
Resynchronization of Cyclo-Static Dataflow Graphs
Joost P.H.M. Hausmans

Eindhoven University of Technology
joost.hausmans@gmail.com

Marco J.G. Bekooij
NXP Semiconductors, Eindhoven

marco.bekooij@nxp.com

Henk Corporaal
Eindhoven University of Technology

h.corporaal@tue.nl

Abstract—Parallel stream processing applications are often
executed on shared-memory multiprocessor systems. Synchro-
nization between tasks is needed to guarantee correct functional
behavior. An increase in the communication granularity of the
tasks in the parallel application can decrease the synchronization
overhead. However using coarser-grained synchronization can
result in deadlock or violation of the throughput constraint for
the application in case of cyclic data dependencies. Resynchro-
nization tries to change the synchronization behavior in order to
reduce the synchronization overhead. Determining the amount
of resynchronization while preventing deadlock and satisfying
the throughput constraint of the application, forms a global
analysis problem. In this paper we present a Linear Programming
(LP) algorithm for minimizing synchronization by means of
resynchronization that is based on the properties of dataflow
models. We demonstrate our approach with an extended Con-
stant Modulus Algorithm (CMA) in a beam-forming application.
For this application we reduce the number of synchronization
statements with 30% while having a memory constraint of 200
tokens. The algorithm which calculates this reduction takes less
than 20 milliseconds for this problem instance.

I. INTRODUCTION

Parallelized applications typically require synchronization
for correct behavior. Fine-grained communication and syn-
chronization can help to prevent deadlock. However the
overhead caused by fine-grained synchronization can become
significant. By increasing the synchronization granularity, the
synchronization overhead can be reduced but this often comes
at the cost of an increase in the size of the communication
buffer. Resynchronization determines the maximum synchro-
nization granularity that still prevents deadlock and respects
throughput and memory size constraints. However determin-
ing resynchronization is a global optimization problem with
interesting trade-offs.

In the past it is shown that the amount of runtime overhead
required for synchronization can be reduced significantly by
removing redundant synchronization in statically scheduled
systems [1], [2] that are modeled with Synchronous Dataflow
(SDF) graphs. Methods are formulated to resynchronize these
type of systems [3], [4]. These resynchronization methods
add synchronization statements to make other synchronization
statements redundant. However, these methods can only handle
statically scheduled systems while this work also supports run-
time scheduled systems.

In this work we model parallel stream processing applica-
tions with the Cyclo-Static Dataflow (CSDF) model [5]. This
CSDF model is used to compute sufficient buffer capacities
given a throughput constraint. Because of the one-to-one
relation between an application and its CSDF synchronization
model, changes in the CSDF model can be translated back to
the synchronization of the application.

This paper presents a method for the resynchronization of
CSDF graphs. We extend the method described in [6] with

the calculation of a maximum resynchronization while having
a throughput and memory size constraint where maximum
resynchronization is defined as the maximum number of re-
moved synchronization statements. We show that this method
can be applied to applications which have function-parallelism
and may have dynamic schedules (run-time scheduling). We
show that the modification of the CSDF graph can be used to
modify the synchronization behavior in the task-graph of the
corresponding application.

The outline of this paper is as follows. Related work is
discussed in Section II. In Section III we describe the basic
idea behind the presented resynchronization approach. In Sec-
tion IV we recapitulate the CSDF model and its properties on
which our approach is based. Our resynchronization approach
is described in Section V. Results of the evaluation of our
approach can be found in Section VI. This case-study also
shows that there exists a trade-off between memory size and
synchronization overhead. In Section VII we conclude and
indicate future work.

