
Optimisation of Mutually Exclusive

Arithmetic Sum-Of-Products

T. Drane∗ and G. Constantinides†

∗Imagination Technologies Ltd

Home Park Estate, Kings Langley

Hertfordshire, WD4 8LZ
†Department of Electrical and Electronic Engineering

Imperial College London

Exhibition Road, London, SW7 2BT

Abstract—Arithmetic blocks consume a major portion of chip
area, delay and power. The arithmetic sum-of-product (SOP) is
a widely used block. We introduce a novel binary integer linear
program (BLP) based algorithm for optimising a general class
of mutually exclusive SOPs. Benchmarks drawn from existing
literature, standard APIs and constructed for demonstration
purposes, exhibit speed improvements of up to 16% and area
reduction of up to 57% in a 65nm TSMC process.

I. INTRODUCTION

Datapath continues to consume relatively large amounts of

silicon area, delay and power within Digital Signal Processing

and Graphics applications. Some of the most prolific of oper-

ations can be expressed as fixed-point sum-of-products. These

include adders, subtractors, multipliers, squarers, multiply-

accumulators, chained additions, decrementors, incrementors,

etc. Standards, such as graphics APIs, require integer oper-

ations of the form ±a ± b, ±ab and ±ab ± c, constructing

an arithmetic logic unit to perform all of these operations

would require implementing mutually exclusive SOPs. While

industry standard tools perform well on each of these opera-

tions in isolation, this paper demonstrates that substantial area

and delay savings can be made when these mutually exclusive

operations are combined.

II. BACKGROUND

SOPs can be efficiently implemented as their partial prod-

ucts can all be summed in parallel, as was noted in the

integer part of a floating point multiply accumulator [1]. The

final carry propagate adder of an SOP can be optimized to

adapt to the delay profile of the array reduction, [2]. In

[3], inverted partial product arrays were shown to improve

quality of results. Designs implementing operations of the

form
∑

kixiyi where ki are constants and xi and yi are input

operands have been considered in [4]. Here multiplication

by a constant is performed by using the canonical signed

digit recoding and xi × yi is computed in redundant carry-

save form. There is a wealth of design options for SOP or

POS (product-of-sum) expressions by manipulating the Booth

encoded multipliers in a variety of styles [5].

Despite the existence of efficient implementations of SOP

and POS expressions, most datapath synthesis cannot exploit

these highly optimal blocks due to non SOP expressions

found within the datapath. Muxing and shifting found

within SOP expressions prevent full and efficient merging.

In [6], data flow graphs have been locally manipulated

to increase the proportion of the datapath which can be

expressed as a single SOP, hence reducing delay and

area. For example one of the transformations includes

(a+ b+ c) << d = (a << d) + (b << d) + (c << d),
hence shifters can be moved through summations; a fact

exploited fully in [7].

In terms of considering mutually exclusive SOP

expressions, an example can be found in [6]:

sel?a+ b : c = (sel?a : c) + (sel?b : 0). However such

optimizations were restricted to localized regions. A fuller

consideration of merging mutually exclusive operations can

be found in [8]. In this instance the SOP is split into partial

generation, array reduction and final carry propagate adder

with muxing on inputs to each of these units.

The contribution of this paper is to algorithmically take

a set of mutually exclusive SOPs and derive an equivalent

single SOP with minimal control via the construction of a

binary linear program (BLP). The algorithm also utilizes a

novel approach to producing negative terms within an SOP.

Mutually exclusive SOPs occurs naturally when multiplying

sign magnitude numbers and so arise within floating point

modules, e.g. multiply accumulate, dp2, dp3, etc; see [9] for

an example. This contribution is orthogonal to the majority of

previous research into SOP implementation and moreover can

be viewed as a RTL to RTL transformation which would fit

into a high level synthesis flow.

