
I2CRF: Incremental Interconnect Customization for
Embedded Reconfigurable Fabrics

Jonghee W. Yoon∗, Jongeun Lee§†, Jaewan Jung∗, Sanghyun Park∗, Yongjoo Kim∗, Yunheung Paek∗ and Doosan Cho‡

∗Seoul National University, Korea §Corresponding author. ‡Sunchon National University
{jhyoon,jwjung,shpark,yjkim}@optimizer.snu.ac.kr, †UNIST, Korea Korea

ypaek@snu.ac.kr jlee@unist.ac.kr dscho@sunchon.ac.kr

Abstract—Integrating coarse-grained reconfigurable architec-
tures (CGRAs) into a System-on-a-Chip (SoC) presents many
benefits as well as important challenges. One of the challenges is
how to customize the architecture for the target applications ef-
ficiently and effectively without explicit design space exploration.
In this paper we present a novel methodology for incremental
interconnect customization of CGRAs that can suggest a new
interconnection architecture that can maximize the performance
for a given set of application kernels while minimizing the
hardware cost. Applying the inexact graph matching analogy, we
translate our problem into graph matching taking into account
the cost of various graph edit operations, which we solve using the
A∗ search algorithm with a heuristic tailored to our problem.
Our experimental results demonstrate that our customization
method can quickly find application-optimized interconnections
that exhibit 70% higher performance on average compared to
the base architecture, with relatively little hardware increase in
interconnections and muxes.

I. INTRODUCTION

The ever increasing demand for faster and more efficient
computation all require constant innovation in computer design
such as heterogeneous multi-core processors, general-purpose
GPU computing, and reconfigurable architectures (e.g., FP-
GAs). While reconfigurable architectures are mainly used as
prototyping platforms, those used as flexible hardware accel-
erators can be easily be integrated into SoCs (Systems-on-
Chips) along with other modules such as soft cores and on-chip
memories [1], [2], motivated by the need to reduce the commu-
nication time between the reconfigurable accelerator and other
processors. Unlike FPGAs, such reconfigurable accelerators
tend to be coarse-grained, or at the granularity of words
(hence called Coarse-Grained Reconfigurable Architectures, or
CGRAs), and are often targeted for such application domains
as media processing, cryptography, and communication [3].

CGRAs embedded in SoCs present new opportunities for
further customization for target applications. In today’s design
processes, virtually every soft module that is integrated into

This work was supported in part by the Korea Science and Engineer-
ing Foundation(KOSEF) NRL Program grant funded by the Korea gov-
ernment(MEST) (No. 2009-0083190), the Engineering Research Center of
Excellence Program of Korea Ministry of Education, Science and Technol-
ogy(MEST) / Korea Science and Engineering Foundation(KOSEF) (Grant
2010-0001724), and the IDEC, and in part by the 2009 Research Fund of
the UNIST, under Grant 090035.

an SoC goes through a configuration step before the SoC is
optimized for various design objectives. Configuration may
include, in the case of a CGRA, such obvious ones as adjusting
its size or the number of processing elements, but one can
easily envision more elaborate ones such as choosing the
right set of operations for the processing elements and even
tuning the interconnection network and the memory subsys-
tem architectures. Such application-specific customization of
CGRAs is analogous to Application-Specific Instruction set
Processor (ASIP) design (e.g., [4]), but is much more compli-
cated due to the exceedingly larger design space of CGRAs.
The goal of such architecture customization is to increase
performance and/or energy-efficiency, while not hampering
compilation generality1 or worsening VLSI implementation.2

As sometimes architectural specialization may be the only
option to boost the performance without increasing power
dissipation or resorting to ASIC for high-performance or real-
time applications, it is important to address the issue of how
to make the best design/customization decisions for CGRAs
embedded in SoCs.

In this paper we consider the problem of incrementally
changing the interconnect architecture of embedded CGRAs
to maximize their performance for given applications, which
is more challenging than application mapping [6], [7] or
architecture synthesis [8], [9]. We focus on the intercon-
nect architecture, as interconnection topology is found to
have a significant impact on both performance and energy
efficiency of CGRAs [10], [11]. Our methodology changes
the architecture incrementally, by adding extensions to the
base architecture (e.g., a mesh network), so that regularity is
maintained through the base architecture, but anything beyond
the mesh provides some level of specialization for the target
applications. By starting from a base architecture, which is
already a reduced version compared to typical CGRAs (e.g.,

1Recent compilation algorithms for CGRAs are very general so that an
arbitrary interconnection topology poses no greater challenge for compilation
than a regular interconnection [5].

