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Abstract—Creating parameterized “chip generators” has been
proposed as one way to decrease chip NRE costs. While many
approaches are available for creating or generating flexible data
path elements, the design of flexible controllers is more prob-
lematic. The most common approach is to create a microcoded
engine as the controller, which offers flexibility through pro-
grammable table-based lookup functions. This paper shows that
after “programming” the hardware for the desired application,
or applications, these flexible controller designs can be easily
converted to efficient fixed (or less programmable) solutions using
partial evaluation capabilities that are already present in most
synthesis tools.

I. INTRODUCTION

Digital design has become an increasingly difficult task.
Technology scaling continues to increase the number of
transistors per chip, which increases design complexity and
verification effort. The non-recurring engineering (NRE) costs
associated with creating a modern application-specific inte-
grated circuit (ASIC) are now around $40M[1], dominating
the total design cost and severely reducing the economic
viability of ASIC solutions for all but the highest volume
chips. Moreover, post 90-nm technology scaling has seen the
end of traditional voltage scaling, bringing energy efficiency,
and not performance, to the forefront of design considerations.
Experience demonstrates that specialized designs achieve the
best energy efficiency, leading to a challenging impasse: we
need to build ASICs but ASICs are too complicated and
expensive to build.

Reconfigurable designs are a natural approach to tackling
the NRE cost issue, since one design can amortize the high
NRE cost over multiple applications. However, the configu-
ration memories and overly generic logic in reconfigurable
designs bring substantial area/energy/performance overheads.
For example, FPGAs are known to incur about an order of
magnitude more area and energy per gate than an ASIC. Even
when the configuration is done at a higher level of abstraction,
flexible hardware can still cause substantial overheads [2].
Therefore, it is interesting to consider whether we can get the
benefits of lower NRE costs, without incurring large energy
overheads.

If our goal is to reduce the design NRE costs, runtime
configuration is more than we require. Fabrication costs, which
include masks and first silicon, are generally less than 10%
of total NRE cost [1]. Thus one could get a 10x reduction

in NRE costs by minimizing non-fab design and verification
costs, such as by creating a flexible design and customizing it
pre-silicon. In other words, if we start with a highly flexible
design abstraction, and then automate the process of using con-
figuration information to produce an efficient implementation,
we could produce chips with 10x lower NRE. This concept
has been called a “Chip Generator” [3][4].

Creating a chip generator will almost certainly leverage
many different techniques, ranging from using algorithmic
hardware constructors, high-level compilers that process sys-
tem parameters and produce low-level RTL, to writing ultra-
generic RTL and relying on synthesis tools to optimize the de-
sign. This range of possibilities leads to a question about what
kinds of optimizations can be done to RTL before and during
synthesis, which might help us better understand the type of
RTL that the generator needs to produce to yield competitive
results. This paper focuses on a subset of these questions,
examining flexible table-based controller structures, and how
well synthesis tools can convert these flexible structures to
efficient concrete implementations. We focus on table-driven
controller structures, such as FSMs and microcode sequencers,
since they are the most common method of creating flexible
control [5] [6] and are even used to simplify the creation of
non-configurable designs.

One technique for converting table-based control into an
efficient logic implementation is partial evaluation, an es-
tablished compiler trick that uses known information about
program inputs at compile time to streamline generic code. In
the ideal case, the generator’s job is straightforward because it
only needs to produce the table of bits. If synthesis tools can’t
handle this type of design, the generator’s job becomes more
difficult, and it will need to help perform this transformation.
The remainder of this paper focuses on experimentally quan-
tifying the ability of current tools and techniques to convert
table-based controller information to efficient RTL.

The next section reviews table-based controller design and
provides a quick overview of a table-based protocol controller
in the Smart Memories chip. We then discuss the optimization
techniques that are needed to perform partial evaluation of
these table-based structures, and show that modern synthesis
tools already possess many of these properties. We also
explore current limitations of this flexible design approach and
extensions to circumvent them.
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Fig. 1. A generic finite state machine. Output logic may or may not depend
on the input according to style. Note required storage element.

Fig. 2. A 5-input, 4-state, and 3-output FSM implemented with asyn-
chronously readable memories.

