

Power Optimization in Heterogenous Datapaths
Alberto A. Del Barrio*, Seda Ogrenci Memik#, Maria C. Molina,* Jose M. Mendias*, Roman Hermida*

*Architecture and Technology of Computing Systems, Universidad Complutense de Madrid (UCM), Spain
#Department of Electrical Engineering and Computer Science (EECS), Northwestern University, Evanston, Illinois

albertodbg@fdi.ucm.es, seda@eecs.northwestern.edu, {cmolinap, mendias, rhermida}@dacya.ucm.es

Abstract12—Heterogenous datapaths maximize the utilization of
functional units (FUs) by customizing their widths individually
through fragmentation of wide operands. In comparison, slices in
large functional units in a homogenous datapath could be
spending many cycles not performing actual useful work. Various
fragmentation techniques demonstrated benefits in minimizing
the total functional unit area. Upon a closer look at
fragmentation techniques, we observe that the area savings
achieved by heterogenous datapaths can be traded-off for power
optimization. Our specific approach is to introduce choices for
functional units with power/area trade-offs for different
fragmentation and allocation choices, for reducing power
consumption while satisfying the area constraint imposed on the
heterogenous datapath. As low power FUs in literature produce
an area penalty, a methodology must be developed in order to
introduce them in the HLS flow while complying with the area
constraint. We propose an allocation and module selection
algorithms that pursue a trade-off between area and power
consumption for fragmented datapaths under a total area
constraint. Results show that it is possible to reduce power by
37% on average (49% in the best case). Moreover latency and
cycle time will be equal or nearly the same as in the baseline case,
which will lead to an energy reduction, too.

Keywords: low-power, area, HLS

I. INTRODUCTION
The power dissipated by a circuit can be optimized at

different levels of abstraction. However, the potential impact of
strategic decisions made at the higher levels is likely to be most
significant [1-2]. High-Level Synthesis (HLS) techniques have
therefore tackled power minimization in various ways.
Majority of these techniques focuses on the dynamic power
consumption. Although dynamic power still dominates the total
power envelope, leakage power is becoming an increasingly
larger fraction of total power. Leakage optimizations are
generally addressed through lower level design optimizations
such as dual threshold gates or reverse body biasing [3-4]. HLS
also has some indirect impact on power, for example by
minimizing the number of clock cycles at which a given
resource is idle or by minimizing the total amount of resources
employed in a datapath. Dynamic power, on the other hand, is a
function of switching activity, supply voltage level, and the
switched capacitive load. Various HLS techniques address
these parameters for optimization. However those focused on

1 This work was supported by the Spanish Government

Research Grant TIN 2008/00508, the 2009 UCM-Santander
Bank Distinguished Visitors Program (AY16/09) and the

National Science Foundation Grant No. 0546305
2 978-3-9810801-7-9/DATE11/©2011 EDAA

reducing voltage [19] or frequency [20] require significant
changes in the design process and impact technology
parameters. Alternatively, other techniques only aim to
minimize switching activity or the effective amount of
resources required without the need to impose any limitations
on circuit and technology parameters. For instance, binding
operations with correlated switching activity on the same
resource in consecutive cycles diminishes switching activity
[21]. However, this may not be sufficient for modules
composed of a large amount of logic, e.g. a combinational
multiplier. Internal signals within such a complex component
can behave differently depending on the specific
implementation, even though consecutive inputs supplied to the
component at the primary ports are correlated.

Similar to some aforementioned HLS techniques,
fragmentation [16-18] would have an indirect impact on power;
mainly thanks to the fact that the total effective amount of
hardware used at a given clock cycle is reduced. Useless
switching activity is produced when executing a narrow
operation in a bigger FU. This is the case of heterogeneous
specifications, where different sizes and data types are taken
into account. Traditional HLS allocation techniques select FUs
able to execute the widest operations in the specification and
hence, there will be some wasted FU parts when computing
narrower operations. Hence, removing these useless parts is a
way of reducing both area and power. Fragmentation
techniques have been developed in order to tackle this problem.
Fragmentation mainly aims to allocate a set of functional units
with various width configurations that can execute operations
in the specification. The goal is to minimize the total amount of
hardware used and in this process some wide operations can be
divided into fragments such that they can be executed on a
narrow width FU. Scheduling techniques have been proposed
to accompany fragmentation, where fragments of the same
operation could be scheduled in non-consecutive cycles
[17,18]. Thereby, a small set of effective FUs would be utilized
to the maximum extent across all clock cycles.

Fragmentation and associated scheduling techniques
mentioned above indeed help reduce total area, however, they
will also increase circuit latency and frequency. The increase in
frequency is obvious, since reduced cycle time (thanks to
reduced critical path lengths of the fragmented FUs) will
produce this effect. The circuit latency will increase when at
least one operation in the critical path is divided into fragments,
each of them scheduled in different csteps, for the sake of
balancing and maximizing the use of the FU set.

