
A Quantitative Analysis of Performance Benefits of 3D Die Stacking on

Mobile and Embedded SoC

Dongki Kim, Sungjoo Yoo, Sunggu Lee, *Jung Ho Ahn, **Hyunuk Jung

Department of Electronic and Electrical Engineering, POSTECH

*Graduate School of Convergence Science and Technology, Seoul National University

**System LSI Division, Samsung Electronics

ABSTRACT

3D stacked DRAM improves peak memory performance. However,

its effective performance is often limited by the constraints of row-

to-row activation delay (tRRD), four active bank window (tFAW),

etc. In this paper, we present a quantitative analysis of the

performance impact of such constraints. In order to resolve the

problem, we propose balancing the budget of DRAM row activation

across DRAM channels. In the proposed method, an inter-memory

controller coordinator receives the current demand of row

activation from memory controllers and re-distributes the budget to

the memory controllers in order to improve DRAM performance.

Experimental results show that sharing the budget of row activation

between memory channels can give average 4.72% improvement in

the utilization of 3D stacked DRAM.

1. Introduction
3D stacked DRAM is expected to become a practical solution to

resolve the memory wall problem [1][2][3][4]. It provides the

vertically connected SoC with high memory bandwidth via many

inter-die wires (via face-to-face and/or TSVs). Thus, multiple

memory channels1 are available from a single DRAM die or a set of

DRAM dies. Figure 1 illustrates multiple channels enabled by 3D

stacked memory. Figure 1 (a) shows the case where a single DRAM

die provides four channels while Figure 1 (b) shows the case where

multiple DRAM dies are stacked and they share the four channels.

Figure 1 3D stacked DRAM

1 A memory channel corresponds to the memory interface of

conventional DRAM. It consists of address, data and control

signals and works as an independent path to access DRAM.

978-3-9810801-7-9/DATE11/©2011 EDAA

3D stacking of DRAM increases peak memory bandwidth.

However, increasing effective memory bandwidth requires

resolving practical issues. In this paper, we identify a significant

problem in increasing effective memory bandwidth which is caused

by DRAM timing constraints.

Figure 2 illustrates two timing constraints in DRAM: tRRD and

tFAW. tRRD is the minimum latency (e.g., 7.5ns) between two

RAS (row activation) commands while tFAW (four active bank

window) limits the number of RAS commands within the time

interval of tFAW to four. Both are mostly constrained by IR drops

[5] and address decoding latency [6]. Especially, RAS commands

for row activation is power hungry [7][8][9]. Figure 2 illustrates a

current profile in DRAM [10]. Four consecutive RAS commands

(spaced with tRRD) are issued within tFAW. The figure shows a

current profile where RAS commands create current spikes. Such

current drawing incurs supply voltage drop affecting the latency of

neighbor blocks which share the same supply voltage. Such voltage

drop can cause timing-related errors in timing critical circuits in

DRAM, e.g., data sensing errors in sense amplifiers [11].

Figure 2 Current profile in DRAM accesses

Note that the constraints of tRRD and tFAW are imposed on the

entire DRAM die since the power network is often designed as a

single entity. Typically, there are two core and peripheral power

networks on a DRAM die [6][11]. Currently, a 3D stacked DRAM

die is designed as an extension of existing DRAM die by adding

new circuitry to increase the number of memory channels, e.g., I/O

circuits for 4 channels, and by regrouping internal memory tiles to

give more number of banks, e.g., 4 banks per channel [3]. Thus, if

such modifications are made without significantly improving the

capability of power network, the existing peak power constraints

(a) Single 3D stacked DRAM die (b) Multiple 3D stacked DRAM die

DRAM die

tFAW
tRRD

R0 R1 C0 R2 C1 R3 C2 P0 C3 R4 P1 P2

D0 D0 D1 D1 D2 D2 D3 D3

cmd

dq

time

cu
rre
n
t

still hold for the multiple channels of 3D stacked DRAM.