II. RELATED WORK

Reduction of the synchronization overhead has been ad-
dressed in [2] in which it is shown that removing redundant
synchronization in static order scheduled systems can reduce
the synchronization overhead. In such a system, synchroniza-
tion messages can be redundant because there exists a fixed
order between the execution of tasks on the same processor.
This observation of redundant synchronization messages can
also be used for the resynchronization of applications on
these systems. Adding synchronization statements can make
other synchronization statements redundant. If the number of
synchronization statements that become redundant is higher
than the number of added statements, the resynchronization is
effective and a reduction of the synchronization overhead is
achieved. Algorithms that perform this type of resynchroniza-
tion are presented in [3]. In [4] the same technique is exploited
but with an additional latency constraint. These two techniques
and their relation is developed further in [7].

For data parallel applications it is important to calculate
a suitable partitioning such that the different parts of the
data sets can be processed by different processors. In a suit-
able partitioning, communication often can be moved outside
a loop and the number of the communicated messages is
decreased. This is called message vectorization [8]. When
synchronization is required for each message, the reduction
of the number of messages also decreases the synchronization
overhead. Loop coalescing methods are presented in [9] and
[10]. Furthermore in data parallel applications the number
of communication messages can be decreased by moving
messages to different positions in the program such that other
messages become redundant. This optimization is addressed
in [11].978-3-9810801-7-9/DATE11/©2011 EDAA

Compared to the above mentioned techniques, our technique
is able to perform resynchronization on CSDF graphs in
which it is possible to model applications with run-time
scheduling [12] and functional parallelism on which iterations
may overlap.

This work extends the work on dataflow analysis for buffer
minimization in run-time scheduled systems as described in
[6]. It relies on the same linearization techniques.

III. BASIC IDEA

The idea of increasing the synchronization granularity is
illustrated with the task graph shown in Figure 1. This task
graph is chosen as the simplest example to illustrate the basic
concepts. Each task in the task graph consists of a code
fragment. When each task is executed in parallel using run-
time scheduling, synchronization must be added to guarantee
functional correctness. Figures 2a and 2b show the code
belonging to the tasks with added synchronization statements.
Task t1 first acquires some space to write in, then performs
the actual computation, writes the result in the buffer and
eventually releases the written place in the communication
buffer cx such that the result can be used by a consuming
task. Task t2 first acquires the required data, uses it and then
releases the space again.

The synchronization behavior of this task graph is modeled
as a CSDF graph which is shown in Figure 3. The edges
in this CSDF graph with the same direction as the edges in
the task graph, model the synchronization of full places in
the buffer while the opposite edges model the space in the
buffer. The required capacity of the buffer in the task graph
is therefore equal to the sum of the number of initial tokens
on these two edges. With the CSDF graph the capacity of
buffer cx is determined to prevent deadlock or to guarantee
a certain throughput constraint. The phases in the CSDF
graph correspond with executions of the acquire and release
functions. In the CSDF graph, 〈4 × 1〉 is a shorthand for
〈1, 1, 1, 1〉, 4 phases with a production, consumption or firing
duration of one.

While the productions and consumptions in the CSDF
graph correspond with the synchronization functions in the
task graph, a modification of these productions or consump-
tions can be used to modify the task graph. For example
a modification of a consumption from one tokens to two,
can be used to modify the corresponding acquire function to
acquire two places instead of one. The idea is to calculate a
possible modification of the CSDF graph which can be used to
modify the task graph. Figure 4 shows the result of a possible
resynchronization of the CSDF graph. The second and the
fourth consumption on edge (v1, v2) are performed earlier.
This results in a larger number of required initial tokens. The
result of the resynchronization can now be used to modify
the task graph. A possible result of this modification is shown
in the Figure 2c. While the number of required initial tokens
corresponds the required capacity of the buffer in the task
graph, this buffer capacity also needs to be increased to two
buffer locations. This already shows that resynchronization
comes at the cost of an increased buffer capacity.