The novelty in this paper is as follows:

1 algorithmic merging of mutually exclusive SOPs into one

SOP,

2 usage of a Linear Program in RTL to RTL polynomial

transformations,

3 novel handling of negative terms within an SOP978-3-9810801-7-9/DATE11/ c©2011 EDAA



III. MOTIVATION

In order to motivate the algorithm we consider a simple

mutually exclusive set of SOPs, see the pseudo code in Fig.

1. Our aim is to consider reformulating these equations in such

a way that the design’s hardware resource utilisation is as close

to that of ab + c has possible. That is, we wish to minimise

the cost of any muxing and negation that is introduced. To

this end we seek to reformulate the equations such that only

one SOP is required. The first step in doing this is to reorder

the multiplications and additions in such a way to minimize

the amount of muxing between operands once merged. In this

case we produce Fig. 2 by writing each SOP in the form

AB + C and choosing the order of A and B such that the

second term in the multiplication is always b. In Fig. 3 we

have merged the SOPs together by noting that if we use

the standard two’s complement identity −x = x + 1 then

(−1)nega = a⊕ neg + neg where t = a ⊕ neg is a signed

number 1 bit larger than a such that if a is n bits in length then

t[i] = a[i] XOR neg for n > i ≥ 0 and t[n] = neg. Note

also that s is assumed to be two bits in length and we use s[1]
and s[0] as notation for the most and least significant bits of s

respectively. We had to optionally negate the product in Fig.

3 but the product is the most delay and area expensive part of

the SOP. To minimise this cost we wish to minimise the logic

that provides inputs to it; hence it would be advantageous to

rewrite the SOPs such that the product is always positive. To

do this we will need to use another negation identity; consider

replacing x with x−1 in the formula −x = x+1, simplifying

we get −x = x− 1. We can exploit this freedom to rewrite

each SOP such that the product is always positive, see Fig. 4;

inserting these back into the formula for y1 results in Fig. 5.

In this case the merging results in Fig. 6. Fig. 3 has more and

larger addends than Fig. 6, moreover Fig. 6 adds little in the

way of extra hardware over ab + c; hence this is a desirable

form to aim for when implementing mutually exclusive SOPs.

This reformulation is an RTL transformation, [8] cannot be

used in this way as it requires access to the carry-save result

from a multiplier.

IV. PROBLEM STATEMENT

Following the example set by the motivating sample set

of SOPs we seek now to formalize this process. For ease

of exposition the following simplifying assumptions will be

made:

A) each SOP has the same number of terms and each term

is the product of two variables,

B) operands are unsigned, non constant and of identical

word length,

C) operands within each of the mutually exclusive SOPs are

all distinct.

In light of these restrictions we may write our intended

function as having a select signal sel which muxes between

n SOPs, each with m products and where the operands are

y1 = (s == 0)? ab+ c :

(s == 1)? bc− a :

(s == 2)? c− ab :

− a− bc

Fig. 1. Sample mutually exclusive SOPs.

y1 = (s == 0)? ab+ c :

(s == 1)? cb− a :

(s == 2)?−ab+ c :

−cb− a

Fig. 2. Reordered sample SOPs.

A = s[0]?c : a

C = s[0]?a : c

y1 = (−1)s[1]Ab+ (−1)s[0]C

= A(b ⊕ s[1]) +As[1] + (C ⊕ s[0]) + s[0]

Fig. 3. Merged SOPs: First Attempt.

ab+ c

cb− a = cb+ a+ 1

−ab+ c = −(ab+ c+ 1) = ab+ c

−cb− a = −(cb+ a) = cb+ a− 1

Fig. 4. SOP Rewriting.

y1 = (s == 0)? ab+ c :

(s == 1)? cb+ a+ 1 :

(s == 2)? ab+ c : cb+ a− 1

Fig. 5. Premerged SOPs: Second Attempt.

A = s[0]?c : a

C = (s[0]?a : c)⊕ (s[1]⊕ s[0])

y1 = (Ab+ C + s[1]⊕ s[0]− s[1])⊕ s[1]

Fig. 6. Optimized sample SOPs.

drawn from an alphabet of k elements, {x1, x2, ..., xk}:

fi =

m−1
∑

r=0

(−1)si,rαi,rβi,r si,r = {0, 1} i = 0...n− 1

y =(sel == 0)? f0 :

(sel == 1)? f1 :

. . .