In the industrial design [3], as an example, the number of

memory channels in one DRAM die is increased from 1 to 4 for 3D

stacking. However, the same peak power constraints as those of the

traditional single channel DRAM, e.g., tRRD=7.5ns, tFAW=37.5ns,

are still applied to the four channels. Thus, a single DRAM die

cannot fully utilize the increased number of memory channels, i.e.,

increased memory bandwidth. The problem becomes significant

especially when multiple DRAM rows in different banks need to be

activated concurrently, which is a typical method to increase

DRAM performance via bank parallelism [12][13]. In [3], in order

to resolve this problem, multiple DRAM dies are utilized and each

memory channel is shared by the multiple DRAM dies as shown in

Figure 1 (b). In this configuration, multiple dies on the same

channel are accessed in an interleaved manner thereby overcoming

the constraints imposed on each of DRAM dies separately.

The usage of multiple 3D stacked DRAM dies only to resolve the

above problem as in [3] is expensive, especially in mobile and

embedded devices, e.g., smart phone, due to the increased DRAM

cost (due to multiple dies) and reduced yield in 3D stacking of

multiple dies. Another possibility to resolve the problem is to

modify the DRAM architecture, e.g., smaller row sizes [9], which is

also costly since DRAM is a commodity and sensitive to cost. In

our work, we propose a method to improve the performance of 3D

stacked DRAM without redesigning DRAM nor utilizing multiple

DRAM dies.

The proposed solution improves performance via load balancing

of row activation demands among multiple DRAM channels. It

exploits the slack in required row activations between the multiple

channels of the same DRAM die and re-distributes the budget of

row activations across the channels thereby enabling more row

activation on the channels requiring more bank parallelism. To do

that, memory controllers cooperate with each other to share their

budget of row activations with each other, which enables us to fully

utilize the entire row activation capability of a single DRAM die

thereby increasing performance.

This paper is organized as follows. Section 2 reviews related

work. Section 3 gives the preliminary. Section 4 explains our idea.

Section 5 presents our method of inter-memory controller

cooperation. Section 6 reports experimental results. Section 7

concludes the paper.

2. Related Work
3D stacking of DRAM with SoC dies gives two major benefits:

small form factor and higher memory bandwidth. Face-to-face

stacking is already commercialized [14] while TSV stacking is

being actively studied [2][3][4]. In order to improve the

performance of 3D stacked DRAM, conventional methods of

memory access scheduling can be applied to each of multiple

channels [12][15][16][17][18][19].

Recently, several studies have been presented for memory access

scheduling for multiple DRAM channels (some for conventional

usage of multiple DRAMs and others for 3D stacked DRAM). In

[20], multiple DRAM channels are utilized to reduce DRAM access

latency and memory access scheduling is performed to serve critical

word first. In [21], Abts et al. show that the locations of memory

controllers affect memory performance, especially in the case of

mesh-based many-core architecture. In [22], Kim et al. present a

method of fair memory access scheduling by adjusting the per-

thread priorities of memory accesses among memory controllers.

In [23], Kwon et al. address a performance problem which is caused

by uncoordinated data transfers from memory controllers (for 3D

stacked DRAM) to the same destination. They present a concept of

inter-memory controller arbitration where, in case of possible

conflict at the destination, memory controllers select a winner to

send data to the destination thereby avoiding such conflicts. In [24],

the authors present a concept called transaction ID renaming (which

is based on reorder buffers at network entry) in order to resolve a

performance problem caused by the in-order requirements imposed

on multiple traffic streams from one master to multiple memory

channels. In [25], the authors improve the solution in [24] by

removing the reorder buffer at network entry and, instead,

exploiting buffer resources in network-on-chip for the reorder

buffer purpose. In [26], Kim, et al. address a problem called

network congestion-induced memory blocking in the context of 3D

stacked memory and present a method of network congestion-aware

memory access scheduling.