The buffer capacity determination algorithm as presented in
[6] is based on transforming the problem conservatively to a
linear problem. Linear bounds on the cumulative token transfer
are determined such that a schedule can be defined in which

cxt1 t2

Figure 1. Example task graph

ρ(v1) = 〈4× 1〉 ρ(v2) = 〈4× 1〉
v2

1

〈4× 1〉

〈4× 1〉 〈4× 1〉

〈4× 1〉
v1

Figure 3. Synchronization behavior graph of the code in Figure 2

all tokens consumptions and productions are bounded by the
linear bounds.

In the determined schedule for actor v2 on edge (v1, v2), all
token consumptions can be bounded by a linear upper bound
such that all token consumptions are below this bound. A
possible schedule for actor v2 of Figure 3, which is bounded
with a linear bound, ĉ12, can be found in Figure 5a. In
Figure 5b it is shown that an advancement of the second
and fourth consumption to an earlier time in the schedule
can be translated to a shift in the linear bound. If it was
possible to shift the linear bound upwards with the amount
needed for this advancement without violating the throughput
and memory size constraints, the transformation of the CSDF
graph as shown in Figure 4 is possible.

The algorithm presented in the next section, expresses the
resynchronization as a linear shift of the linear bounds. In the
LP algorithm, the shifts are maximized such that the possible
resynchronization is maximized. Shifting these bounds results
in larger buffer capacities. We illustrate this by means of
Figure 6. This figure shows schedules for the actors of the
CSDF graph in Figure 3. Tokens must be produced before
they are consumed. For edge e12 this can be ensured by
positioning the production bound (p̌12) above the consumption
bound (ĉ12). This defines a constraint on the start times of
the first firings of the two actors. The difference between the
start times is annotated with β in Figure 6. For edge e21 the
maximum vertical difference between the production bound
(p̌21) and consumption bound (ĉ21) specifies the number of

ρ(v1) = 〈4× 1〉 ρ(v2) = 〈4× 1〉
v2

〈2, 0, 2, 0〉〈4× 1〉

〈4× 1〉 〈4× 1〉2

v1

Figure 4. Resynchronized analysis graph of the code in Figure 2

C
u
m
u
la
ti
ve

to
ke
n
tr
an

sf
er

Time

ĉ12

(a) Original consumption bound

C
u
m
u
la
ti
ve

to
ke
n
tr
an

sf
er

Time

ĉ12

(b) Resynchronized consumption
bound

Figure 5. Bounds on the consumption on edge e12 in Figures 3 and 4

whi le (1) {
f o r (i n t i =0 ; i<4; i ++) {

a c q u i r e S p a c e (cx , 1) ;
x [i] = F (i) ;
r e l e a s e D a t a (cx , 1) ;

}
}

(a) Task t1

whi le (1) {
f o r (i n t i =0 ; i<4; i ++) {

a c q u i r e D a t a (cx , 1) ;
p r i n t f (”%d ” , x [i]) ;
r e l e a s e S p a c e (cx , 1) ;

}
}

(b) Task t2

whi le (1) {
f o r (i n t i =0 ; i<4; i ++) {

i f (i % 2 == 0) a c q u i r e D a t a (cx , 2) ;
p r i n t f (”%d ” , x [i]) ;
r e l e a s e S p a c e (cx , 1) ;

}
}

(c) Task t2 resynchronized

Figure 2. Parallelized code for Figure 1

C
u
m

u
la

ti
ve

to
ke

n
tr

an
sf

er

Time

ĉ21 p̌12 ĉ12 p̌21

β

δ(e21)

consumption

production

Figure 6. Example schedules for the actor firings of Figure 3, with from left
to the right, the consumption bound on edge e21, the production bound and
the consumption bound on e12 and the production bound on e21.

needed initial tokens, δ(e21). This number of tokens ensures
that initially enough tokens can be consumed before tokens are
produced on edge e21. The number of needed initial tokens
corresponds with the needed buffer capacity in the task graph.
Shifting p̌21 and ĉ21 leads to an increase of the difference
between p̌21 and ĉ21 and also shifting p̌12 and ĉ12 can lead,
due to the start time constraint, indirectly to an increase of
the vertical difference between p̌21 and ĉ21. Each shift of the
bounds can thus lead, indirect or direct, to an increase of the
needed buffer capacity. This shows the trade-off between the
memory size and the resynchronization in the solution.