2Architecture customization may help VLSI implementation by making the
design simpler (for the same performance level), or by restricting the search
space to the ones that preserve the structural regularity to exploit the ease of
VLSI implementation of regular structures.

978-3-9810801-7-9/DATE11/©2011 EDAA

1-hop and diagonal on top of mesh), our technique can reduce
the cost of the hardware while delivering the same level of
performance.3

One alternative to architecture customization is design space
exploration. However the extensive nature of CGRA design
space has permitted only very limited explorations of the space
so far [13], [14], [15]. Moreover, application mapping for
CGRA is itself still a long-running process [7], [6] despite
recent advances, mainly because it must involve placement and
routing on a 2D array. The main challenge of our approach
is thus to find the best architecture customization without
explicit design space exploration. We do so by matching
the application graph to the architecture graph with minimal
extension of the latter, which is similar to inexact graph
matching [16]. Employing the common strategy in inexact
graph matching, we translate our problem into that of finding
the graph edit sequence to best embed an application graph
into an architecture graph, taking into account the cost of
graph edit operations. The inexact graph matching problem is
arguably at least as complex as subgraph isomorphism [17],
which is NP-complete, and often solved with the A∗ search
algorithm [18], for which we develop a heuristic function
tailored to our problem domain. Our experimental results
using benchmark kernels from multimedia and digital signal
processing demonstrate that our customization method can
quickly find application-optimized interconnections that ex-
hibit 70% higher performance on average compared to the
base architecture, or 41% higher performance on average
with substantially less hardware cost compared to a typical
interconnect architecture.

II. DEFINITIONS AND PROBLEM FORMULATION

Kernel Graph An application loop i can be represented
by a directed graph with labels, called kernel graph, Ki =
(Vi, Ei, αi), where the vertices in Vi are the operations in
the loop, edges in Ei represent the dependence between the
operations. Labeling αi is a function assigning an operation
type to each vertex.
CGRA Graph An M × N CGRA can be represented
as another directed graph with labels C = (P,L, β), where
pij ∈ P with 1 ≤ i ≤ M and 1 ≤ j ≤ N , is the (i, j)-th
Processing Element (PE) of the CGRA, and L is the set of all
interconnection links. C0 and L0 denote the base CGRA and
its interconnection links, respectively. For two PEs p, q ∈ P ,
there is an interconnection link l = (p, q) ∈ L iff q can use
the result of p that was generated in the previous cycle. The
set of operation types supported by a PE is captured by the
labeling function β.
Augmentation & Mapping Architecture extension is rep-
resented by an augmentation to C0, which is the set of
additional interconnection links ∆L =

∪
i ∆

i
L, where ∆i

L is
the augmentation induced by Ki. A (kernel graph) mapping is

3The idea of superimposing a few long-range links on a mesh network
to take advantage of both regularity and partial topology customization is
not entirely new (e.g., [12] in the network-on-chip domain), but CGRA
customization has a completely different set of challenges.

PE

1

PE

1

PE

2

PE

2

PE

3

PE

3

PE

4

PE

4

PE

5

PE

5

PE

6

PE

6

PE

7

PE

7

PE

8

PE

8

PE

9

PE

9

(a) Kernel Ki (b) Base CGRA C0 (c) Augmentation and mapping

(K’i, C)

Fig. 1. CGRA augmentation and kernel mapping.

a function ϕ : Ki → C, which consists of two sub-functions,
ϕVi : Vi → P , and ϕEi : Ei → 2L, where L = L0 ∪∆L.
• ϕVi is an injective function that maps operations to com-

patible PEs. In other words, each vertex v ∈ Vi is mapped
to a distinct PE p ∈ P such that αi(v) ∈ β(p).

• ϕEi is a multi-valued function that maps data dependence
e ∈ Ei of a kernel to a set of interconnection links I ∈ 2L.

Constraints
• Simple Path Existence: For an edge e = (u, v) ∈ Ei, let
I = ϕEi

(e) ∈ 2L. Then I must constitute a valid simple
path.

