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ABSTRACT 

3D stacked DRAM improves peak memory performance. However, 

its effective performance is often limited by the constraints of row-

to-row activation delay (tRRD), four active bank window (tFAW), 

etc. In this paper, we present a quantitative analysis of the 

performance impact of such constraints. In order to resolve the 

problem, we propose balancing the budget of DRAM row activation 

across DRAM channels. In the proposed method, an inter-memory 

controller coordinator receives the current demand of row 

activation from memory controllers and re-distributes the budget to 

the memory controllers in order to improve DRAM performance. 

Experimental results show that sharing the budget of row activation 

between memory channels can give average 4.72% improvement in 

the utilization of 3D stacked DRAM. 

 

1. Introduction 
3D stacked DRAM is expected to become a practical solution to 

resolve the memory wall problem [1][2][3][4]. It provides the 

vertically connected SoC with high memory bandwidth via many 

inter-die wires (via face-to-face and/or TSVs). Thus, multiple 

memory channels1 are available from a single DRAM die or a set of 

DRAM dies. Figure 1 illustrates multiple channels enabled by 3D 

stacked memory. Figure 1 (a) shows the case where a single DRAM 

die provides four channels while Figure 1 (b) shows the case where 

multiple DRAM dies are stacked and they share the four channels. 

 

 
Figure 1 3D stacked DRAM 

                                                                    

1  A memory channel corresponds to the memory interface of 

conventional DRAM. It consists of address, data and control 

signals and works as an independent path to access DRAM. 
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3D stacking of DRAM increases peak memory bandwidth. 

However, increasing effective memory bandwidth requires 

resolving practical issues. In this paper, we identify a significant 

problem in increasing effective memory bandwidth which is caused 

by DRAM timing constraints. 

Figure 2 illustrates two timing constraints in DRAM: tRRD and 

tFAW. tRRD is the minimum latency (e.g., 7.5ns) between two 

RAS (row activation) commands while tFAW (four active bank 

window) limits the number of RAS commands within the time 

interval of tFAW to four. Both are mostly constrained by IR drops 

[5] and address decoding latency [6]. Especially, RAS commands 

for row activation is power hungry [7][8][9]. Figure 2 illustrates a 

current profile in DRAM [10]. Four consecutive RAS commands 

(spaced with tRRD) are issued within tFAW. The figure shows a 

current profile where RAS commands create current spikes. Such 

current drawing incurs supply voltage drop affecting the latency of 

neighbor blocks which share the same supply voltage. Such voltage 

drop can cause timing-related errors in timing critical circuits in 

DRAM, e.g., data sensing errors in sense amplifiers [11]. 

 

 
Figure 2 Current profile in DRAM accesses 

 

Note that the constraints of tRRD and tFAW are imposed on the 

entire DRAM die since the power network is often designed as a 

single entity. Typically, there are two core and peripheral power 

networks on a DRAM die [6][11]. Currently, a 3D stacked DRAM 

die is designed as an extension of existing DRAM die by adding 

new circuitry to increase the number of memory channels, e.g., I/O 

circuits for 4 channels, and by regrouping internal memory tiles to 

give more number of banks, e.g., 4 banks per channel [3]. Thus, if 

such modifications are made without significantly improving the 

capability of power network, the existing peak power constraints 
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still hold for the multiple channels of 3D stacked DRAM.  

In the industrial design [3], as an example, the number of 

memory channels in one DRAM die is increased from 1 to 4 for 3D 

stacking. However, the same peak power constraints as those of the 

traditional single channel DRAM, e.g., tRRD=7.5ns, tFAW=37.5ns, 

are still applied to the four channels. Thus, a single DRAM die 

cannot fully utilize the increased number of memory channels, i.e., 

increased memory bandwidth. The problem becomes significant 

especially when multiple DRAM rows in different banks need to be 

activated concurrently, which is a typical method to increase 

DRAM performance via bank parallelism [12][13]. In [3], in order 

to resolve this problem, multiple DRAM dies are utilized and each 

memory channel is shared by the multiple DRAM dies as shown in 

Figure 1 (b). In this configuration, multiple dies on the same 

channel are accessed in an interleaved manner thereby overcoming 

the constraints imposed on each of DRAM dies separately.  