II. RECONFIGURABLE CONTROLLER DESIGN

We begin by quickly reviewing configurable combinational
logic because (as detailed in sections II-A and II-B) it is
the fundamental building block of reconfigurable controllers.
An arbitrary boolean function can be implemented by storing
the function’s truth table in a programmable memory, and
addressing the memory using the function’s inputs. In this
setup, an arbitrary function with m inputs and n outputs
can be implemented in a memory of width n and depth
2m. We note that such structures are common and can be
found in designs under a variety of different names, such as
programmable decoders, ROMs, programmable logic arrays
(PLAs), and lookup tables (LUTs) in FPGAs [7].

A. Finite State Machines

Finite state machines (FSMs) are a convenient abstraction
that aid in the design of simple controllers. FSMs are se-
quential control circuits characterized by a finite number of
internal states, state transitions, and outputs. They are typically
represented as finite state diagrams, which depict the various
states and transitions among them. Fig. 1 shows a generic S-
state FSM hardware implementation, in which state transitions
depend on the current state as well as current inputs, and
outputs depend on the current state and (depending on style)
inputs.

The ability to design flexible FSMs is particularly relevant
for chip generators because FSMs are the brains behind hard-
ware operation, so flexible FSMs enable different operational
modes within one larger framework. A reconfigurable FSM
can be realized by using programmable tables to implement
its combinational logic bubbles (both next-state and output).
For example, Fig. 2 shows how a 4-state FSM with 5 inputs
and 3 outputs can be implemented with two memory elements:
a 2-bit-wide next-state memory with 2+5=7 address bits (128
entries), and a 3-bit wide output memory also with 2+5=7
address bits (128 entries).

Fig. 3. A generic microcode sequencer.

B. Microcode Sequencers

Microcode sequencers are FSMs whose conceptual oper-
ation is described by microprograms instead of finite state
diagrams. Microprograms are a series of simple microinstruc-
tions: low-level operations that assert particular control signals
on a given cycle. We refer to the bit-level representation of
microinstructions as microcode. Due to their sequential nature
(as well as their resemblance to assembly programming), many
designers find microprograms to be more convenient than
finite state diagrams for describing controllers, particularly as
the design complexity grows. In practice, microcode format
varies from being inefficiently encoded but more readable
(known as horizontal microcode) or efficiently encoded but
difficult to read (vertical). Many microprogramming systems
employ horizontal formats to simplify the paths between the
controllers and the datapath units [8], using separate subfields
to control different units in the design.

Despite their different controller abstractions, the operation
of programmable FSMs and programmable microcode se-
quencers turns out to be similar. Fig. 3 shows the hardware im-
plementation of a typical microcode sequencer, which resem-
bles the FSM implementation in Fig. 2. Note the microcode
memory performs similarly to the output logic of FSMs, and
the primary difference is the next-state logic. In FSMs, the
next-state logic is fully general, allowing direct transition from
any state to any other state. In microcode sequencers, on the
other hand, the expected transition is a trivial increment to the
next sequential microprogram counter. Other state transitions
(jumps) are flagged and handled by dedicated dispatch tables,
which tend to be small for many practical designs. For these
reasons, microcode sequencers are often the more efficient way
to implement runtime reconfigurable controllers. For purposes
of pre-silicon (design-time) reconfigurability, however, we do
not need to make significant distinctions between FSMs and
microcode sequencers, because they both share the same
underlying table-driven logical descriptions. For these reasons
we will use the terms “microcode sequencer” and “table-based
controller” synonymously.

C. Motivating Example: Smart Memories Protocol Controller

Smart Memories is a chip multiprocessor with a memory
system flexible enough to support traditional shared memory,
streaming, and transactional memory programming models on
the same hardware substrate[9][10]. The system was designed
to be a multiprocessor whose user could program not only
the processors, but the memory system as well. To implement
this memory system the designers added table-based control



Fig. 4. A block diagram of an internal unit of the PCtrl.

systems to the processor, local memory, and cache/protocol
controller (PCtrl). Our discussion focuses on the PCtrl since it
is the most complex: shared among four two-processor tiles, it
moves data in and out of local memory blocks and implements
different memory protocols (such as multiprocessor cache
coherence) based on the execution mode. The PCtrl consumes
14% of the chip’s area.

Fig. 4 shows internals of one of the functional units of
the PCtrl, giving an example of how table-based controllers
can be used. When implementing cache protocols, the PCtrl
performs transfers between different processors’ caches. The
precise timing of each transfer depends on user-settable cache
line size, as well as the access width to the caches (which can
be single or double words). The Dispatch block issues line
read and line write commands to four data pipes (leading to
local memory in each two-processor tile). These commands,
along with appropriate timing, are stored as microcode in a
configuration memory inside the Dispatch unit as a table that
can be altered to program various cache configurations.