• Routing PE: For a data dependence edge e = (u, v) ∈ Ei,
RPEe is the set of routing PEs for e, RPEe = {q|∀l =
(p, q) ∈ ϕEi(e), q ̸= ϕVi(v)}. We define RPE to be the set
of all routing PEs, or RPE =

∪
e∈Ei

RPEe. A routing PE
may be used to route only one value, and no computations
may be performed on it in that particular cycle.

• Shared Resource Constraint: Each row of the CGRA may
share resources such as floating-point unit and load-store
unit [19]. To specify such a constraint we define the number
of shared resources per row for each shared resource type.

Interconnection Insertion Cost Inserting interconnections
to the base CGRA incurs additional hardware cost c(∆i

L) =
Σl∈∆i

L
cli(l), where cli(l) is the cost of inserting an intercon-

nection link.
Now the problem is to find the best mapping for the given

set of kernels, minimizing the cost of new interconnection
links added to the base CGRA, C0. A typical measure of ap-
plication mapping for a loop is Initiation Interval (II). However
since we consider multiple loops, and II has dependence on
the size of a loop, we take IPC (Instructions Per Cycle).

Given a set of n kernels K = {Ki | 1 ≤ i ≤ n}, and
a base CGRA C = (P,L0, β), find mappings ϕ(Ki) with the
objective of min c(∆L) for maximal IPC, under i) simple path
existence, ii) uniqueness of, and no computation on, routing
PE, and iii) shared resource constraints.

III. OUR APPROACH: I2CRF

A. Our Strategy

While application mapping for CGRA is finding a graph
X ⊂ C0 that is isomorphic to K, ours is finding a graph
Y that is isomorphic to K and subset of C which is most
similar to C0. The dissimilarity between two graphs, or the

graph (edit) distance, is defined as the cost of the minimum-
cost graph edit path from one graph to the other [16]. Suppose
that we want to compute the graph distance between Ki and
C0 (see Figure 1). C0 is not isomorphic to kernel graph Ki,
nor is any subgraph of C0. Thus we add or remove nodes
and edges from Ki to match C0, and the problem is to find
the sequence of such graph edit operations with the minimum
cost. This can be considered as a search problem in a graph-
edit state tree where the root is Ki and each branch defines
a graph edit operation with its cost. Then we need search for
the minimum-cost path from the root to a leaf that is C0. By
searching for the minimum-cost edit path we can ensure that
the required CGRA augmentation is minimal.

B. Graph Edit Operations
While our problem seems more complicated than pure

inexact graph matching due to its application-to-architecture
mapping aspect, an important observation is that once a CGRA
augmentation and mapping solution is given, one can list all
the necessary operations to convert the structure of a kernel
graph to that of a CGRA graph, which can be considered as
graph edit operations. Thus we say a kernel graph mapping
ϕ = (ϕVi

, ϕEi
) induces graph edit operations. Recall that

a kernel graph mapping4 defines which operation node in
Vi is mapped to which PE in P (by ϕVi) and which data
dependence edge in Ei is mapped to which subset of L (by
ϕEi).

5 Therefore by comparing Ki and C0, one can find all
the graph edit operations necessary to convert Ki to C0. We
summarize in Table I the set of the graph edit operations that
can arise from CGRA mappings and how they can be identified
from a given mapping. In our scheme, node deletion does not
occur, and we omit node substitution as it is trivial. It can
be seen that the operations listed in the table are enough to
transform Figure 1(a) to (b) through (c).

TABLE I
GRAPH EDIT OPERATIONS INDUCED BY A KERNEL GRAPH MAPPING

Graph Edit Op. Induced by
Node insertion A routing PE (e.g., p6, p9) or an unused PE
Edge insertion An unused interconnection link; e.g.,

(p5, p6), (p6, p5), (p7, p8), (p8, p7), (p2, p1), ...
Edge substitu-
tion (identical)

A data dependence edge mapped to a single
interconnection link included in L0

Edge
substitution
(non-identical)

An edge mapped to multiple interconnection
links via routing PE(s); e.g., (v3, v7) →
{(p8, p9), (p9, p6), (p6, p3)}

Edge deletion A data dependence edge mapped to a single
interconnection link not included in L0 (in-
cluded in ∆L); e.g., (v5, v6)

C. Graph Edit Cost Model
Among the graph edit operations listed in Table I, only

edge deletion directly implies architecture extension, or ∆L.

4Our notion of mapping includes CGRA augmentation, as its target archi-
tecture already includes necessary architecture extension (∆L).