3. Preliminary: DRAM Operation
Figure 3 illustrates a simplified DRAM architecture consisting of

four banks. A bank consists of rows (often called pages) whose

sizes are typically 1KB or 2KB. When an access request (read or

write) arrives at the memory controller, the address of request is

utilized to select the corresponding bank and row as the two arrows

show in Figure 3. The memory controller sends a RAS (row

activation, in short ACT) command and the entire contents of the

row are copied from the data array to the row buffer (one per bank)

which takes a latency of tRCD (e.g., 12.5ns). Then, the memory

controller issues a CAS command to access (read or write) the

corresponding data (shaded rectangle in the figure) in the row buffer,

which takes a latency of CL (CAS latency), e.g., 12.5ns. After

accesses to the row buffer are finished, the bitlines of the accessed

bank need to be precharged for subsequent row accesses. Thus, the

memory controller sends a precharge (PRE) command which takes

a latency of tRP. The PRE command can be overlapped with read

data transfer from the corresponding row buffer while it needs to be

issued only after write data transfer. Note that the memory

controller issues RAS, i.e., ACT commands only when the

constraints of tRRD and tFAW are satisfied.

Figure 3 DRAM architecture and operations

4. Basic Idea
Figure 4 illustrates a scenario where two memory channels are

accessed concurrently. Each memory controller (one for each

channel) has four requests. Each request is denoted with ‘R#B#’

where R and B represent a row and a bank, respectively. In this case,

in order to satisfy the constraints of tRRD and tFAW, each memory

channel can issue ACT commands at even or odd period of tRRD

while both satisfying tFAW. For instance, memory controller MC0

can issue an ACT command at every even period of tRRD. Thus, it

can issue ACT commands twice per tFAW period.

row column addressbank

RAS

CAS

tRCD tRP

CL

data

① ②③
Banks

Row Buffers

Figure 4 Baseline case

The scenario in Figure 4 does not exploit the full potential in row

activation since only three ACT commands are issued during tFAW.

To be specific, at the 2nd odd period of tRRD, memory controller

MC1 does not have ACT command to issue while MC0 has ready

ACT commands. In the scenario, due to the uniform budgeting of

row activation and the load imbalance of row activation between the

two channels, only three ACT commands can be issued thereby

increasing the latency of all the eight requests.

Figure 5 Inter-memory controller cooperation

The limitation of the scenario in Figure 4 is due to the fact there is

no method to consider the load imbalance of row activation. In

order to take into account the load imbalance, we need to collect the

information on the status of memory channels and adjust the budget

of row activations on each memory controller according to the

collected information. Figure 5 illustrates our idea. In this scenario,

the status of memory channel is collected at time 0 and the budget

of row activation on each channel is adjusted according to the

information. Assume that MC0 now has three ACT commands per

tFAW as its budget while MC1 has one. MC0 can serve more ACTs

during tRRD than the case in Figure 4 thereby reducing the total

latency of eight requests by 18% in this case. The performance of

MC1 is not affected by the reduced budget since it requires only one

ACT command during tFAW. As shown in Figure 5, the

information of load imbalance in row activation can be exploited to

achieve further performance improvement.

5. Inter-Memory Controller Cooperation

5.1 Proposed Architecture
Figure 6 illustrates the proposed architecture. It consists of two

memory controllers and one coordinator (located at the center in the

figure). The memory controller consists of two parts: monitor and

memory scheduler. Periodically, the monitor of memory controller

sends the number of required ACT commands to the coordinator.

Based on the information of required row activation from each

memory controller, the coordinator allocates the budget of row

activation to each memory controller (details in Section 5.2) and

sends the information of budget allocation to each memory

controller.

Figure 6 Inter-memory controller coordinator

If a MC receives its budget of row activation, then it needs to follow

it until the budget is updated in the future. Note that the MC can

determine its own CAS command schedule as far as the given

budget of row activation is satisfied. Thus, under the given budget,

it applies its own scheduling policy (e.g., FR-FCFS [15], STFM

[18], PARBS [19], etc.) for performance improvement.

5.2 Budget Allocation Method
In this subsection, we assume four-channel 3D stacked DRAM. In

this case, there are five possible cases of allocating the budget of

row activation as shown in Table 1.