The microcode representation for controllers has a number
of documented advantages. It facilitates patches late in the de-
sign cycle. Sorin et al. argue that a single table-driven approach
can be used in many design phases, including specifying,
documenting, and verifying cache coherence protocols[11].
Firoozshahian et al. go a step further and describe how
programmable, table-driven controllers can allow a memory
controller to support different memory models and protocols
within a CMP system[9]. However, these table-driven imple-
mentations come with significant area and cycle-time costs
from the added memories and address decoding logic. Our
desire to leverage many of the advantages of microcode-based
controllers, coupled with a desire to achieve implementation
efficiency with chip generators, naturally leads to our main
question of whether we can produce efficient controller im-
plementations from these microprograms alone, or whether
we need to explore other representations. The optimization
methodology that will help us achieve our goal is broadly
known as partial evaluation, discussed in the next section.

III. PARTIAL EVALUATION OF MICROCODE

Partial evaluation, a way to specialize generic programs,
has been an effective software technique for years. It uses
known information about program inputs at compile-time to
reveal new optimizations that were previously unavailable,

allowing the compiler to produce better code. This methodol-
ogy lets programmers write broad general-purpose programs
that then compile into specific optimized code instances. The
C++ Standard Template Library (STL) is a common software
implementation that relies on partial evaluation.

Despite its prevalence in software, partial evaluation (PE)
methodologies in hardware design have been primarily lim-
ited to data-path optimization in domain-specific frameworks.
McKay et. al. apply PE to FPGA synthesis of generic data-path
elements for DSP chips [12]. Leonard and Mangione-Smith
apply PE to a DES algorithm where the secret key is known
and fixed [13]. Mukherjee and Vemuri use PE to optimize
DSP data-path elements at the transistor level [14]. This paper
extends this strategy to include control-path elements as well
as data-path elements. Not only do we want efficient functional
(data-path) units, but we want to efficiently control them in
different ways, and by doing so we enhance our ability to
build useful chip generators.

In general, for partial evaluation of reconfigurable con-
trollers to be effective, we desire the optimized controller to
approach the area and timing efficiency of a directly imple-
mented (non-programmable) controller. Our hand-tuned results
in section III-C explore this. In our experience, a synthesis
compiler needs a few key optimization techniques before it can
properly perform partial evaluation of table-based structures.
Beyond standard logic reduction methods, these techniques
include the ability to identify any known restrictions that might
simplify a signal state (thus, a non-optimally encoded signal),
propagate these restrictions downstream, and perform typical
logic optimizations using this state information. We note that
it is not uncommon in large designs to find signals that are not
encoded optimally, either intentionally, for instance to reduce
the decoding logic need through storing fully decoded fields
in horizontal microcode, or unintentionally, such as occurs
when reusing generic modules. We will refer to the these
optimization properties as state propagation and state folding.

More formally, an n-bit signal y has k = 2n possible
states in a physical design: y ∈ {0, 1, 2, 3, ..., 2n − 1}. If we
know of any restrictions on y, then k < 2n. For example,
if we know that y is one-hot encoded, then we know y ∈
{1, 2, 4, 8, ..., 2n−1} and k = n. If y is used in a downstream
ones-counter circuit, the compiler can evaluate all n values of
the circuit and infer that the output is a constant 1, allowing
the ones-counter logic to be removed altogether. We note that
the most prevalent form of this technique is a familiar subset
known as constant propagation and folding, where k = 1.

We now turn to the practicality of design by partial eval-
uation; that is, we explore the efficacy of modern synthesis
tools to produce optimized controller implementations from
generic microcode specifications. We first compare optimized
table-based implementations with fixed non-programmable
implementations to confirm expected logic optimizations and
the practicality of using microprogram specifications (or, more
generally, tables) with chip generators. We then highlight some
limitations with this approach that affect both non-optimally
encoded wide microinstruction formats and specialized con-
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Fig. 5. An area comparison of combinational logic synthesis results for
various random designs. Note the equal-area line (intercept 0, slope 1).

trollers with unreachable states. We conclude by evaluating
these techniques on the Smart Memories PCtrl.

We chose to use Synopsys Design Compiler D-2010.03 to
synthesize our designs as it is an industry standard tool, but
we have observed similar results with other tools. The designs
were coded in SystemVerilog and the synthesis library was
TSMC 90nm.