5Note that though the two sub-functions ϕVi
, ϕEi

overlap mostly, we need
ϕEi

(or equivalently routing PE information) to specify which routing PEs,
if any, are used to map data dependence edges.

The cost of an edge deletion operation is what is termed
interconnection insertion cost in our problem formulation,
which we will describe in more detail. Another edit oper-
ation that can affect the quality of mapping and thereby
indirectly impact the amount of architecture extension, is the
node insertion operation due to routing PEs. In kernel graph
mapping, often II has to be increased due to the lack of
interconnection resources even though there are enough PEs.
Using PEs as interconnection resources (“routing PE”) can
help, but only if routing PEs are judiciously used. Therefore,
routing PEs can be considered as a cheaper alternative to
adding interconnection links, and we associate a cost with it.
Thus there are two kinds of cost: i) edge cost is the cost of
adding a new, custom interconnection link, and ii) vertex cost
is the cost of adding a new vertex for use as a routing PE.

Specifically, a kernel graph mapping ϕ induces a set of
graph edit operations, the cost of which is defined as:

c(ϕ) =
∑

v∈RPE

cv(v) +
∑
e∈Ed

i

ce(e) (1)

where cv(v) is the cost of inserting vertex v for use as a routing
PE, ce(e) is the cost of deleting edge e, and Ed

i is the set of
edges that are deleted. Here, ce(e) is identical to cli(l) in II.
The vertex and edge costs are defined as follows.

cv(v) = c1 (2)
ce(e) = c2 · (wm(s) + ww(e)) (3)

where c1 and c2 are constants representing unit vertex cost
and unit edge cost, respectively. The absolute value of c1 is
not important, since c2 is defined as a multiple of c1. We set
c2 large enough, so that routing through PEs is first sought
out before creating a new, custom link to implement a data
dependence edge. For our experiments we set c2 = c1 · (|P |−
|Vi| + 1), which makes it much cheaper to use routing PEs
than to create a new link. The edge cost, ce(e), consists of
two parts: wm(s) is the cost due to the increased multiplexor
complexity in the affected PEs, and ww(e) is the cost due
to the newly added wires. These terms are defined as relative
weights to the unit edge cost. The multiplexor cost is assumed
to be constant in our experiment, but ideally a step function-
like cost model can be employed to more accurately model
the cost, for which the current state information s becomes
necessary. The wire cost is assumed to be linearly proportional
to the wire length (i.e., Manhattan distance divided by unit
distance between PEs), but it is easy to extend it to a more
complex model. We assume that long wires are pipelined so
that they may not be on the critical path.

D. Heuristic Function for A∗ Search

Since in our case graph edit operations are induced by a
mapping, we search the mapping space for the minimum-
cost path. As visiting all mapping instances may require
a prohibitive amount of resources even for moderate-sized
problems, we employ the A∗ search algorithm [18], which
requires a heuristic function to guide the search. As we search

the mapping space, different versions of partial mappings are
generated, inducing a set of graph edit operations, the cost of
which determines g(s), or the cost of the optimal path from
the root state to the current state s found by A∗ so far. To
compute g(s), we first extract the subgraph of the kernel graph
containing all the mapped nodes for a given partial mapping
(which is a full mapping as far as the subgraph is concerned),
and then generate the set of graph edit operations using the
method listed in Table I. The sum of the costs of the graph
edit operations is g(s).

The heuristic function h(s), which estimates the cost from
s to a leaf state, comes from the portion of the kernel
graph that is yet to be mapped, or the subgraph containing
all the unmapped edges. (Combined, g(s) + h(s) gives an
assessment of the partial mapping s.) The key idea of h(s)
is to find the number of difficult-to-map edges. We assume
vertex scattering-based mapping, which is essential in some
mesh-based mapping algorithms to support certain architec-
tural constraints such as shared resource constraints. Vertex
scattering [20] partitions, or splits, a kernel graph, and each
partition is mapped to a different row. Then a fork, which is
a set of adjacent edges cut by a split, cannot be mapped to
a mesh without additional routing resources such as a routing
PE or a custom interconnection link (“difficult-to-map edge”).
Also, an overlength edge, which is defined as an edge between
different partitions that are not neighboring with each other, is
a difficult-to-map edge. For those difficult edges there is some
positive cost. The cost can be minimized if routing PEs are
maximally used, because routing PEs are exceedingly cheaper
than adding an interconnection link (c1 ≪ c2). Therefore the
minimum number of required routing PEs is Nf + |Eo|, or
Nf +

∑
e∈Eo

l(e), where Nf is the number of forks, Eo is the
set of overlength edges, and l(e) is a conservative estimation
of wire length (in terms of routing PEs necessary) for edge e.
for edge e. For l(e) we use the number of partitions passed
by e.