In this paper, we propose a new flow for allocation and
binding for fragmented datapaths to explicitly address power
optimization instead of relying indirectly on area reduction for
power improvement. Besides, to lessen the abovementioned

adverse impacts of existing fragmentation-based flows on
power we propose a different scheduling approach to comply
with the original latency constraint of the homogenous
datapath. We start out by utilizing the main principle of
fragmentation as a tool for minimizing hardware used per cycle
[18]. However, instead of scheduling several fragments of the
same operation in different control steps (csteps), as practiced
by prior techniques [17,18], FUs are fragmented, but operations
are executed in a set of linked FUs in the csteps when they
were originally scheduled [16]. In this way we keep a similar
execution time to the common case, which combined with the
power reduction will produce an overall energy decrease.

Next, we observe that the area savings achieved by
fragmentation can be traded-off systematically for power
reduction. Our specific approach is to introduce choices for
FUs with power/area trade-offs for different fragmentation and
allocation styles. A resource allocation algorithm has been
developed, which pursues a trade-off between area and power
consumption for fragmented datapaths under total area
constraints. Our experimental results show that it is possible to
reduce power by 37% on average (49% in the best case).

The rest of the paper is organized as follows: section II
discusses the related work, section III presents an example in
order to motivate our techniques, section IV explains in more
detail the allocation and module selection algorithms, section V
describes the area and power models, and the FU library used
in the module selection algorithm and finally sections VI and
VII present our experimental results and final conclusions.

II. RELATED WORK
Usually in datapaths multipliers are the biggest and most

power consuming modules. Previous works [5-9] try to
minimize power produced by multipliers. Authors propose to
reduce switching activity in the partial product matrix with by-
passing logic in one dimension [5,7,8], two dimensions [6], or
by using 2’s complement for some operands [9]. All these
works reduce switching activity inside the multipliers for
reducing power around 20-30% at the expense of an area
increase that ranges between 10-25%, except for one case [6]
where due to the bidimensional bypassing a significant 75%
power reduction is achieved, but with 125% area overhead.
These approaches that sacrifice a piece of area for diminishing
power are becoming widespread and also adders present a low
power version [10], reducing 55% power with 8% area penalty.
Note that these LP-FUs present a similar, or even lower delay
than the corresponding non-LP-FUs. Therefore achieving the
same latency as in the common implementation will be enough
for complying with the baseline execution time.

Another approach [11] proposes to bind operations that
share some operands to the same FU and in consecutive csteps,
thus reducing switching activity. Nevertheless, as this
technique can only be applied to a specific subset of operations,
it is quite restricted. In [12] authors present a methodology for
reducing area, power or energy, but there is always one target
function at a time. It is not clear how several parameters, e.g.
area and power can be combined. Remaining parameters often
suffer significant degradation while trying to reach optimality
in the target metric. Area overhead when reducing power or
energy exceeds 50% for some cases, and 25% on average. In
[13] authors tradeoff area and power by different clock

selections, but they relax the timing constraint T, producing
circuits with 1.5T-3.5T.

In [14,15] authors propose to customize DSP or FPGA
multipliers depending on the constants of the applications,
obtaining area, power and latency reductions. This idea is more
suitable for structures with abundant resources such as FPGAs
and DSPs. This is not usually the case of ASICs, where
datapaths must be highly optimized in order to comply with the
designer constraints. Besides, this approach creates highly
instruction-specific FUs. However, our objective is to use non-
specific FUs, because the instruction-specific ones will
diminish FU sharing and therefore it could introduce some
additional modules, with the corresponding area penalty.

Therefore, the inclusion of Low Power (LP) modules in the
design flow seems to be the most suitable technique for
reducing power, while maintaining cycle time and latency
constraints. However, the area overhead should be traded-off
in a systematic way. In order to diminish area, existing
techniques [16-18] apply fragmentation techniques while
executing operations in different [17,18] or in their original
cstep over a set of linked FUs [16]. Some of these algorithms
[17,18] are especially oriented to diminish cycle time.
Executing all fragments of operations in the same csteps as the
corresponding non-fragmented operation in the original
scheduling specification [16] is more suitable, if our target is to
maintain both cycle time and circuit latency. Our approach
aims to use fragmentation to save area and give it back to
introduce LP-modules.

III. MOTIVATIONAL EXAMPLE
In order to describe how to achieve a low power design in a

fragmented datapath while respecting area constraints, consider
the example given in figure 1a). A DFG scheduling is shown.
Operands are labeled as X1 through X16, while the operand
size is depicted on the edge that feeds into the operand.