A. Constant Propagation and Folding

We start with the reconfigurable structures described in
Section II and demonstrate how closely they synthesize to their
ideal directly-implemented counterparts when relying on sim-
ple constant propagation and folding. We wrote reconfigurable
versions of each component using SystemVerilog. Python
scripts then generated random configuration parameters for
these reconfigurable designs, as well as the corresponding
direct Verilog implementation for each. We then synthesized
these pairs of designs over a sweep of achievable timing
targets to generate synthesis results for a wide variety of design
sizes and topologies. Note that we only compare designs that
synthesized to identical timing targets.

1) Table-Based Combinational Logic: Fig. 5 compares the
area synthesis results for many different combinational logic
functions (tables of depth d ∈ {2, 8, 16, 32, 64, 256, 1024} and
width w ∈ {2, 4, 16, 32, 64}). The “direct” implementations
were written using sum-of-product assignments for each out-
put bit. In the ideal case all points would lie on the solid
line because there would be no difference between the partial
evaluation of tables and the direct implementations. However,
the discrete nature of the standard cell library coupled with
the “bumpy” nature of the tool’s optimization surface leads
to various local minima, causing the tool to find similar (but
not identical) designs when starting from widely different
(albeit logically equivalent) RTL descriptions. In fact, we
sometimes observe slightly better results for table-based rep-
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Fig. 6. An area comparison of FSM synthesis results for various random
controller designs. Note the equal-area line (intercept 0, slope 1).

resentations, especially for larger functions, suggesting sum-
of-product representations are not always ideal for the tool.
These observations confirm our expectation that the synthesis
tool is effective at partial evaluation of combinational logic
tables via constant propagation and folding.

2) Table-Based Controllers: Fig. 6 compares the synthesis
results for many different FSMs (inputs m ∈ {2, 8}, outputs
n ∈ {2, 8, 16}, and states s ∈ {2, 3, 8, 16, 17}). Note that
these results generalize to microcode sequencers as well due
to their aforementioned implementation similarities. The direct
implementation was written using a series of case statements,
the style recommended by the tool vendor for automatic
detection and optimization of the FSM states. The flexible
implementation used combinational tables as in Section II to
describe next-state and output logic. This change in coding
style prohibited the synthesis tool from automatically detecting
the FSM state encodings, leading to some variance in the
synthesized areas as compared to the preferred implementa-
tions (especially for s ∈ {3, 17} cases, which aren’t efficiently
coded in binary). In a second experiment we used the Design-
Compiler options set fsm state vector and set fsm encoding
to manually annotate the state signal of the controller for the
generic designs [15]. The plot demonstrates that providing the
tool with this extra information resulted in nearly identical
synthesis results between the annotated and direct implemen-
tations. It is fairly straightforward to automatically determine
these state annotations from the FSM tables (or, equivalently,
microcode), and so we do not see this as a real issue for
a chip generator. Hence, we can use a flexible table-driven
controller style but still achieve the synthesis benefits of a
direct implementation.

B. State Propagation and Folding

Although we have demonstrated that we can achieve good
implementation efficiencies for isolated controllers, we must



Fig. 7. An example design to investigate state propagation and folding
optimizations. Note the mux before the output is unnecessary if the signal y
is one-hot encoded.

also consider logic optimizations downstream of the controller
outputs when the outputs are not fully encoded (e.g., horizontal
microcode). This section explores the optimization of designs
with k states, 1 < k < 2n, by examining the synthesis
results of the small example design in Fig. 7. The one-hot
decoder Dec allows us to specifically focus on cases where
k = n, but we expect these results to generalize to other
values of k. Note that when the signal y is one-hot, the mux on
the output becomes redundant because the bitwise-AND gate
should always evaluate to 0. This is the key optimization that
we expect the synthesis compiler to make in this example.
Although this is a relatively simple design, its synthesis
properties demonstrate a number of interesting features that
are consistent with our experiences on more complex designs.

We synthesized this design for a variety of different bus
widths n ∈ {2, 4, 8, 16, 32, 64, 128} with easily achievable
timing constraints and also varied the flip-flop element to
use different reset modes: no reset, synchronous reset, and
asynchronous reset. Fig. 8 plots the comparative synthesis
results of the generic and direct versions. The purely com-
binational examples (no flops) always synthesized to the ideal
case, suggesting the tool correctly infers state propagation
and folding in purely combinational logic. However, in the
presence of flops (without retiming), all of the synthesized
designs failed to achieve ideal areas. With retiming enabled,
optimal designs were achieved in some circumstances but
overall the effect was inconsistent. Furthermore, we note the
type of flop also inconsistently influenced the outcome.