IV. ANALYSIS MODEL

In this section we describe the analysis model we use for the
calculation of maximum resynchronization. We first describe
the model and its formalization and then we define properties
of the model on which our analysis techniques rely.

The model we use to calculate the maximum amount
of resynchronization is a CSDF [5] graph that models the
synchronization behavior of an application. A CSDF graph is
a directed graph G = (V,E, δ, ρ, π, γ, θ) that consists of actors
V and finite set of directed edges, E = {(vi, vj) | vi, vj ∈ V }
where (vi, vj) is an edge from vi to vj . We furthermore write
eij for (vi, vj).

The number of initial tokens on edge e ∈ E is given by δ(e)
with δ : E → N. The number of distinct phases of execution of
an actor vi is given by θ(vi) and the actor transitions between
phases in a cyclic fashion. We call these θ(vi) phases the
cyclo-static period.

A firing of an actor is enabled when on all input edges of
the actor sufficient tokens are present. The token consumption
quantum is the number of tokens that are required on an edge
eij ∈ E in a particular firing. This quantum is in firing f of
actor vj on edge eij , γ(eij , ((f −1) mod θ(vj))+1) tokens,
with γ : E × N → N. The specified number of tokens is
consumed atomically from all input edges when the actor fires.
The number of produced tokens in firing f of actor vi on
edge eij is denoted by π(eij , ((f − 1) mod θ(vi)) + 1), with
π : E×N→ N. All tokens of firing f of actor vi are produced

atomically on each output edge at the end of firing f . A firing
ends ρ(vi, ((f−1) mod θ(vi))+1) time units after it starts.

For edge eij , we define Π(eij) =
∑θ(vi)
f=1 π(eij , f) as the

number of tokens produced in one cyclo-static period and
Γ(eij) =

∑θ(vj)
f=1 γ(eij , f) as the number of tokens consumed

in one cyclo-static period. Furthermore we assume that each
actor vi has an implicit self-edge eii with a single initial token
such that subsequent firings of an actor can not overlap.

Furthermore we make shorthands for the cumulative token
production and consumption of phase 0 up to (and without)
phase p: Ξ(eij , p) =

∑(p−1)
k=0 π(eij , p) for the production and

Λ(eij , p) =
∑(p−1)
k=0 γ(eij , p) for the consumption.

We use ζ(eij) to specify the size that a token on edge eij
takes in the memory.

Consistency of CSDF graphs is defined as in [5]. Similar
to [5] we define a positive integer vector z of length |V |
which is called the repetition vector of the CSDF graph. For
each actor vi, element zi of the repetition vector denotes the
repetition rate of vi and specifies the relative firing frequency
between actors.

As we will see later on, resynchronization only modifies
the times of consumptions and productions within the cyclo-
static period. This means that Π(eij) and Γ(eij) do not change
and thus consistency is preserved. The repetition vector of the
CSDF graph does not change either.

For a strongly connected and consistent CSDF graph a
period µ can be specified in which each actor should fire
zi · θ(vi) times. This µ can be used to steer the average token
transfer rate which corresponds with the throughput.

If a CSDF graph is executed in a self-timed manner, actors
start execution as soon as the required tokens are available.
Self-timed execution of a CSDF graph is monotonic. This
means that a decrease in response time or start time can only
lead to earlier production time and can therefore never delay
any later firing. As an addition to this, it can be shown that
an increase of the number of initial tokens cannot lead to an
increase in the enabling time of any firing [13]. This property
allows us to calculate with a conservative number of initial
tokens.