In figure 1b) the number of FUs, estimated FU-area, and
FU-power are shown. In the leftmost column the allocation
method is shown. Four different allocation methods have been
considered: heterogeneous allocation, heterogeneous allocation
+ LP (considering Low Power FUs, in this case we include one
LP multiplier in the resource set), an allocation with
fragmentation (fragmented allocation), and fragmented
allocation + LP (including one LP multiplier in the resource
set). Note that the last, i.e., the fifth allocation follows the same
allocation as the fourth, but this time including two LP
multipliers in the resource set. In the remaining columns the
number of adders, multipliers, estimated FU-area and estimated
FU-power are depicted. We will explain in detail how the area
and power values are derived in our actual experiments in
section V. However, in order to simplify the illustration in this
example, we will assume that both area and power are
computed in terms of the number of Full Adder (FA) cells used
across all units.

In the heterogeneous allocation, it is clear that 2 adders and
2 multipliers are needed. Their sizes will be decided later
during the binding stage, selecting the greatest size among the
operations bound to the FU under question. In this example
independently from the binding, a 24-bit and a 16-bit adder,
and a 16x8 and a 8x8 multiplier are required. In the fragmented

allocation, the 24-bit adder is divided into a 16-bit adder and an
8-bit one. However, only two 8x8 multipliers are needed. This
is due to the fact that the original 16x8 multiplier has been
fragmented in two 8x8 multipliers and an additional 16-bit
adder for composing the final result.

Figures 1 c) and d) show the scheduling and binding for
heterogeneous and fragmented allocations. In figure 1 c) the
operands that are smaller than the FU where they have been
bound are extended with ‘0’s. With signed numbers the sign
would be extended. In the second cycle of figure 1 d) we
observe how the original product X5*X6 has been decomposed
into two sub-products and one final addition that are executed
in the same cstep where the original product was scheduled.
Similarly, the original addition X7+X8 in cycle 3, has been
divided into two fragments of lengths 16 and 8 bits,
respectively, but executed in the same cstep. Therefore, after
applying fragmentation, operations will maintain their original
scheduling. The difference is that they will be bound to a set of
linked FUs, instead of only one FU.

Finally let us examine the estimated FU-area and FU-power
shown in the two rightmost columns of figure 1 b). We have
considered that a LP multiplier occupies 20% more area, while
consuming 30% less power, similar to a design presented in
literature [5]. In the heterogeneous+LP allocation a 16x8 LP
multiplier is considered. In the case of fragmented+LP
allocations, we consider two cases, in the fifth and sixth rows
of the table in figure 1b), respectively: the use of only one 8x8
LP multiplier, and the use of two LP 8x8 multipliers. As it is
observed, the utilization of LP-FUs in heterogeneous datapaths
increases area with respect to the original implementation, i.e.
it violates the area constraint. Fragmentation reduces the area,
so on the one hand there will be less resources consuming
power, especially in the case of big modules such as
multipliers, and on the other hand this area reduction can be
exploited in order to save even more power through use of LP-
modules while still respecting the initial area constraint.

Therefore, assuming that the area constraint is 208 basic
cells (the total area for the heterogenous design), using LP-FUs
in combination with a heterogeneous allocation is not enough
to satisfy the area constraint. However, after optimizing the
design with a fragmented allocation, there will be some
available FU-area slack for including LP FUs. 113.6 and 177.6

power and area units, respectively, are estimated for the
Fragmented+LP and Fragmented+LP(2) allocations, in the last
row of the table, which is around 45.5% less power and still
14.5% less area than the baseline heterogeneous datapath.

This example illustrates the opportunities available in the
design process for fragmented datapaths. In this paper, we aim
to develop a module selection algorithm to take advantage of
this opportunity to design low power datapaths.

IV. PROPOSED TECHNIQUES
In order to reduce power we propose two strategies. On the

one hand, useless area and switching FU parts will be removed
by means of operator fragmentation in the allocation stage. On
the other hand, low power FUs will substitute the baseline
modules while respecting area constraints.

A. Fragmentation in the allocation stage
In the allocation stage operator fragmentation is performed

in order to remove the useless switching parts. In our case the
basic fragementation step has been carried out with an
algorithm similar to existing techniques [16]. In our
evaluations, we will then compare our low power module
selection algorithm built on top of this, with an alternative flow
which uses the fragmentation approach described in [18] in its
initial step. If fragmented operations are still executed
following the original scheduling it is possible to maintain a
similar cycle time and not to increase latency. By contrast,
dividing an operation in different fragments and rescheduling
them may produce a latency increase, but on the other hand it
decreases cycle time and benefits the FUs sharing, diminishing
area too. Nevertheless there could appear some extra registers
for keeping intermediate results and routing elements in order
to complete the original operation, which would lessen this area
reduction.

Multiplier allocation is performed first. This will produce a
set of multipliers and a set of adders as well, due to the fact that
after fragmenting one multiplier, some additions are needed in
order to compose the final result. Next, adder fragmentation is
realized. This will produce a list of FUs, which are able to
comply with the scheduling performed before allocation, and
binding performed after allocation.