These observations suggest the synthesis compiler does not
perform state propagation over flop boundaries 1. Note that we
already encountered a similar situation with the states of table-
driven controllers because the tool is unable to automatically
recognize FSM states from tables alone. Using a similar work-
around, we manually annotated the states of the signal y after
the flop boundary, and plotted these results with filled markers
in Fig. 8. It is clear that manual state annotation allows syn-
thesis to perform the necessary optimizations in cases where
n ≤ 32. Although horizontal microcode can be hundreds of
bits, its independent subfields that drive different units tend
to each be smaller than 32 bits, and so manual annotation of
each subfield will be effective. Again, it is straightforward
for a generator to produce these annotations if it has the

1There are published algorithms that address this [16] but we don’t know
of any commercial tool that incorporates them yet.
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Fig. 8. A comparison of synthesis results for the design shown in Fig. 8.
The equality line (intercept 0, slope 1) is shown.

controller microcode, and so we can achieve downstream
logic optimizations with the outputs of inefficiently coded
controllers.

C. Optimizing Smart Memories PCtrl

We now examine these synthesis techniques on the PCtrl, an
example of a realistic table-driven controller design. Storing
all the microcode for this controller takes area, as do the
associated multiplexers/decoders. To understand this overhead,
we compare the original flexible design (“Full”) to a partially
evaluated design (“Auto”) for two different memory configu-
rations: “Cached” and “Uncached”. We further compare these
with hand-optimized controller instances (“Manual”) to under-
stand the optimizations missed by automatic synthesis. Fig. 9
summarizes the area consumption of each design (separated
into combinational and sequential logic). All designs were
synthesized using TSMC 90nm technology with a 5ns clock.

The automatically optimized (via partial evaluation) con-
troller instances halved the non-combinational area of the
full design by removing all configuration memories, and
halved the combinational area by simplifying access logic and
propagating constants, representing a 7% reduction in overall
chip area. Moreover, a similar optimization strategy could be
applied to flexible logic elsewhere in the processor and local
memories, further increasing the gains.

The manually-tuned versions include optimizations that
would occur if the tool properly supported state-propagation
across flop boundaries. Primarily, these optimizations involve
identifying and removing unnecessary (i.e., unreachable) states
for specific memory modes. Since almost all of the controller
states are required to support caches, the gains from manual
optimization in cached modes were minimal. In contrast,
supporting uncached memory requires far fewer control states,
leading to an additional 16% in area and power savings in the
controller. This additional 16% only represents 1.1% of the
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overall chip area in our example so it is not a particularly
significant gain. However, as designers continue pushing the
limits of flexible hardware, we expect these state-propagation
optimizations to become more important, and so we will
eventually require a design methodology that incorporates
them.

IV. CONCLUSION

Chip generators are a promising design approach to mitigate
increasing NRE cost issues by amortizing the costs over mul-
tiple target applications, but several challenges must be met.
This paper addressed the challenge of how to design and model
flexible-but-efficient controllers in a generator framework. We
showed that it is possible to use extant partial evaluation
features in modern synthesis tools to optimize table-based con-
trollers, leading to efficient implementations. This implies that
a simplified generator design only needs to produce different
microcode for different target designs, allowing design flows to
continue using existing microprogramming tools for controller
design.

Now that we have demonstrated microcode to be a suit-
able intermediate representation for generated controllers, an
interesting question becomes what the input to the generator
should be. For example, it may be possible to build a compiler
that uses higher-level specifications to produce microcode for
a given controller, so that users of the generator can obtain
new design configurations even more quickly.

Lastly, we note that our results provide insight to chip
generator architects seeking to compose flexible systems with
generic modular RTL (beyond just flexible controller design).
The current lack of automatic state propagation across flop
boundaries in synthesis implies that ideal logic reductions may
not always occur at a system-wide scope. To guarantee better
results, modules will have to convey any specialized signal-
encoding information to other modules, similar to how we
proposed a generator annotate controller states and outputs.

This motivates the need for a design scope beyond RTL,
whereby designers not only create RTL modules, but also
embed this extra knowledge about specific use cases alongside
it.
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