Table 1 Budget allocation cases

Case A B C D E

Budget 4,0,0,0 3,1,0,0 2,2,0,0 2,1,1,0 1,1,1,1

Given the information of required row activation load (# of ACT

commands to be issued by each memory controller), the coordinator

chooses the most suitable budget allocation among the above five

cases. In a trivial case, if only one channel has ACT commands to

be issued while the others are idle (case A), then all the available

budget, i.e., 4 ACT commands per tFAW, is allocated to the

channel. When each of all the four channels has at least one ACT

command to be issued (case E), then all the channels have the same

uniform budget, i.e., one ACT command per channel. Case B is

applied when one channel has one ACT command to be issued and

another has more than one ACT commands to be issued while the

other two channels are idle. Case C occurs when two channels each

time

R0B0 R0B1 R1B2 R1B3

R2B0 R2B0 R2B0 R2B0

ACT (R0B0)

ACT (R2B0) RD (R2B0)

RD (R2B0)

RD (R2B0)

RD (R2B0)

RD (R0B0)

RD (R0B1)

ACT (R1B2)

ACT (R1B3) RD (R1B3)

ACT (R0B1)

RD (R1B2)

tRRD

(7.5ns)

tFAW (37.5ns)

ACT: 12.5ns

RD: 12.5ns

82.5ns0ns

R0B0 R0B1 R1B0 R1B1

R2B0 R2B0 R2B0 R2B0

ACT (R0B0)

ACT (R2B0)

RD (R0B0)

ACT (R1B2) RD (R1B2)

RD (R1B3)ACT (R1B3)

ACT (R0B1) RD (R0B1)

tFAW (37.5ns)

tRRD

(7.5ns)

RD (R2B0)

RD (R2B0)

RD (R2B0)

RD (R2B0)
time

Latency reduction
by 18%!

67.5ns 82.5ns

ACT: 12.5ns

RD: 12.5ns

Budget
sharing

0ns

CoordinatorMC0

Monitor:

rows which will
be activated

Memory Scheduler

Compare

Determine:

Peak Power Budget

MC1

Monitor:

rows which will
be activated

Memory Scheduler

3D Stacked DRAM

NOC

have (more than) one ACT commands to be issued while the other

two are idle. In case D, two channels have each one ACT command

to be issued, one channel has more than one ACT commands to be

issued while the other channel is idle.

The coordinator adjusts the budget allocation whenever any of

memory channels changes its required row activation level. In such

a case, the newly available portion of row activation budget, if any,

can be re-distributed to memory channels requiring more row

activations.

6. Experiments

6.1 Experimental Methodology
Figure 7 shows a 7x7 mesh architecture used in our experiments.

Each tile has a Tensilica LX2 core or a memory controller. The

coordinator (denoted with ‘C’ in the figure) is located at the center

tile together with a LX2 core. Memory controllers and the

coordinator are connected via dedicated connections. We utilize 4-

channel 3D stacked DRAM. The bandwidth of each channel is

3.2GBps corresponding to 32b DDR2-800. Table 2 gives the

summary of architectural details.

Figure 7 A 7x7 mesh architecture

Table 2 Architectural parameters

Component Details

CPU core Tensilica LX2 (7 stage pipeline), 32b address,

64b data, 4-way 16KB I/D, 400MHz

NoC Input buffered 5-port router, 4 pipeline stages

with lookahead XY routing, 4 VCs per port, 8

64b flits per VC, 400MHz

Memory

controller

FR-FCFS policy [15], express path (1+CL

latency in case of no previous request), open row

scheme

Memory

channel

32b DDR2 800, CL/tRP/tRCD=15ns/15ns/15ns,

tRRD=10ns, tFAW=45ns

Each core accesses the nearest DRAM channel. For instance, all

cores denoted with ‘A’ access memory controller MC1 in Figure 7.

We utilize two types of memory traffic: synthetic traffics and

benchmark programs. Table 3 shows four cases of synthetic traffics.

They are different in terms of row buffer hit rate. In cases A, B and

C, one or two memory channels receive traffics with high row

buffer hit rate while the other memory channels receive low row

buffer hit traffics. In case D, all the traffics have low row buffer hit

rate thereby requiring high levels of row activation load at each

channel.

Table 3 Row buffer hit rate in synthetic cases

 Case A Case B Case C Case D

MC0 High High Low Low

MC1 High High High Low

MC2 Low Low Low Low

MC3 High Low Low Low

Table 4 shows five cases of benchmark programs. The five cases

are different from each other in terms of memory traffic load and

row buffer hit rate. We utilize benchmark programs from

SPEC2000, 2006, and MiBench. We obtain the trace of memory

accesses from the core by running the commercial LX2 core

simulator and capturing L1 miss request traces. We apply the traces

to our simulation model of 7x7 mesh architecture.