This stage is really useful because it will allow substituting
a)

c)

Figure 1. a) DFG scheduling, b) FUs, and estimated area and power with different allocation techniques c), d) Scheduling, binding
after applying heterogeneous and fragmented allocation, respectively

b)

d)

888

816

X1 X2 X3 X4

X5 X6

X7

8x +

24
X8x

+
24

24

X9

Cycle 1

Cycle 2

Cycle 3

16

X10 X11

+

+
16

16 X15

X16

16

X14

8
x

8

16
X12 X13

+24 +16 16x8 8x8
Cycle 1 X3 + X4 0X1 * 0X2 X10 * X11
Cycle 2 X12 + X13 X5 * X6
Cycle 3 X7 + X8 X14 + X15

Allocation Adders Multipliers Area Power
Heterogeneous +24, +16 16x8, 8x8 208 208
Heterog + LP +24, +16 LP 16x8, 8x8 233.6 169.6

Fragmentation 2 +16, +8 2 8x8 152 152
Frag + LP 2 +16, +8 LP 8x8, 8x8 164.8 132.8

Frag + LP (2) 2 +16, +8 2 LP 8x8 177.6 113.6

+16 +16 +8 8x8 8x8
Cycle 1 X3 + X4 X1 * X2 X10 * X11
Cycle 2 X12 + X13 Comp(X5 * X6) X5[7..0] * X6 X5[15..8] * X6
Cycle 3 X14 + X15 X7[23..8] + X8[23..8] X7[7..0] + X8[7..0]

a)

c)

Figure 1. a) DFG scheduling, b) FUs, and estimated area and power with different allocation techniques c), d) Scheduling, binding
after applying heterogeneous and fragmented allocation, respectively

b)

d)

8888

816

X1 X2 X3 X4

X5 X6

X7

88x +

24
X8x

+
24

24

X9

Cycle 1

Cycle 2

Cycle 3

16

X10 X11

+

+
16

16 X15

X16

16

X14

8
x

8

16
X12 X13

+24 +16 16x8 8x8
Cycle 1 X3 + X4 0X1 * 0X2 X10 * X11
Cycle 2 X12 + X13 X5 * X6
Cycle 3 X7 + X8 X14 + X15

Allocation Adders Multipliers Area Power
Heterogeneous +24, +16 16x8, 8x8 208 208
Heterog + LP +24, +16 LP 16x8, 8x8 233.6 169.6

Fragmentation 2 +16, +8 2 8x8 152 152
Frag + LP 2 +16, +8 LP 8x8, 8x8 164.8 132.8

Frag + LP (2) 2 +16, +8 2 LP 8x8 177.6 113.6

+16 +16 +8 8x8 8x8
Cycle 1 X3 + X4 X1 * X2 X10 * X11
Cycle 2 X12 + X13 Comp(X5 * X6) X5[7..0] * X6 X5[15..8] * X6
Cycle 3 X14 + X15 X7[23..8] + X8[23..8] X7[7..0] + X8[7..0]

smaller FUs when introducing LP-FUs. Hence area penalty will
be lower.

B. Using low power FUs
After the binding is performed, we need to decide on how

many low power resources to use. In order to minimize power
while complying with the area constraints, we have developed
a variation of the greedy version of the knapsack problem [24].
In the knapsack problem there is a set of objects O={oi}, each
of them with a weight wi and a value vi, and a knapsack with a
maximum allowed weight Wmax. The objective is to maximize
the sum ∑(vi) = V, so that the sum ∑ (wi) = W <= Wmax.

In our case power must be minimized while complying with
the area constraints, so our values vi will be the inverse of
power. Hence, the problem can be reformulated as:

Given a set of FUs, F={fi}, each of them with an area ai and
a power pi, and given a maximum area Amax, the objective is to
maximize ∑(1/pi)=Pinverse, so that ∑(ai)=A <= Amax.

Obviously, maximizing ∑(1/pi) is not the same as
minimizing ∑(pi). However, using 1/pi as the values vi’s is a
good approach because the main target is to use FUs with low
power consumption. As in the greedy knapsack problem the
solution consists in ordering the objects according to their
quality, qi. For every object oi, the quality is defined as qi=vi/wi.
After ordering the objects in decreasing order of quality, we
choose those that satisfiy the weight constraint. In our case we
order the FUs according to their quality qi=1/(pi*ai). Now,
supposing that there are N FUs, the best N-1 non-repeated fi’s
are chosen while respecting the Amax constraint. The Nth fi will
be the one which minimizes the violation of the Amax constraint.
In this way the algorithm can achieve good solutions in
general, while keeping a low complexity. Finally, note that this
algorithm can be extended to consider several FUs with
different power-area (P,A) tradeoffs.

Figure 2 illustrates an example, which explains the stages of
our algorithm. Let us suppose that after the allocation process
two FUs are required, and suppose we have the (P,A) tradeoffs
given by the topmost box. First, we perform a normalization of
(P,A) values with respect to the baseline case, and second,
quality values are calculated and ordered. Finally, supposing an
area constraint Amax=84 we would choose the pairs (FU2,1.28)
and (FU1,1), corresponding to the pairs (40,80) and (4.4). Note
that normalization with respect the baseline values of area and
power is needed in order to select the most power-area efficient
modules. If no normalization were performed, due to numeric
reasons the smallest modules would always be located first in
the list, which could avoid bigger and more consuming
modules to be substituted.