V. RESYNCHRONIZATION

In this section we first explain a method for transforming
resynchronization into a shift of the linear bounds on the
schedule as shown in Section III. We then extend the algorithm
used for the calculation of start times of the actors in [6]
such that a maximum resynchronization is calculated simulta-
neously with the start times while bounding the used memory.
The result is a maximum resynchronization for each edge
together with buffer capacities which satisfy the throughput
and memory size constraint. We use the method presented in
[6] to first determine a schedule for each actor. We refer to the

start time of firing f of actor vi in this schedule as s(vi, f).
We do not change these start times of firings but only assign
different consumptions / productions to the firings.

We assume as an input for the calculation of resynchro-
nization the set of edges for which resynchronization must
be maximized. Ec ⊆ E and Ep ⊆ E are the sets of
edges for which respectively consumption and production
resynchronization must be determined. For each of these edges
we assume that there is a specification of the phases on
which resynchronization must be calculated. For simplicity
we assume that the production / consumption quanta are equal
for all of the phases that are specified for resynchronization.
For the production resynchronization on edge eij we specify
these phases as a list of consecutive phases of actor vi
starting at phase Ppb (eij) and ending at phase Ppe (eij) :
〈Ppb (eij), . . . ,Ppe (eij)〉. For the consumption resynchroniza-
tion the phases are specified similar: 〈Pcb (eij), . . . ,Pce(eij)〉.
We use θpij = Ppe (eij)− Ppb (eij) + 1 for the number of phases
on which the production resynchronization is applied. The
number of phases on which consumption resynchronization
is applied is defined analogues and is called: θcij .

The phases that are specified for resynchronization can
be bounded with a linear bound. We call this bound the
resynchronization bound. On each edge eij , Π(eij) · zi tokens
are produced in µ time. With this we know that a linear bound
with a slope of Π(eij)·zi

µ is able to bound the schedule of
the productions from below, we only have to determine the
vertical offset of this bound. The slopes of the production and
consumption bounds are equal because consistency tells us
that Π(eij) · zi = Γ(eij) · zj holds. For edge eij we write
αij for its slope. We can now define a linear production
and consumption bound with slope αij which only bounds
productions / consumptions of the phases specified for resyn-
chronization. In case of consumption resynchronization, this
partial consumption bound is always lower or equal to the
consumption bound on all the phases. The production bound
on the resynchronization phases is also always higher or equal
to the production bound on all the phases.

The partial consumption bound on the resynchronization
phases of edge eij is called the consumption resynchronization
bound and can be defined as αij · t+ βrcij with βrcij as:

βrcij = max
p∈〈Ppb (eij),...,Ppe (eij)〉

(Ξ(eij , p)− αij · s(vj , p)) (1)

The production resynchronization bound of edge eij can be
defined similar: αij · t+ βrpij with βrpij as:

βrpij = min
p∈〈Pcb (eij),...,Pce (eij)〉

(Λ(eij , p)−

αij · (s(vi, p) + ρ(vi, p))) (2)

Resynchronization can be seen as shifting consumptions
and productions in the time. Productions can be postponed
and consumptions can be advanced compared to the original
schedule. These shifts are allowed because tokens can be
produced later than was possible in the application and tokens
are consumed earlier than was needed in the application.
Logically productions and consumptions are shifted from one
phase to an other such that they correspond with a certain
firing. However this would lead to integer constraints in our
optimization problem. To linearize the problem, we decouple
the actual consumption and production from the phases. In

our algorithm a consumption is an amount of tokens that
must be consumed somewhere in the schedule as long as it is
consumed earlier (or equal) than in the original schedule. For
the production we do the same but now we demand that the
tokens are produced at a later or equal time in the schedule
than in the original schedule. After the calculation of the
maximum shifts, the productions and consumptions can be
assigned again to actual phases.