Now our heuristic function h(s) for a subgraph from s can
be defined as:

h(s) =

{
c1Nr if Nr ≤ Ni

c1Ni + c2(Nf + |Eo| −Ni) otherwise (4)

where Ni = |P |− |Vi| is the number of available routing PEs,
and updated for each state s. If there are enough routing PEs
(Nr ≤ Ni), the minimum cost is achieved by implementing all
the difficult edges with PE routing. Otherwise after exhausting
all the available PEs first, the remaining difficult-to-map edges
must be implemented using custom interconnection links.

E. Example

Figure 2 illustrates with an example how to find the best
CGRA augmentation and mapping. The input base CGRA
graph, C, and the graph edit costs are shown in Figure 2(a).
Figure 2(b) illustrates input kernel graph, Ki, and its vertex
scattering result, which assigns v1 and v4 to the first row of C,
and v2 and v3 to the second row. A fork (black thick arrows
inFigure 2(b)) is identified at the vertex scattering stage. The

A∗ search tree is drawn in Figure 2(c), where each node
has its state ID (“s”), incremental mapping information ({·}),
and its cost (in dark square). The symbol $ in the mapping
information means routing vertex insertion.

The root node has g(0) = 0 since nothing has been mapped
yet, and h(0) = 1 from the fork node in the kernel graph.
The search space is explored as mapping is incrementally
made. At the second level of the tree all three states have
the same cost, thus we pick any one at random (s = 1). At
state s = 5, substituting p3 for v4 makes it necessary to insert
a routing vertex, thereby increasing the g(s) cost to 1, while
at the same time those edit operations do not help remove the
existing fork, which means that h(5) is unchanged. Figures
2(d) through (h) depict extended kernel graphs (black solid
line graphs) generated by complete mappings. At state s = 14
in Figure 2(h), the g(s) cost becomes 1 as there is one PE
routing only while h(s) becomes 0, which gives the minimum
overall cost, and thus an optimal edit path.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our approach, we com-
pare our custom-interconnect CGRAs against CGRAs with
predefined-interconnects of different complexity. The prede-
fined interconnects are i) mesh, ii) 1-hop (connecting PEs of
distance 2 or less, vertically and horizontally), iii) diagonal,
and iv) mixed (combining all of the above). The rest of
the CGRA architecture is based on the MorphoSys architec-
ture [21]. The size of the PE array is 4x4, which is often used
in other CGRA literature [6] for evaluation.

We use kernels from multimedia and digital signal process-
ing benchmarks. Each kernel is fed to our I2CRF interconnect
customization tool along with a base CGRA architecture that
has only mesh interconnections. Our tool generates a set of
new uni-directional interconnections that makes the CGRA
achieve the best performance (in terms of II) for the given
set of kernels, while trying to minimize the cost (priority is
in maximizing performance). If multiple kernels are presented
as input, the set of new interconnection links derived from a
kernel is added to the CGRA architecture, and the extended
CGRA is used to find the architecture augmentation and
mapping for the next kernel. Therefore the interconnection
links added for the previous kernel can be used for free in
the next kernel, which can lower the cost of the overall ar-
chitecture extension for multiple kernels, compared to simply
merging the architecture extensions separately derived from
each kernel. In contrast, in a typical CGRA mapping approach,
kernels are simply mapped to the CGRA architecture without
any architecture customization, which often results in much
higher II than is possible through customization.

The selection of a mapping algorithm seems important for
fair comparison. We try two approaches. The first approach
is to use our own A∗ search engine with modifications that
disable edge deletion operations. The second approach is
to use a well-known mapping algorithm such as the EMS
algorithm [6]. Both have merits and problems, and we combine

PE

1

PE

2

PE

4

PE

5

PE

3

PE

6

Fig. 2. Vertex scattering and searching for the best mapping using the A∗ search.