Table 4 Benchmark program cases

Case 1 Case 2

Prog. Load Hit rate Prog. Load Hit rate

MC0 ammp High High ammp High High

MC1 mcf High Low mcf High Low

MC2 equake Low High fft Low Low

MC3 susan Low High bzip2 Low Low

Case 3 Case 4

Prog. Load Hit rate Prog. Load Hit rate

MC0 qsort Med High ammp High High

MC1 dijk. Med High mcf High Low

MC2 parser Med Low vortex High High

MC3 jpeg Med Low art High High

Case 5

Prog. Load Hit rate

MC0 susan Low High

MC1 bzip2 Low Low

MC2 equake Low High

MC3 fft Low Low

6.2 Experiments
Figures 8 and 9 show the memory utilization and average memory

access latency of the synthetic cases. Each case has four sets of bars,

each set is for memory controllers 0 (left), 1, 2, and 3 (right). The

proposed method gives 0%~8.79% and 0%~14.46% improvement

in memory utilization and average memory access latency,

respectively. Considering the traffic patterns in Table 3, most of

performance improvement comes from the memory channels having

low row buffer hit rates. It is because such memory channels have

high demand of row activations. Thus, they benefit from the budget

sharing.

D D D D C C C

D D D C C C

D D D D C C

A A A C C C C

A A B B B B

A A A B B B

A A A B B B B

MC3

MC2

MC1

MC0

Figure 8 Memory utilization in synthetic cases

Figure 9 Latency in synthetic cases

Figures 10 and 11 show the benchmark cases. The proposed method

offers average 4.72% and 8.31% improvement in average memory

utilization and latency, respectively. As in the synthetic cases, the

performance gain mostly comes from the memory channels with

low row buffer hit rates (i.e., high row activation demand). The gain

becomes prominent when the memory load is low. It is because the

cases of low memory load can have more chances of having idle

memory channels which allows the budget sharing.

Figure 10 Memory utilization in benchmark cases

Figure 11 Latency in benchmark cases

Figure 12 show the effect of wire delay between the coordinator and

memory controllers in Case 1. We vary the delay from 1 to 17

cycles. As the delay is increased, the memory utilization gain drops.

It is because as the wire delay is increased, each memory controller

needs to wait for more delay to receive the budget and perform row

activations based on the updated budget.

Figure 12 Memory utilization gain v.s. wire delay

Table 5 shows the average period that the coordinator updates the

budget allocation for the five cases of benchmark programs.

Table 5 Average period (in cycles) of budget update

 Case 1 Case 2 Case 3 Case 4 Case 5

Average 99 93 89 82 61

6.3 Discussion
Our current solution utilizes a centralized coordinator which can

suffer from large wire delay as shown in Figure 12. In our future

work, we will work on distributed solutions to mitigate the

limitation of long wire delay. Utilizing additional power TSVs

between DRAM and SoC can mitigate the current problem that the

same timing constraints of tRRD and tFAW are applied to multi-

channel 3D stacked DRAM [5]. In such a case, another possibility

will be thermal issues incurred by frequent executions of power-

consuming row activation, which can require performance throttling

to limit again total row activations. Such a scenario needs to be

investigated for widespread adoptions of 3D stacked DRAM in

mobile devices as well as in high-end devices since mobile devices

are vulnerable to thermal issues due to the lack of active cooling

facilities. Reconsidering DRAM architecture in terms of power

consumption, e.g., smaller row size [9], will also be useful for both

performance and power efficiency though DRAM manufacturers

often try to avoid such architectural changes due to possible low

area efficiency [6].

7. Conclusion
In this paper, we introduced a performance problem in accessing 3D

stacked DRAM and proposed a method of sharing the budget of row

activation across DRAM channels. The inter-memory controller

coordinator receives periodically the demand of row activation from

memory controllers and re-distributes the budget of row activation

in order to improve memory performance. Experimental results

show that the proposed method gives average 4.72% and 8.31%

improvement in average memory utilization and latency,

respectively.