The usage of multiple 3D stacked DRAM dies only to resolve the 

above problem as in [3] is expensive, especially in mobile and 

embedded devices, e.g., smart phone, due to the increased DRAM 

cost (due to multiple dies) and reduced yield in 3D stacking of 

multiple dies. Another possibility to resolve the problem is to 

modify the DRAM architecture, e.g., smaller row sizes [9], which is 

also costly since DRAM is a commodity and sensitive to cost. In 

our work, we propose a method to improve the performance of 3D 

stacked DRAM without redesigning DRAM nor utilizing multiple 

DRAM dies.  

The proposed solution improves performance via load balancing 

of row activation demands among multiple DRAM channels. It 

exploits the slack in required row activations between the multiple 

channels of the same DRAM die and re-distributes the budget of 

row activations across the channels thereby enabling more row 

activation on the channels requiring more bank parallelism. To do 

that, memory controllers cooperate with each other to share their 

budget of row activations with each other, which enables us to fully 

utilize the entire row activation capability of a single DRAM die 

thereby increasing performance. 

This paper is organized as follows. Section 2 reviews related 

work. Section 3 gives the preliminary. Section 4 explains our idea. 

Section 5 presents our method of inter-memory controller 

cooperation. Section 6 reports experimental results. Section 7 

concludes the paper. 

2. Related Work 
3D stacking of DRAM with SoC dies gives two major benefits: 

small form factor and higher memory bandwidth. Face-to-face 

stacking is already commercialized [14] while TSV stacking is 

being actively studied [2][3][4]. In order to improve the 

performance of 3D stacked DRAM, conventional methods of 

memory access scheduling can be applied to each of multiple 

channels [12][15][16][17][18][19]. 

Recently, several studies have been presented for memory access 

scheduling for multiple DRAM channels (some for conventional 

usage of multiple DRAMs and others for 3D stacked DRAM). In 

[20], multiple DRAM channels are utilized to reduce DRAM access 

latency and memory access scheduling is performed to serve critical 

word first. In [21], Abts et al. show that the locations of memory 

controllers affect memory performance, especially in the case of 

mesh-based many-core architecture. In [22], Kim et al. present a 

method of fair memory access scheduling by adjusting the per-

thread priorities of memory accesses among memory controllers. 

In [23], Kwon et al. address a performance problem which is caused 

by uncoordinated data transfers from memory controllers (for 3D 

stacked DRAM) to the same destination. They present a concept of 

inter-memory controller arbitration where, in case of possible 

conflict at the destination, memory controllers select a winner to 

send data to the destination thereby avoiding such conflicts. In [24], 

the authors present a concept called transaction ID renaming (which 

is based on reorder buffers at network entry) in order to resolve a 

performance problem caused by the in-order requirements imposed 

on multiple traffic streams from one master to multiple memory 

channels. In [25], the authors improve the solution in [24] by 

removing the reorder buffer at network entry and, instead, 

exploiting buffer resources in network-on-chip for the reorder 

buffer purpose. In [26], Kim, et al. address a problem called 

network congestion-induced memory blocking in the context of 3D 

stacked memory and present a method of network congestion-aware 

memory access scheduling. 