(sel == n− 2)? fn−2 : fn−1



Where αi,r and βi,r are drawn from the k possible inputs.

For ease of notation we will use the following nomenclature:

y = mux({f0, f1, ..., fn−1}, sel). Based upon the structure of

Fig. 6, we seek automatic transformations of y into the general

form:

αr = mux((x1, x2, ..., xk), g1,r) r ∈ {0, 1, ..,m− 1}

βr = mux((x1, x2, ..., xk), g2,r) r ∈ {0, 1, ..,m− 1}

y = (−1)g4
m−1
∑

r=0

(−1)g3,rαrβr

=

((

m−1
∑

r=0

βr(αr ⊕ g3,r) + βrg3,r

)

− g4

)

⊕ g4 (1)

Where g1,r, g2,r, g3,r and g4 are all functions of sel. Here αr

and βr are the result of muxing between the k operands and

producing the terms that will produce the rth produce in the

merged SOP. If we assume g4 = 0 then we have a functional

form that would produce an architecture of the form found in

Fig. 3. However by using the function g4 we can optionally

negate whole SOPs and thus create architectures like those

found in Fig. 6. In particular we seek transformations such that

the functions g1,r and g2,r are ‘minimal’, a notion that will

be clearly defined in Part I of the algorithm. There is clearly

freedom in choosing g3,r and g4, in the motivating SOPs this

freedom was chosen to keep the largest product positive. Given

that, for ease of exposition, it has been assumed that all inputs

are of equal word length and so there is no largest product,

it will be assumed that we make the first product positive.

This issue will be addressed in Part IV where the assumptions

stated above will be relaxed.

V. ALGORITHM DESCRIPTION

Following the structure of the optimization of the motivating

SOPs our algorithm seeks to formalize the process by which

Fig. 1 is transformed into Fig. 2 (Part I) and then perform the

subsequent transformations (Part II).

A. Part I

The first step is to minimize the operand muxing; to

facilitate this process consider the n by 2m matrix:

Γ =











α0,0 β0,0 . . . α0,m−1 β0,m−1

α1,0 β1,0 . . . α1,m−1 β1,m−1

...
...

. . .
...

...

αn−1,0 βn−1,0 . . . αn−1,m−1 βn−1,m−1











In order the use the motivating SOPs in Fig. 1, we introduce

a new variable whose value is always 1. In this case n = 4,

m = 2, k = 4 and our alphabet is the set {a, b, c, 1}, hence Γ
can be constructed:

y1 = (s == 0)? a× b+ c× 1 :
(s == 1)? b× c− a× 1 :
(s == 2)? c× 1− a× b :

−a× 1− b× c

Γ =









a b c 1
b c a 1
c 1 a b

a 1 b c









Minimizing the operand muxing can then be viewed as

permuting the elements in each row (while maintaining the

products) in such a way as to minimize the number of distinct

elements in each column. Our approach is to use binary

variables and Binary Linear Programs, this is appropriate given

that the BLP runtimes are acceptable for the benchmarks we

consider and, we believe, the size of problems occurring in

industry. To this end we decompose Γ into k binary matrices

Xr corresponding to the alphabet present, such that:

Γ =
k
∑

r=1

xrXr

So in the case of the motivating SOPs, this decomposition

becomes:

Γ =a









1 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0









+ b









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









+c









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









+ 1









0 0 0 1
0 0 0 1
0 1 0 0
0 1 0 0









(2)

Given this decomposition we can view transformations of the

SOPs as simply manipulating the binary matrices Xr. For Xr

to still represent the original SOP, certain conditions must

be satisfied. To simplify the following matrix equations we

introduce some useful notation. Let 1n1,n2
represent an n1 by

n2 matrix entirely consisting of ones and ei represent the ith

standard basis vector, i.e. a vector with one in position i and

zero elsewhere. Now our first condition is that Xr must still

represent n SOPs of m products, hence:

k
∑

r=1

Xr = 1n,2m (3)