There are still two points to be explained: on the one hand,
how to choose the Amax constraint, and on the other hand how
to perform the area and power estimations. In order to choose
properly a value for Amax we must take into account that after
the fragmentation in the allocation stage, area will be reduced
with respect to the original implementation, so Amax should be
the estimated area as if a common heterogeneous allocation had
been performed. The area and power models will be explained
in more detail in the next section.

V. MODELLING FUNCTIONAL UNITS
Area and power models have been developed in order to

give area and power information to the algorithm before
synthesizing the datapaths. This will be described in
subsections A and B, while in subsection C a brief overview of
the considered modules will be given.

A. Area model
We make an assumption similar to prior work [5-9] based

on the replication of Full-Adders (FAs) in the structure of a FU.
Thus, the FUs area is estimated in terms of number of FAs.
Hence, an n-bits Ripple Carry Adder [22] occupies n basic
cells, while a mxn parallel multiplier, like the Carry Save or
Braun multiplier [22], occupies mx(n-1) basic cells. For low
power modules, we have used area data reported in literature.
The respective area penalties in LP designs reported in those
studies have been used to scale the area costs of the baseline
designs that are measured in terms of FAs.

B. Power model
The proposed power model estimates the dynamic power of

the FUs that will be deployed in the datapath. As LP-FUs [5-
10] are mostly based on the reduction of switching activity,
estimating dynamic power will be a good metric in order to
select the best candidate with the FU selection algorithm.
Hence, we have developed a program that simulates the
datapath at RT level after receiving the information given by
the allocation, scheduling, and binding stages.

Dynamic power is calculated taking into account the size
and switching activity of every module under consideration.
Size is computed as the number of basic cells, like in the area
model, while switching activity is a fraction that depends on
the Hamming Distance between two consecutive operations
bound to the same resource, which is computed with our
simulator. Thereby, for every module dynamic power is
estimated as the product of the switching activity and the size.
Finally, this number is multiplied by a constant, which may be
dependant on the technology. Note that this is similar to the
traditional dynamic power Pswitching = α ∗ VDD

2 * f * CL formula
[1]. Switching activity is α, while size should be proportional
to CL. VDD and f are defined by the target technology, such as
the constant in our formula. The respective power penalties
reported in the [5-10] studies have been used to scale the power
costs with respect the baseline designs.

FU1 = (4,4), (3,5), (3.5,4.5)

FU2 = (64,64), (40,80), (55,75)

FU1 = (1,1), (0.75,1.25), (0.875,1.125)

FU2 = (1,1), (0.625,1.25), (0.86,1.172)

(FU1,1), (FU1,1.07), (FU1,1.02)

(FU2,1), (FU2,1.28), (FU2,0.99)

(FU2,1.28), (FU1,1.07), (FU1,1.02)

(FU2,1), (FU1,1), (FU2,0.99)

FU’s with different
(P,A) tradeoffs

Normalization

Quality calculation

Quality ordering
and pair selection

Figure 2. Functional Units selection algorithm stages

FU1 = (4,4), (3,5), (3.5,4.5)

FU2 = (64,64), (40,80), (55,75)

FU1 = (1,1), (0.75,1.25), (0.875,1.125)

FU2 = (1,1), (0.625,1.25), (0.86,1.172)

(FU1,1), (FU1,1.07), (FU1,1.02)

(FU2,1), (FU2,1.28), (FU2,0.99)

(FU2,1.28), (FU1,1.07), (FU1,1.02)

(FU2,1), (FU1,1), (FU2,0.99)

FU’s with different
(P,A) tradeoffs

Normalization

Quality calculation

Quality ordering
and pair selection

Figure 2. Functional Units selection algorithm stages

C. FU library
Our modules library is composed of the following ones:
• Adders. We have used RCAs [22] as the baseline

adder, and a LP version taking the (P,A) tradeoff
information from published data [10]. Thus the LP-
RCA will consume 55% less power in exchange for an
8% area overhead.

• Multipliers. The Braun multiplier [22] has been our
baseline multiplier. LP modules have been taken from
published results [5-6]. [5-6] multipliers offer a 33.8%
and 75% power reduction with an area penalty of 21%
and 125%, respectively.

VI. EXPERIMENTS
In this section first we describe our experimental

framework. Next, we discuss our experimental results.

A. Framework
We have used a Force Directed Scheduling based

scheduling algorithm [23] and afterwards we have performed
the allocation stage. As our baseline, a traditional allocation
algorithm for heterogeneous datapaths [25] has been used. We
also implemented the fragmented allocation algorithm
explained in section IV.A. Finally a traditional resource
constrained FU binding and a left-edge based register binding
[1] is applied to both allocation solutions.