3. Preliminary: DRAM Operation 
Figure 3 illustrates a simplified DRAM architecture consisting of 

four banks. A bank consists of rows (often called pages) whose 

sizes are typically 1KB or 2KB. When an access request (read or 

write) arrives at the memory controller, the address of request is 

utilized to select the corresponding bank and row as the two arrows 

show in Figure 3. The memory controller sends a RAS (row 

activation, in short ACT) command and the entire contents of the 

row are copied from the data array to the row buffer (one per bank) 

which takes a latency of tRCD (e.g., 12.5ns). Then, the memory 

controller issues a CAS command to access (read or write) the 

corresponding data (shaded rectangle in the figure) in the row buffer, 

which takes a latency of CL (CAS latency), e.g., 12.5ns. After 

accesses to the row buffer are finished, the bitlines of the accessed 

bank need to be precharged for subsequent row accesses. Thus, the 

memory controller sends a precharge (PRE) command which takes 

a latency of tRP.  The PRE command can be overlapped with read 

data transfer from the corresponding row buffer while it needs to be 

issued only after write data transfer. Note that the memory 

controller issues RAS, i.e., ACT commands only when the 

constraints of tRRD and tFAW are satisfied. 

 

 

Figure 3 DRAM architecture and operations 

 

4. Basic Idea 
Figure 4 illustrates a scenario where two memory channels are 

accessed concurrently. Each memory controller (one for each 

channel) has four requests. Each request is denoted with ‘R#B#’ 

where R and B represent a row and a bank, respectively. In this case, 

in order to satisfy the constraints of tRRD and tFAW, each memory 

channel can issue ACT commands at even or odd period of tRRD 

while both satisfying tFAW. For instance, memory controller MC0 

can issue an ACT command at every even period of tRRD. Thus, it 

can issue ACT commands twice per tFAW period. 
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Figure 4 Baseline case 

 

The scenario in Figure 4 does not exploit the full potential in row 

activation since only three ACT commands are issued during tFAW. 

To be specific, at the 2nd odd period of tRRD, memory controller 

MC1 does not have ACT command to issue while MC0 has ready 

ACT commands. In the scenario, due to the uniform budgeting of 

row activation and the load imbalance of row activation between the 

two channels, only three ACT commands can be issued thereby 

increasing the latency of all the eight requests. 

 

 
Figure 5 Inter-memory controller cooperation 

 

The limitation of the scenario in Figure 4 is due to the fact there is 

no method to consider the load imbalance of row activation. In 

order to take into account the load imbalance, we need to collect the 

information on the status of memory channels and adjust the budget 

of row activations on each memory controller according to the 

collected information. Figure 5 illustrates our idea. In this scenario, 

the status of memory channel is collected at time 0 and the budget 

of row activation on each channel is adjusted according to the 

information. Assume that MC0 now has three ACT commands per 

tFAW as its budget while MC1 has one. MC0 can serve more ACTs 

during tRRD than the case in Figure 4 thereby reducing the total 

latency of eight requests by 18% in this case. The performance of 

MC1 is not affected by the reduced budget since it requires only one 

ACT command during tFAW. As shown in Figure 5, the 

information of load imbalance in row activation can be exploited to 

achieve further performance improvement.  

 

5. Inter-Memory Controller Cooperation 

5.1 Proposed Architecture 
Figure 6 illustrates the proposed architecture. It consists of two 

memory controllers and one coordinator (located at the center in the 

figure). The memory controller consists of two parts: monitor and 

memory scheduler. Periodically, the monitor of memory controller 

sends the number of required ACT commands to the coordinator. 

Based on the information of required row activation from each 

memory controller, the coordinator allocates the budget of row 

activation to each memory controller (details in Section 5.2) and 

sends the information of budget allocation to each memory 

controller. 

 

 
Figure 6 Inter-memory controller coordinator 

 

If a MC receives its budget of row activation, then it needs to follow 

it until the budget is updated in the future. Note that the MC can 

determine its own CAS command schedule as far as the given 

budget of row activation is satisfied. Thus, under the given budget, 

it applies its own scheduling policy (e.g., FR-FCFS [15], STFM 

[18], PARBS [19], etc.) for performance improvement. 

 

5.2 Budget Allocation Method 
In this subsection, we assume four-channel 3D stacked DRAM. In 

this case, there are five possible cases of allocating the budget of 

row activation as shown in Table 1. 