Note that this constitutes 2mn constraints. Secondly, consider

the product αi,rβi,r and assume αi,r = xp and βi,r = xq we

are free to position this product in 2m ways, i.e. xp can be

located in one of 2m places within the ith SOP, the xq location

is then fixed. This corresponds to the following restriction:

(Xp)i,j = (Xq)i,j+(−1)j ∀i, r, j αi,rβi,r = xpxq (4)

Note that this constitutes a total of 2nm2 constraints and only

holds provided that each operand is distinct within each SOP.

However these constraints only check that if xp appears in the

SOP then it will be multiplied by xq , it does not ensure that

the product xpxq exists within the SOP. Given that αi,r = xp

and βi,r = xq , it is sufficient to check that there is a 1 within

the ith row of matrix Xp:

e
T
i Xp12m,1 = 1 ∀i, r αi,rβi,r = xpxq (5)

Note that there are nm such constraints. We are now free to

choose Xr as long as the mn(3+2m) constraints presented in

(3), (4) and (5) hold, as the result can still be interpreted as a



valid transformation of the original set of SOPs. Referring

again to the motivating SOP, we performed the following

transformation between Fig. 1 and Fig. 2:

Γ =









a b c 1
b c a 1
c 1 a b

a 1 b c









⇒ Γ′ =









a b c 1
c b a 1
a b c 1
c b a 1









(6)

We can quantify the reduction in muxing of the final SOP

by this transformation. Pre-transform, operand a was involved

in muxing in 2 locations, b in 4, c in 4 and ‘1’ in 2. Post-

transform a in 2, b in 1, c in 2 and ‘1’ in 1. For a measure

of the muxing cost we can sum the total number of times an

operand is required within the muxing, in this case we have

reduced this total from 12 to 6. In general the muxing cost

can be captured by:

k
∑

r=1

2m−1
∑

j=0

n−1
∨

i=0

(Xr)i,j (7)

This is the sum of the result of ‘OR’ing each column of the

k matrices Xr. We can now state the optimization that will

minimize the amount of final SOP muxing:

min
k
∑

r=1

2m−1
∑

j=0

n−1
∨

i=0

(X ′

r)i,j

s.t.

k
∑

r=1

X ′

r = 1n,2m

(X ′

p)i,j = (X ′

q)i,j+(−1)j ∀i, r, j αi,rβi,r = xpxq

e
T
i X

′

p12m,1 = 1 ∀i, r αi,rβi,r = xpxq

By introducing 2mk variables encapsulated by k vectors vr of

length 2m, we can transform this optimization into the BLP

found in Fig. 7. This program has 2m(n+1)k binary variables

and mn(3 + 2m) + 2mk constraints. The resultant optimized

min

k
∑

r=1

2m−1
∑

j=0

(vr)j

s.t. (vr)j ≥ (X ′

r)i,j ∀r, i

k
∑

r=1

X ′

r = 1n,2m

(X ′

p)i,j = (X ′

q)i,j+(−1)j ∀i, r, j αi,rβi,r = xpxq

e
T
i X

′

p12m,1 = 1 ∀i, r αi,rβi,r = xpxq

(vr)j , (X
′

r)i,j ∈ {0, 1}

Fig. 7. BLP to minimize final SOP muxing.

matrices X ′

r will then be used to construct the transformed Γ:

Γ
′ =

k
∑

r=1

xrX
′

r (8)

B. Part II

Part I of the algorithm was not concerned with any of the

signs si,r. We need to perform the bookkeeping of updating

the signs given the transformation in Part I and proceed with

the Fig. 2 to Fig. 5 transformation. To do so we construct the

n by m matrix of signs:

S =











s0,0 s0,1 . . . s0,m−1

s1,0 s1,1 . . . s1,m−1

...
...