Next, the information obtained from scheduling, allocation
and binding, is introduced into our switching simulator in order
to estimate both area and power and apply our FU selection
algorithm described in section IV. B. Afterwards we generate
the HDL via a VHDL code-generator that receives the
scheduling, allocation, binding and module selection

information. Then, Synopsys Design Compiler is used for
synthesizing designs with a 65 nm library, and finally Synopsys
Power Compiler calculates power.

B. Synthesis Results
In order to test the efficiency of our methods we have

performed several experiments. Six benchmarks have been
used for our evaluations.

A study of the power consumption and area overhead has
been performed. Figures 3a) and 3b) depict the power and area
of the six benchmarks and the average values for seven
allocation and module selection cases, namely: heteroneneous
allocation (Het), that will be our baseline case, fragmented
allocation utilizing an algorithm like the one described in [18]
(Frag[18]), our fragmented allocation (Frag), heterogeneous
allocation using LP multipliers from [5] (Het+LP[5]),
heterogeneous allocation using LP multipliers from [6]
(Het+LP[6]), a [18] fragmentation algorithm using LP
multipliers from [5-6] (Frag[18]+LP[5-6]) and our fragmented
allocation using LP multipliers from [5-6] (Frag+LP[5-6]).

LP-modules are selected with our FU selection algorithm.
In both Frag[18]+LP[5-6] and Frag+LP[5-6] the Amax
constraint is the estimated area of the Het case. Utilizing this
algorithm with a heterogeneous allocation, such as Het+LP[5]
and Het+LP[6], implies to choose an Amax value that violates
the baseline area. Then we have chosen an Amax value of 10%
and 40% with respect the baseline area estimation, respectively.
In the case of Het+LP[5] as the area penalty is not too high, all
the multipliers can be substituted by their LP version. On the
other hand in Het+LP[6], as [6] area is too high, only the most
switching multiplier of the datapath has been substituted.

As it can be observed in figures 3a) and 3b), Frag achieves
around 19% power reduction, which is nearly the same as the
Het+LP[5] case. However, the LP-FUs introduce 12% area
overhead with respect to the baseline case. This does not
happen with Frag, which saves 20% in area with respect to
Het. Thus, this area reduction can be given back in order to
incorporate the LP-FUs. On the other hand, Frag[18] reduces
area by 25.4%. Since resulting fragments are rescheduled in
different csteps by Frag[18], some FUs can be removed, which
would not be possible in our proposed method. However, we
note that this reduction in FU area does not reflect to the final

0

200

400

600

800

1000

1200

1400

1600

1800

DiffEq 2EWF DCT IDCT Lattice LMS AVG

P
ow

er
 (u

W
)

Het Frag[18] Frag Het+LP[5] Het+LP[6] Frag[18]+LP[5-6] Frag+LP[5-6]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

DiffEq 2EWF DCT IDCT Lattice LMS AVG

Ar
ea

 (u
m

2)

Het Frag[18] Frag Het-LP[5] Het-LP[6] Frag[18]+LP[5-6] Frag-LP[5-6]

b)

a)

Figure 3. a) Power and b) Area results with several allocation
styles and LP-FUs

0

200

400

600

800

1000

1200

1400

1600

1800

DiffEq 2EWF DCT IDCT Lattice LMS AVG

P
ow

er
 (u

W
)

Het Frag[18] Frag Het+LP[5] Het+LP[6] Frag[18]+LP[5-6] Frag+LP[5-6]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

DiffEq 2EWF DCT IDCT Lattice LMS AVG

Ar
ea

 (u
m

2)

Het Frag[18] Frag Het-LP[5] Het-LP[6] Frag[18]+LP[5-6] Frag-LP[5-6]

b)

a)

Figure 3. a) Power and b) Area results with several allocation
styles and LP-FUs

a)

b)

Table 1. a) Latency and Cycle Time and b) Execution time and
Energy per iteration with heterogeneous, fragmented [18] and our

fragmented allocation stages

Benchmark Het [18] Ours Het [18] Ours
DiffEq 4 5 4 23.31 18.05 23.71
2EWF 14 16 14 17.86 13.99 18.14
DCT 10 12 10 17.55 13.74 17.83
IDCT 10 10 10 17.34 17.34 17.62

Lattice 9 9 9 11.89 11.89 11.89
LMS 9 12 9 23.58 18.19 24.14
AVG 9.33 10.67 9.33 18.59 15.58 18.89

Latency (cycles) Cycle Time (ns)

Benchmark Het [18] Ours Het [18] Ours
DiffEq 93.24 90.25 94.84 80.32 52.10 44.48
2EWF 250.04 223.78 253.96 121.29 70.76 69.18
DCT 175.50 164.87 178.30 201.40 176.67 157.38
IDCT 173.40 173.40 176.20 209.48 172.35 175.14