 

Table 1 Budget allocation cases 

Case A B C D E 

Budget 4,0,0,0 3,1,0,0 2,2,0,0 2,1,1,0 1,1,1,1 

 

Given the information of required row activation load (# of ACT 

commands to be issued by each memory controller), the coordinator 

chooses the most suitable budget allocation among the above five 

cases. In a trivial case, if only one channel has ACT commands to 

be issued while the others are idle (case A), then all the available 

budget, i.e., 4 ACT commands per tFAW, is allocated to the 

channel. When each of all the four channels has at least one ACT 

command to be issued (case E), then all the channels have the same 

uniform budget, i.e., one ACT command per channel. Case B is 

applied when one channel has one ACT command to be issued and 

another has more than one ACT commands to be issued while the 

other two channels are idle. Case C occurs when two channels each 

time
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have (more than) one ACT commands to be issued while the other 

two are idle. In case D, two channels have each one ACT command 

to be issued, one channel has more than one ACT commands to be 

issued while the other channel is idle.   

The coordinator adjusts the budget allocation whenever any of 

memory channels changes its required row activation level. In such 

a case, the newly available portion of row activation budget, if any, 

can be re-distributed to memory channels requiring more row 

activations. 

 

6. Experiments 

6.1 Experimental Methodology 
Figure 7 shows a 7x7 mesh architecture used in our experiments. 

Each tile has a Tensilica LX2 core or a memory controller. The 

coordinator (denoted with ‘C’ in the figure) is located at the center 

tile together with a LX2 core.  Memory controllers and the 

coordinator are connected via dedicated connections. We utilize 4-

channel 3D stacked DRAM. The bandwidth of each channel is 

3.2GBps corresponding to 32b DDR2-800. Table 2 gives the 

summary of architectural details. 

 

 
Figure 7 A 7x7 mesh architecture 

 

Table 2 Architectural parameters 

Component Details 

CPU core Tensilica LX2 (7 stage pipeline), 32b address, 

64b data, 4-way 16KB I/D, 400MHz 

NoC Input buffered 5-port router, 4 pipeline stages 

with lookahead XY routing, 4 VCs per port, 8 

64b flits per VC, 400MHz 

Memory 

controller 

FR-FCFS policy [15], express path (1+CL 

latency in case of no previous request), open row 

scheme 

Memory 

channel 

32b DDR2 800, CL/tRP/tRCD=15ns/15ns/15ns, 

tRRD=10ns, tFAW=45ns 

 

Each core accesses the nearest DRAM channel. For instance, all 

cores denoted with ‘A’ access memory controller MC1 in Figure 7. 

We utilize two types of memory traffic: synthetic traffics and 

benchmark programs. Table 3 shows four cases of synthetic traffics.  

They are different in terms of row buffer hit rate. In cases A, B and 

C, one or two memory channels receive traffics with high row 

buffer hit rate while the other memory channels receive low row 

buffer hit traffics. In case D, all the traffics have low row buffer hit 

rate thereby requiring high levels of row activation load at each 

channel. 

Table 3 Row buffer hit rate in synthetic cases 

 Case A Case B Case C Case D 

MC0 High High Low Low 

MC1 High High High Low 

MC2 Low Low Low Low 

MC3 High Low Low Low 

 

Table 4 shows five cases of benchmark programs. The five cases 

are different from each other in terms of memory traffic load and 

row buffer hit rate. We utilize benchmark programs from 

SPEC2000, 2006, and MiBench. We obtain the trace of memory 

accesses from the core by running the commercial LX2 core 

simulator and capturing L1 miss request traces. We apply the traces 

to our simulation model of 7x7 mesh architecture. 