8. Acknowledgement
This research was supported by Basic Science Research Program

through the National Research Foundation of Korea (NRF) funded

by the Ministry of Education, Science and Technology (2010-

0007909 and 2010-0015336). This work was supported by IC

Design Education Center (IDEC).

9. References
[1] S. Borkar, “Thousand-Core Chips - A Technology Perspective,”

Proc. DAC, 2007.

[2] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core

Processors,” Proc. ISCA, 2008.

[3] H. Lee, “3D Stacked Memory Design,” 3D IC Workshop,

Daejeon, Korea, Jan. 2010.

[4] Tezzaron Semiconductor, http://www.tezzaron.com/

[5] U. Kang, et al., “8 Gb 3-D DDR3 DRAM Using Through-

Silicon-Via Technology,” IEEE Journal of Solid-State Circuits,

vol. 45, issue 1, pp. 111-119, Jan. 2010.

[6] T. Vogelsang, “Understanding the Energy Consumption of

Dynamic Random Access Memories,” Proc. MICRO 2010.

[7] D. Lee, S. Yoo, K. Choi, “Entry Control in Network-on-Chip

for Memory Power Reduction,” Proc. ISLPED, 2008.

[8] J. Ahn, et al., “Multicore DIMM: an Energy Efficient Memory

Module with Independently Controlled DRAMs,” Computer

Architecture Letters, Vol.8, No. 1, October 2008.

[9] ISCA2010, HP Labs. A. N. Udipi, et al, “Rethinking DRAM

Design and Organization for Energy-Constrained Multi-Cores,”

Proc. ISCA, 2010.

[10] Micron Tech. Inc., “TN-47-04: Calculating Memory System

Power for DDR2,” available at http://download.micron.com/

[11] B. Jacobs, S. Ng and D. Wang, Memory Systems: Cache,

DRAM, Disk, Morgan Kaufmann, 2007.

[12] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a

Predictable SDRAM Memory Controller,” Proc.

CODES+ISSS, 2007.

[13] Sonics Inc., “Sonics MemMax DRAM Access Scheduler,”

available at http://www.sonicsinc.com/.

[14] T. Ezaki, et al., “A 160Gb/s Interface Design Configuration for

Multichip LSI,” Proc. ISSCC, 2004.

[15] S. Rixner, et al., “Memory Access Scheduling,” Proc. ISCA,

2000.

[16] I. Hur and C. Lin, “Adaptive History-based Memory

Schedulers,” Proc. MICRO, 2004.

[17] S. Heithecker and R. Ernst, “Traffic Shaping for an FPGA

based SDRAM Controller with Complex QoS Requirements,”

Proc. DAC, 2005.

[18] O. Mutlu and T. Moscibroda, “Stall-time Fair Memory Access

Scheduling for Chip Multiprocessor,” Proc. MICRO, 2007.

[19] O. Mutlu and T. Moscibroda, “Parallelism-Aware Memory

Access Scheduling,” Proc. ISCA, 2008.

[20] Z. Zhu, Z. Zhang and X. Zhang, “Fine-grain Priority

Scheduling on Multi-channel Memory Systems,” Proc. HPCA,

2002.

[21] D. Abts, et al., “Achieving Predictable Performance through

Better Memory Controller Placement in Many-Core CMPs,”

Proc. ISCA, 2009.

[22] Y. Kim, et al., “ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers,” Proc.

HPCA, 2010.

[23] W. Kwon, et al., “An Open-Loop Flow Control Scheme Based

on the Accurate Global Information of On-Chip

Communication,” Proc. DATE, 2008.

[24] W. Kwon, et al., “A Practical Approach of Memory Access

Parallelization to Exploit Multiple Off-chip DDR Memories,”

Proc. DAC, 2008.

[25] W. Kwon and S. Yoo, “In-Network Reorder Buffer To

Improve NoC Performance While Resolving the In-Order

Requirement Problem,” Proc. DATE, 2009.

[26] D. Kim, S. Yoo and S. Lee, “A Network Congestion-Aware

Memory Controller,” Proc. NOCS, 2010.