Lattice 107.01 107.01 107.01 50.21 25.52 25.52
LMS 212.22 218.24 217.26 337.11 243.74 200.58
AVG 168.57 162.92 171.26 166.64 123.53 112.05

Ex. time per iteration (ns) Energy per iteration (pJ)

a)

b)

Table 1. a) Latency and Cycle Time and b) Execution time and
Energy per iteration with heterogeneous, fragmented [18] and our

fragmented allocation stages

Benchmark Het [18] Ours Het [18] Ours
DiffEq 4 5 4 23.31 18.05 23.71
2EWF 14 16 14 17.86 13.99 18.14
DCT 10 12 10 17.55 13.74 17.83
IDCT 10 10 10 17.34 17.34 17.62

Lattice 9 9 9 11.89 11.89 11.89
LMS 9 12 9 23.58 18.19 24.14
AVG 9.33 10.67 9.33 18.59 15.58 18.89

Latency (cycles) Cycle Time (ns)

Benchmark Het [18] Ours Het [18] Ours
DiffEq 93.24 90.25 94.84 80.32 52.10 44.48
2EWF 250.04 223.78 253.96 121.29 70.76 69.18
DCT 175.50 164.87 178.30 201.40 176.67 157.38
IDCT 173.40 173.40 176.20 209.48 172.35 175.14

Lattice 107.01 107.01 107.01 50.21 25.52 25.52
LMS 212.22 218.24 217.26 337.11 243.74 200.58
AVG 168.57 162.92 171.26 166.64 123.53 112.05

Ex. time per iteration (ns) Energy per iteration (pJ)

overall area because of the additional registers and routing
elements required by Frag[18]. However, due to the increase
in frequency, power is only reduced by 7%. Het+LP[6] reaches
a 28% power reduction, but since the area penalty of the
module LP[6] is high, the average area overhead increases by
up to 47%. Frag+LP[5-6] saves power by up to 37% on
average (49% best case), and with a 0.61% less area than the
original case (8.62% area reduction in the best case). By
contrast, Frag[18]+LP[5-6] only decreases power by 28.5%,
but with 7% area reduction. Finally, note that Frag[18]+LP[5-
6] and Frag+LP[5-6] saves 19.4% and 19% power in
comparison with Frag[18] and Frag, respectively, at the
expense of 24.1% and 25.1% increase in area.

Therefore a fragmented allocation stage works fine in order
to reduce both area and power, but more power can be saved up
by introducing LP-modules carefully with the FU selection
algorithm. Besides the saved area that can be given back to
include LP-FUs, the area penalty due to the LP-FUs themselves
is diminished in the case of a fragmented allocation, because
the size of the utilized FUs uses to be smaller than in a
traditional allocation process.

C. Latency and cycle time
We have compared our latency and cycle time results with

those obtained with [18] techniques, where fragmented
operations are executed in different csteps, combined with LP-
modules. Results are shown in table 1a). Columns 2 to 4 and 5
to 7 depict the latency of every benchmark for a heterogeneous
case, a [18]-like implementation and ours. Latency is given in
cycles and cycle time in nanoseconds. The alternative method
[18] reduces cycle time by around 16.4%, while it increases
latency by 14.3%. On the other hand, in our approach there is
some delay produced by the routing elements used to connect
the involved fragments. This is shown in column 7. However,
the increase in cycle time does not exceed 2% on average.

The consequences of these results in combination with the
power ones from figure 3 are summarized in table 1b), where
execution time and energy per iteration are shown. Columns
are distributed as in table 1a). Execution time is given in
nanoseconds and energy in picojoules. The alternative
technique Frag[18] reduces execution time, while in our case
execution time is slightly increased. However, the differences
are negligible. This will lead to an energy reduction in our
proposed solution, because on the one hand execution time is
nearly equal among the three options, but on the other hand we
achieve a power reduction, as shown in figure 3. In conclusion,
power reduction is accompanied by an energy reduction of
25.9% and 32.8% in the case of Frag[18] and our proposed
fragmentation techniques, respectively.

VII. CONCLUSIONS
A power aware allocation and module selection algorithms

are presented. Using fragmentation techniques in the allocation
stage an area reduction is achieved. Afterwards this will be
given back by substituting the less efficient FUs in terms of
power-area in order to achieve an additional power reduction
while complying with the initial area constraint. Results show
that is possible to reduce power a 37% in average (49% best
case) while achieving almost the same area than in the baseline
case. Moreover, as execution time is close to the baseline case,

this power reduction is accompanied by an energy reduction
that demonstrates the efficiency of our algorithms.