Mesh Diagonal 1-Hop Mixed I2CRF Runtime(sec)

1000

10000

14

16

18

Mesh Diagonal 1 Hop Mixed I2CRF Runtime(sec)

0
0
%

)

100

1000

8

10

12

z
a

ti
o

n
,

1
6

=
1

0

10

2

4

6

8

P
C

 (
P

E
U

ti
li

z

10

2I
P

Fig. 3. Performance comparison between a mapping approach and our
customization approach, for benchmark kernels (G.M. = Geometric Mean).
IPC increases in the order of mesh ≤ diagonal ≤ 1-hop ≤ mixed ≤ I2CRF.
Runtime is shown on the right axis on a log-scale.

both approaches and report the best results. We limit the
mapping time for the first approach to two hours per II (if
no mapping is found within 2 hours, the next II is tried).

B. Benchmark Kernel Results

Figure 3 shows the performance of different CGRA ar-
chitectures for benchmark kernels, in terms of IPC, or PE
utilization (IPC of 16 is equivalent to 100% utilization as
there are 16 PEs in the PE array). Routing PEs are not
counted toward PE utilization. Overall, the PE utilization
of CGRAs are not very high, especially for mapping-only
approaches, regardless of the interconnection topology. This
is in part due to the small size of the data flow graph. For
instance, if a kernel has 17 operations, the smallest II is 2,
and utilization will be limited to 53%. But in large part, it
is limited by the lack of interconnection resources. Hence, as

TABLE II
CUSTOMIZATION OVERHEAD FOR BENCHMARK KERNELS

Interconnection Multiplexor
Benchmark #Links AvgLen MaxLen AvgInc MaxInc #>Max
compress 0 0 0 0 0 0
LowPass 5 2.40 4 0.31 1 1
wavelet 4 2.75 3 0.25 1 1
calc1 5 3.20 4 0.31 1 1
calc2 13 2.54 5 0.81 1 4
calc3 9 3.11 4 0.56 1 2
Sobel 11 3.18 5 0.69 2 3
SOR 7 2.86 4 0.44 1 2
bdist 6 2.33 3 0.38 2 2
dct 21 2.71 6 1.31 3 6
dist2 5 2.40 3 0.31 1 1
hydro 0 0 0 0 0 0
ICCG 0 0 0 0 0 0
inner prod 0 0 0 0 0 0
n complex 3 2.33 3 0.19 0 0
prewitt 9 3.11 4 0.56 2 2
SAD 7 2.71 4 0.44 2 3
state 3 3.33 4 0.19 0 0
1-Hop 32 2.00 2 2.00 2 12
Diagonal 36 2.00 2 2.25 4 12
Mixed 68 2.00 2 4.25 6 16

we see in the graph, the more versatile the interconnect is,
the greater number of PEs are utilized for actual computation.
On average, the PE utilization is increased by 23% through
a more complicated interconnect (Mixed) compared to the
Mesh architecture. In comparison, through our interconnection
customization methodology the PE utilization and the IPC are
increased by more than 70% on average compared to Mesh,
or by 41% on average compared to Mixed.

Table II summarizes the overhead of our customization
approach. The overhead mainly consists of the added intercon-

nection links and the increased mux size. The table lists, on
the left half, the number of new interconnection links and their
average/maximum lengths. The length of a link is calculated
as Manhattan distance between the end points, with 1 being
the distance between PEs (PEs are assumed to be square-
shaped). On the right half, the table lists the average/maximum
increase in mux sizes (in terms of the number of inputs), and
the number of muxes that grow bigger than the largest mux
before customization.6 For comparison the table also lists the
same statistics for three interconnection architectures (1-hop,
diagonal, and mixed), against which our custom-generated
architectures are compared.

Table II first reveals that the number of new interconnection
links added by our customization methodology is very small
compared to other typical interconnection architectures. The
average lengths of the new interconnection links are also
very modest (around 3) though there are a few long links,
of up to 6 in the case of dct. When it comes to mux, our
technique boasts a very marginal increase in the overall mux
complexity compared to the base architecture (i.e., rarely
more than 1 extra input is needed on average) whereas other
architectures routinely have at least 2 extra inputs. While
this is a direct consequence of having a small number of
new interconnection links overall, it does suggest that our
customization methodology adds interconnection links very
judiciously.

