power by up to 37% on 
average (49% best case), and with a 0.61% less area than the 
original case (8.62% area reduction in the best case). By 
contrast, Frag[18]+LP[5-6] only decreases power by 28.5%, 
but with 7% area reduction. Finally, note that Frag[18]+LP[5-
6] and Frag+LP[5-6] saves 19.4% and 19% power in 
comparison with Frag[18] and Frag, respectively, at the 
expense of 24.1% and 25.1% increase in area.  

Therefore a fragmented allocation stage works fine in order 
to reduce both area and power, but more power can be saved up 
by introducing LP-modules carefully with the FU selection 
algorithm. Besides the saved area that can be given back to 
include LP-FUs, the area penalty due to the LP-FUs themselves 
is diminished in the case of a fragmented allocation, because 
the size of the utilized FUs uses to be smaller than in a 
traditional allocation process.  

C. Latency and cycle time 
We have compared our latency and cycle time results with 

those obtained with [18] techniques, where fragmented 
operations are executed in different csteps, combined with LP-
modules. Results are shown in table 1a). Columns 2 to 4 and 5 
to 7 depict the latency of every benchmark for a heterogeneous 
case, a [18]-like implementation and ours. Latency is given in 
cycles and cycle time in nanoseconds. The alternative method 
[18] reduces cycle time by around 16.4%, while it increases 
latency by 14.3%.  On the other hand, in our approach there is 
some delay produced by the routing elements used to connect 
the involved fragments. This is shown in column 7. However, 
the increase in cycle time does not exceed 2% on average. 

The consequences of these results in combination with the 
power ones from figure 3 are summarized in table 1b), where 
execution time and energy per iteration are shown. Columns 
are distributed as in table 1a). Execution time is given in 
nanoseconds and energy in picojoules. The alternative 
technique Frag[18] reduces execution time, while in our case 
execution time is slightly increased. However, the differences 
are negligible. This will lead to an energy reduction in our 
proposed solution, because on the one hand execution time is 
nearly equal among the three options, but on the other hand we 
achieve a power reduction, as shown in figure 3. In conclusion, 
power reduction is accompanied by an energy reduction of 
25.9% and 32.8% in the case of Frag[18] and our proposed 
fragmentation techniques, respectively. 

VII. CONCLUSIONS 
A power aware allocation and module selection algorithms 

are presented. Using fragmentation techniques in the allocation 
stage an area reduction is achieved. Afterwards this will be 
given back by substituting the less efficient FUs in terms of 
power-area in order to achieve an additional power reduction 
while complying with the initial area constraint. Results show 
that is possible to reduce power a 37% in average (49% best 
case) while achieving almost the same area than in the baseline 
case. Moreover, as execution time is close to the baseline case, 

this power reduction is accompanied by an energy reduction 
that demonstrates the efficiency of our algorithms. 
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