. . .
...

sn−1,0 sn−1,1 . . . sn−1,m−1











We now need to extract the necessary information from Xr

and X ′

r in order to produce the transformed sign matrix S′.

For practical purposes S′ can be trivially created by inspecting

the non zero terms in the corresponding rows of Xr and X ′

r.

However, for completeness, we present the matrix formulation

which states how to construct S′ a row at a time. Equation

9 contains the formula for calculating the ith row of S′ i.e.

e
T
i S

′:

Pr = Xr (Im ⊗ 12,1) P ′

r = X ′

r (Im ⊗ 12,1)

e
T
i S

′
def
= e

T
i S

(

k
⋃

r=1

(

(

e
T
i Pr

)T
⊗
(

e
T
i P

′

r

)

)

)

(9)

Where ⊗ is the Kronecker product of matrices. Pr and

P ′

r are n by m matrices that contain where the products

within the SOPs have been moved. The expression which is

a union over matrices is a permutation matrix so (9) states

that the ith row of S′ is a permutation of the ith row of

S. Having constructed S′ we have now reached the point

of algorithmically constructing the transformation resulting in

Fig. 2. In this case the transformation to S′ is:

S =









0 0
0 1
0 1
1 1









⇒ S′ =









0 0
0 1
1 0
1 1









(10)

In line with the comment in the problem statement we now

look at the sign of the first product and use the identity −x =
x− 1 to guarantee that this will only ever be positive. We split

up the matrix S′ into two matrices: an n by 1 vector GS of

the global signs which is simply the first column of S′ (these

are the signs of the product r = 0 in (1)) and an n by m

matrix LS of the local signs (signs of the products taking into

account the global signs). Note that the first column of LS

will be, by construction, zero.

GS = S′e1

(LS)i,j = (S′)i,j ⊕ (S′)i,0 (11)

So for the example of the motivating SOPs:

S′ =









0 0
0 1
1 0
1 1









⇒ GS =









0
0
1
1









LS =









0 0
0 1
0 1
0 0









(12)



C. Part III

The steps of the algorithm so far are:

1 Construct the binary matrices Xr of the original problem

statement.

2 Solve the BLP found in Fig. 7 producing the optimized

X ′

r.

3 Construct the sign matrix S and then using Xr and X ′

r

compute S′ according to (9).

4 Construct GS and LS from (11).

5 Construct Γ′ according to (8).

We are now in a position to use these results in conjunction

with the problem statement in (1) to state the result of the

algorithm:

αr = mux(Γ′
e2r, sel) r ∈ {0, 1, ..,m− 1}

βr = mux(Γ′
e2r+1, sel) r ∈ {0, 1, ..,m− 1}

y =

((

m−1
∑

r=0

βr(αr ⊕ mux(LSer, sel)) + βrmux(LSer, sel)

)

− mux(GS, sel)

)

⊕ mux(GS, sel) (13)

Recall that αr⊕mux(LSer, sel) results in a signed number, 1

bit larger than the size of αr. Applying this to the motivating

SOPs, combining (2), (6), (10) and (12):

α1 = mux((a, c, a, c), sel) α2 = mux((c, a, c, a), sel)

β1 = mux((b, b, b, b), sel) β2 = mux((1, 1, 1, 1), sel)

y =
(

β1(α1 ⊕ mux((0, 0, 0, 0), sel)) + β1mux((0, 0, 0, 0), sel)+

β2(α2 ⊕ mux((0, 1, 1, 0), sel)) + β2mux((0, 1, 1, 0), sel)−

mux((0, 0, 1, 1), sel)
)

⊕ mux((0, 0, 1, 1), sel)

We rely on standard synthesis tools to reduce this to:

α1 = sel[0]?c : a α2 = sel[0]?a : c

y =
(

α1b+ (α2 ⊕ (sel[1]⊕ sel[0]))+

(sel[1]⊕ sel[0])− sel[1]
)

⊕ sel[1]

which is identical in structure to Fig. 6.

D. Part IV

In order to facilitate the benchmarks used in the next section

we relax two of the assumptions made during the algorithm.