C. Optimization Time

An alternative to algorithmic architecture customization
such as ours is Design Space Exploration (DSE). While DSE
can find the best architectures at least in theory, it is extremely
slow. And it is not clear at all how one can perform DSE
efficiently and effectively, especially since CGRAs have a
number of architectural parameters and therefore vast design
space. Further, unlike compilation for uniprocessors, mapping
a kernel to a CGRA can take quarter to half an hour even
by a heuristic algorithm [6]. In contrast, our approach can
find competitive custom interconnection architectures taking
reasonable time as shown in Figure 3, which is very much
in the same range as the compilation times (not shown here),
sometimes even faster. One reason why ours can be faster
than a mapping algorithm is that a mapping algorithm takes
longer if the final II is higher, and ours finishes very often at
a lower II. Still our experimental results clearly demonstrate
that our customization method can find competitive custom
interconnection architectures very quickly.

V. CONCLUSION

We presented an interconnection customization method for
coarse-grained reconfigurable architectures (CGRAs). The in-
terconnection architecture of a CGRA ranges from a simple

6Even before customization mux sizes can vary depending on the location
of a PE. E.g., fewer-input muxes may be found at the corners.

mesh to much more complicated ones, and has a potential
to impact the utilization of processing elements and the
performance. Our method exploits the similarity between
the interconnection customization problem and inexact graph
matching.

The experiments in our study have many limitations espe-
cially regarding the back-end implementation of CGRAs. For
instance we assume that non-homogeneous extensions to a
base interconnection architecture can be made without much
penalty in VLSI design. We are currently working to find out
the extent of the difficulty due to the non-homogeneity as well
as find novel ways to mitigate any impact if necessary. We
also plan to extend the scope of architecture customization for
CGRAs.

REFERENCES

[1] A. Lodi et al., “An embedded reconfigurable datapath for SoC,” in
FCCM ’05, 2005.

[2] S. Khawam et al., “Embedded reconfigurable array targeting motion
estimation applications,” in IEEE ISCAS, 2003.

[3] R. Hartenstein, “A decade of reconfigurable computing: a visionary
retrospective,” in DATE ’01, 2001.

[4] P. Yiannacouras et al., “Application-specific customization of soft pro-
cessor microarchitecture,” in FPGA ’06, 2006.

[5] H. Park et al., “Modulo graph embedding: mapping applications onto
coarse-grained reconfigurable architectures,” in CASES ’06, 2006.

[6] H. Park et al., “Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures,” in PACT ’08, 2008.

[7] B. Mei et al., “DRESC: A retargetable compiler for coarse-grained
reconfigurable architectures,” in FPT ’02, 2002.

[8] Z. Huang et al., “The design of dynamically reconfigurable datapath
coprocessors,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 2, 2004.

[9] P. Brisk et al., “Area-efficient instruction set synthesis for reconfigurable
system-on-chip designs,” in DAC ’04, 2004.

[10] A. Lambrechts et al., “Energy-aware interconnect optimization for a
coarse grained reconfigurable processor,” in VLSI Design ’08, 2008.

[11] N. Bansal et al., “Network topology exploration of mesh-based coarse-
grain reconfigurable architectures,” in DATE ’04, 2003.

[12] U. Y. Ogras et al., “Its a small world after all: Noc performance
optimization via long-range link insertion,” IEEE Trans. VLSI, vol. 14,
2006.

[13] B. Mei et al., “Architecture exploration for a reconfigurable architecture
template,” IEEE Design and Test of Computers, vol. 22, 2005.

[14] R. W. Hartenstein et al., “Design-space exploration of low power coarse
grained reconfigurable datapath array architectures,” in PATMOS ’00,
2000.

[15] K. Karuri et al., “A design flow for architecture exploration and im-
plementation of partially reconfigurable processors,” IEEE Trans. VLSI,
vol. 16, 2008.

[16] H. Bunke, “Inexact graph matching for structural pattern recognition,”
Pattern Recognition Letters, vol. 1, no. 4, 1983.

[17] S. Thoresen, “An efficient solution to inexact graph matching with
application to computer vision,” Ph.D. dissertation, NTNU, Norway,
2007.

[18] P. E. Hart et al., “A formal basis for the heuristic determination of
minimum cost paths,” Autonomous Mobile Robots: Perception, Mapping,
and Navigation (Vol. 1), 1991.

[19] Y. Kim et al., “Resource sharing and pipelining in coarse-grained
reconfigurable architecture for domain-specific optimization,” in DATE
’05, 2005.

[20] G. D. Battista et al., “A split & push approach to 3D orthogonal
drawing,” in Graph Drawing, 1998.

[21] H. Singh et al., “Morphosys: An integrated reconfigurable system
for data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol. 49, no. 5, 2000.