REFERENCES
[1] P. Coussy, A. Morawiec, “High-Level Synthesis. From Algorithm to

Circuit Design.”, Springer, 2008.
[2] S.P. Mohanty, N. Ranganathan, E. Kougianos, P. Patra. “Low-Power

High-Level Synthesis for Nanoscale CMOS”, Springer, 2008.
[3] V. Kursun, E.G. Friedman, ”Low swing dual threshold voltage domino

logic“, Proc. Of the 12th ACM GLSVLSI, 2002, pp. 47-52.
[4] A. Kshavarzi, S. Narendra, S. Borkar, C. Hawkins, K. Roy, V. De,

”Technology scaling behavior of optimum reverse body bias for standby
leakage power reduction in CMOS IC’s”, ISLPED, 1999, pp. 252-254.

[5] K-C. Kuo, C-W. Chou, “Low Power Multiplier with Bypassing and Tree
Structure”, IEEE APCCAS, 2006, pp. 602-605.

[6] C. Wang, G. Sung, “Low-Power Multiplier Design Using a Bypassing
Technique”, Journal of Signal Processing Systems, 2009, pp. 331-338.

[7] G. Economakos, K. Anagnostopoulos, “Bit Level Architectural
Exploration Technique for the Design of Low Power Multipliers”, IEEE
International Symposium on Circuits and Systems, 2006, pp- 1483-1486.

[8] M.C. Wen, S. J. Wang, Y.N. Lin, “Low-Power parallel multiplier with
column bypassing”, Electronic Letters, vol 41, no 12, pp. 581-583, 2005.

[9] M. Nickary, M. Dehyadgari, A. Sobhani, A. Afzali-kusha, “Multiplier
for Correlative Input Patterns”, 17th ICM , 2005.

[10] V. Navarro-Botello, J.A. Montiel-Nelson, S. Nooshabadi, “HIgh
performance low power CMOS dynamic logic for arithmetic circuits”,
Microelectronics Journal, 2007, Vol. 38, no. 4-5, pp. 482-488.

[11] E. Musoll, R. Cortadella, “High-level synnthesis techniques for reducing
the activity of functional units”, ISLPED, pp. 99-104, 1995.

[12] W. Wang, T. K. Tan, J. Luo, Y. Fei, L. Shang, K.S. Vallerio, L. Zhong,
A. Raghunathan and N.K. Jha, “A Comprehensive HLS System for
Control-Flow Intensive Behaviors”, GLSVLSI, pp. 11-14, 2003.

[13] M. A. Ochoa-Montiel, B. M. Al-Hashimi, P. Kollig. “Exploiting Power-
Area Tradeoffs in Behavioural Synthesis through Clock and Operations
Throughput Selection”. Proceedings of ASP-DAC, 2007.

[14] M. Mukherjee, R. Vermuri, “A Novel Synthesis Strategy Driven by
Partial Evaluation Based Circuit Reduction for Application Specific DSP
Circuits”, Proc. Of the 21st ICCD, 2003, pp. 436-440.

[15] G. Caffarena, J.A. Lopez, C. Carreras and O. Nieto-Taladriz, ”High-
level synthesis of multiple word-length DSP algorithms using
heterogeneous-resource FPGAs”, FPL, 2006, pp. 675-678.

[16] A.A. Del Barrio, M.C. Molina, J.M. Mendias, E. Andres, R. Hermida,
“Restricted Chaining and Fragmentation Techniques in Power Aware
High-Level Synthesis”, 11th Euromicro DSD, 2008, pp. 267-273.

[17] M. C. Molina, J. M. Mendías, R. Hermida, “Behavioural specification
allocation to minimize bit level waste of functional units,” Proc. Inst.
Elect. Eng.—Comput. Digit. Tech., vol. 150, no. 5, pp. 321–329, 2003

[18] M.C. Molina, R. Ruiz-Sautua, J.M. Mendias, R. Hermida, “Bitwise
Scheduling to Balance the Computational Cost of Behavioral
Specifications”. IEEE Trans. On CAD. Vol 25. no. 1, pp. 31-46, 2006.

[19] H. Yang, and L. Dung. “On multiple-voltage high-level synthesis using
algorithmic transformations”. Proceedings of ASP-DAC, 2005.

[20] S. P. Mohanty, N. Ranganathan. “Energy-efficient datapath scheduling
using multiple voltages and dynamic clocking”. ACM TODAES,
10(2):330-353, 2005.

[21] L. Benini, A. Bogliolo, and C. De Micheli. “A survey of design
techniques for system-level dynamic power management”. IEEE Trans.
on VLSI systems, June 2000.

[22] I. Koren, “Computer Arithmetic Algorithms”, A K Peters, 2nd ed, 2002.
[23] P.G. Paulin, J.P. Knight, “Force-Directed Scheduling for the Behavioral

Synthesis of ASICs”, IEEE Trans. on CAD. Vol. 8, no. 6, 1989, pp. 661-
679.

[24] G. Brassard, P. Bratley, “Fundamentals of Algorithmics”, Prentice Hall,
1996.

[25] S. Devadas, A.R. Newton, “Algorithms for hardware allocation in data
path synthesis”, IEEE Trans. On CAD, 1999, no. 8, pp. 768-781.