1) SOPs with differing numbers of terms: Introduce two

new symbols into the alphabet for every missing product: a

zero symbol ‘0’ and a don’t care ‘X’ and use 0 ×X for the

missing product. Given that ‘X’s do not contribute to muxing

cost they do not need an associated variable vector vr during

the BLP.

2) SOPs with non distinct operands: In this case introduce

new symbols into the alphabet for each duplicated version of

the operand, but use the same additional variable vr for all

additional symbols; as the muxing cost is the same for all of

the ‘new’ symbols.

VI. BENCHMARK SOPS

The set of benchmarks used are drawn from existing litera-

ture, a standard API and examples created to demonstrate the

benefits of the algorithm. We use the motivating SOP y1 in Fig.

1 as well as those found in Fig. 8. We use y2 to demonstrate the

value of the identity −x = x− 1, y3 and y4 come from [8], y5
implements three integer operations from a standard graphics

API, y6 and y7 purely exercise the BLP. Inputs are assumed

to be unsigned 16 bit operands. The BLP was performed by

the optimization software CPLEX 9.0.0 [10] and synthesis

was performed by Synopsys’ Design Compiler 2009.06-SP5 in

ultra mode using the TSMC 65nm library Tcbn65lpwc. Design

Compiler uses either a carry-save synthesis model or a delay-

optimized flexible Booth Wallace architecture, the reduction

and model selection is constraint and timing driven. Note that

design y6 required the largest solution of a BLP with 1152

binary variables and 1344 constraints, a design which is of

an unusually large size but for which the BLP completes in 2

seconds. Table I contains area comparison figures for seven

benchmark SOPs, for each pair of original and optimized

design we have used the same loose timing constraint. We

took a closer look at design y1, we requested the synthesis

tool to synthesize the design to achieve different delays;

by applying Boolean optimization techniques and utilizing

different standard cells, Design Compiler seeks the design

with smallest area that meets the required delay. Thus we

can see the full delay and area trade off of the motivating

SOPs y1 in Fig. 9. When both designs target minimal delay

the optimized design is 16% faster. Fig. 9 also demonstrates

that the optimized y1 is strictly better throughout the range of

delays presented and shows that the optimized design is not

simply a different point on the area/delay curve of the original

design. On average a 53% area improvement is achieved. The

synthesis results of y6 and y7 demonstrate that the algorithm

derives its real benefit from SOPs with differing numbers of

terms as well as dealing with negative terms effectively.

TABLE I
BENCHMARK SOPS SYNTHESIS RESULTS.

SOP Delay Original Proposed % Runtime
RTL Area RTL Area Impro- BLP

(ns) (µm2) (µm2) vement (s)

1 2.5 7834 3359 57 0.046
2 2.0 7500 3779 50 0.028
3 2.5 6520 3463 47 0.032
4 2.5 4319 2917 32 0.035
5 2.5 7343 3735 49 0.058
6 3.0 11471 11449 0 2.000
7 3.0 2947 2641 10 0.037

VII. IMPROVEMENTS AND FUTURE WORK

Three assumptions remain from those made in the problem

statement. Incorporating signed inputs means modifying the

products in the final SOP to perform signed multiplication

and performing sign extensions appropriately. SOPs with non

identical word lengths would mean that the single SOP formed

in the optimized design will contain non identical word lengths



y2 = (s == 0)? ab : −ab

y3 = (s == 0)? ab :

(s == 1)? cd+ e :

(s == 2)? f + g : h− k

y4 = (s == 0)? ab :

(s == 1)? ab+ e :

(s == 2)? a+ b : a− b

y5 = (s == 0)? ab :

(s == 1)? − ab :

(s == 2)? c :

(s == 3)? − c :

(s == 4)? ab+ c :

(s == 5)? ab− c :

(s == 6)? − ab+ c : −ab− c

y6 = (s == 0)? ab+ cd+ ef + gh :

(s == 1)? bc+ de+ fg + ha :

(s == 2)? cd+ ef + gh+ ab :

(s == 3)? de+ fg + ha+ bc :

(s == 4)? ef + gh+ ab+ cd :

(s == 5)? fg + ha+ bc+ de :

(s == 6)? gh+ ab+ cd+ ef :

ha+ bc+ de+ fg

y7 = (s == 0)? ab+ c : b+ d

Fig. 8. Benchmark SOPs.