 

Table 4 Benchmark program cases 

 
Case 1 Case 2 

Prog. Load Hit rate Prog. Load Hit rate 

MC0 ammp High High ammp High High 

MC1 mcf High Low mcf High Low 

MC2 equake Low High fft Low Low 

MC3 susan Low High bzip2 Low Low 

 
Case 3 Case 4 

Prog. Load Hit rate Prog. Load Hit rate 

MC0 qsort Med High ammp High High 

MC1 dijk. Med High mcf High Low 

MC2 parser Med Low vortex High High 

MC3 jpeg Med Low art High High 

 
Case 5    

Prog. Load Hit rate    

MC0 susan Low High    

MC1 bzip2 Low Low    

MC2 equake Low High    

MC3 fft Low Low    

 

6.2 Experiments 
Figures 8 and 9 show the memory utilization and average memory 

access latency of the synthetic cases. Each case has four sets of bars, 

each set is for memory controllers 0 (left), 1, 2, and 3 (right). The 

proposed method gives 0%~8.79% and 0%~14.46% improvement 

in memory utilization and average memory access latency, 

respectively. Considering the traffic patterns in Table 3, most of 

performance improvement comes from the memory channels having 

low row buffer hit rates. It is because such memory channels have 

high demand of row activations. Thus, they benefit from the budget 

sharing. 
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Figure 8 Memory utilization in synthetic cases 

 

 

Figure 9 Latency in synthetic cases 

 

Figures 10 and 11 show the benchmark cases. The proposed method 

offers average 4.72% and 8.31% improvement in average memory 

utilization and latency, respectively. As in the synthetic cases, the 

performance gain mostly comes from the memory channels with 

low row buffer hit rates (i.e., high row activation demand). The gain 

becomes prominent when the memory load is low. It is because the 

cases of low memory load can have more chances of having idle 

memory channels which allows the budget sharing. 

 

 

Figure 10 Memory utilization in benchmark cases 

 

 

Figure 11 Latency in benchmark cases 

 

Figure 12 show the effect of wire delay between the coordinator and 

memory controllers in Case 1. We vary the delay from 1 to 17 

cycles. As the delay is increased, the memory utilization gain drops. 

It is because as the wire delay is increased, each memory controller 

needs to wait for more delay to receive the budget and perform row 

activations based on the updated budget.  

 

 

Figure 12 Memory utilization gain v.s. wire delay 

 

Table 5 shows the average period that the coordinator updates the 

budget allocation for the five cases of benchmark programs.  

 

Table 5 Average period (in cycles) of budget update 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Average 99 93 89 82 61 

 

6.3 Discussion 
Our current solution utilizes a centralized coordinator which can 

suffer from large wire delay as shown in Figure 12. In our future 

work, we will work on distributed solutions to mitigate the 

limitation of long wire delay. Utilizing additional power TSVs 

between DRAM and SoC can mitigate the current problem that the 

same timing constraints of tRRD and tFAW are applied to multi-

channel 3D stacked DRAM [5]. In such a case, another possibility 

will be thermal issues incurred by frequent executions of power-

consuming row activation, which can require performance throttling 

to limit again total row activations. Such a scenario needs to be 

investigated for widespread adoptions of 3D stacked DRAM in 

mobile devices as well as in high-end devices since mobile devices 

are vulnerable to thermal issues due to the lack of active cooling 

facilities. Reconsidering DRAM architecture in terms of power 

consumption, e.g., smaller row size [9], will also be useful for both 

performance and power efficiency though DRAM manufacturers 

often try to avoid such architectural changes due to possible low 

area efficiency [6]. 

 

7. Conclusion 
In this paper, we introduced a performance problem in accessing 3D 

stacked DRAM and proposed a method of sharing the budget of row 

activation across DRAM channels. The inter-memory controller 

coordinator receives periodically the demand of row activation from 

memory controllers and re-distributes the budget of row activation 

in order to improve memory performance. Experimental results 

show that the proposed method gives average 4.72% and 8.31% 

improvement in average memory utilization and latency, 

respectively. 
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