2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Delay (ns)

A
re

a
 (

µ
m

2
)

 

 

Original SOP1

Optimised SOP1

Fig. 9. Benchmark y1 Delay Area Curves.

which in turn implies that some re-orderings of the individual

SOPs are invalid as they will not ‘fit’ into the final SOP; this

translates into forcing certain entries in Xr to zero.

The benchmarks considered did not suffer from BLP run-

time issues, however the size of the alphabet may result in

a BLP being incapable of solving the optimization problem

within an acceptable time frame, in which case other optimiza-

tion techniques would have to be explored. However, within

the authors’ experience, designs of the size that test the limits

of the approach are beyond those found within industry. Fully

incorporating constants into the algorithm is part of future

work.

VIII. CONCLUSION

We have presented a new algorithm for resource sharing

mutually exclusive sum-of-products that can deliver substantial

delay and area benefits. Hence the approach is applicable

to arithmetic computations in timing critical and non timing

critical datapath domains. The algorithm presented can be

extended to any general sum-of-product expressions and runs

in acceptable time for the industrial size benchmarks. It is thus

believed that such an approach would be of significant benefit

to high level datapath synthesis.

ACKNOWLEDGMENT

The authors would like to acknowledge Imagination Tech-

nologies Ltd for supporting this research and the DATE 2011

reviewers for their feedback.

REFERENCES

[1] K. P. Acken, M. J. Irwin, R. M. Owens, and A. K. Garga, “Architectural
optimizations for a floating point multiply-accumulate unit in a graphics
pipeline,” in ASAP: International Conference on Application Specific

Systems, Architectures and Processors, August 1996, pp. 65–71.
[2] S. Das and S. P. Khatri, “A timing-driven synthesis approach of a

fast four-stage hybrid adder in sum-of-products,” in MWSCAS: 51st

Symposium on Circuits and Systems, August 2008, pp. 507–510.
[3] ——, “An inversion-based synthesis approach for area and power

efficient arithmetic sum-of-products,” in VLSID: 21st International Con-

ference on VLSI Design, January 2008, pp. 653–659.
[4] D. Kumar and B. Erickson, “Asop: Arithmetic sum-of-products gener-

ator,” in ICCD: IEEE International Conference on Computer Design:

VLSI in Computers and Processors, October 1994, pp. 522–526.
[5] R. Zimmerman and D. Q. Tran, “Optimized synthesis of sum-of-

products,” in 37th Asilomar Conference on Signals, Systems and Com-

puters, vol. 1, November 2003, pp. 867–872.
[6] A. K. Verma and P. Ienne, “Improved use of the carry-save representation

for the synthesis of complex arithmetic circuits,” in ICCAD: IEEE/ACM

International Conference on Computer Aided Design, November 2004,
pp. 791–798.

[7] S. Das and S. P. Khatri, “A merged synthesis technique for fast
arithmetic blocks involving sum-of-products and shifters,” in VLSID:

21st International Conference on VLSI Design, January 2008, pp. 572–
579.

[8] ——, “Resource sharing among mutually exclusive sum-of-product
blocks for area reduction,” TODAES: ACM Transactions on Design

Automation of Electronic Systems, vol. 13, no. 3, pp. 51–57, July 2008.
[9] S. Jain et al., “A 90mw/gflop 3.4ghz reconfigurable fused/continuous

multiply-accumulator for floating-point and integer operands in 65nm,”
in VLSID: 23rd International Conference on VLSI Design, January 2010,
pp. 252–257.

[10] ILOG Cplex 9.0 User’s Manual, ILOG, October 2003.