For each of the edges on which production resynchro-
nization must be applied, we calculate a resynchronization
factor, Rpij ∈ R+. This factor denotes the maximum number
of phases that a token production may be postponed. For
the consumption resynchronization we have a similar factor:
Rcij ∈ R+ which denotes the maximum number of phases
that a token consumption may be advanced. These factors are
maximized in the algorithm given a memory size constraint.
The maximum value for Rpij is (θpij − 1), because then all the
productions can be shifted to the last phase of the cyclo-static
period and thus higher values of Rpij will not make sense. The
maximum value for Rcij is (θcij − 1).

The postponement of a production needs to be captured
by the production resynchronization bound which was defined
on the phases specified for resynchronization. The needed
shift of this bound can be conservatively defined such that
the productions are bounded for each possible value of the
resynchronization factor, Rpij . This can be done by using the
maximum time a production postpones if it is shifted from
one phase to a subsequent phase:

T pij = max
p∈〈Ppb (eij)+1,...,Ppe (eij)〉

(s(vi, p)− s(vi, p− 1))

With this we can redefine the production resynchronization
bound of eij to αij · t+ βrpij −∆p

ij · Rpij with ∆p
ij = αij · T pij

The production bound on all the phases of eij can now
be defined such that it also takes the resynchronization into
account. The vertical offset of this bound can now be defined
as:

βp
′

ij = min(βpij , β
rp
ij −∆p

ij · Rpij) (3)

From this definition we see that this production bound does
not change if the production resynchronization bound is higher
than the production bound on all the phases. We can therefore
use the distance between these two bounds as free resynchro-
nization space. In order to remove the min expression, we can
define a lower limit on the resynchronization factor such that
the production resynchronization bound is dominant for the
production bound and thus the free resynchronization space is
always used maximally: Rpij ≥

βrpij −β
p
ij

∆p
ij

. If
βrpij −β

p
ij

∆p
ij

is greater
than (θpij − 1), the difference between the resynchronization
bound and the original bound is greater than the maximum
value of Rpij . This means that the production on eij can be
resynchronized fully without modifying the production bound.
In the algorithm presented below we can use the original
production bound as linear production bound for this edge
and can remove the edge from Ep because resynchronization
does not need to be determined in the algorithm for this edge.
We now specify the vertical offset, βrp

′

ij , of bound p̌ as:

βrp
′

ij =

{
βrpij if eij ∈ Ep
βpij otherwise

(4)

With this we can specify a new production bound on eij in
which Rpij is 0 for edges eij /∈ Ep:

p̌ij(t) = αij · (t− s(vi)) + βrp
′

ij −∆p
ij · Rpij + δ(eij) (5)

The bound on the consumptions shifted by the resynchro-
nization can be defined similar with all the constraints and
definitions analogues to the ones for the production bound but
now moving the bound upwards:

ĉij(t) = αij · (t− s(vj)) + βrc
′

ij + ∆c
ij · Rcij (6)

As in [6] we require that ∀eij∈E : p̌ij(t) ≥ ĉij(t). We can
rewrite this, similar to the procedure in [6], to a constraint in
start times:

s(vj)− s(vi) ≥ βrc
′

ij +∆cij ·R
c
ij−(β

rp′
ij
−∆

p
ij
·Rp
ij

+δ(eij))

αij
(7)

In this equation, δ(eij) represents the maximum allowed
number of initial tokens on edge eij which controls the
maximum difference between the start times of actors vi and
vj .

Algorithm 1
Minimize∑

eij∈E
a(eij)ζ(eij)δ

′(eij)−
∑

eij∈Ep

bp(eij)Rpij −∑
eij∈Ec

bc(eij)Rcij

Subject to

∀eij ∈ E : s(vj)− s(vi)−
∆c
ij ·R

c
ij+∆p

ij ·R
p
ij

αij
≥

βrc
′

ij −(βrp
′

ij +δ(eij))

αij

(8)

∀vij ∈ V : s(vi) ≥ 0 (9)

∀eij ∈ E : δ′(eij) ≥ αij · (s(vi)− s(vj))− βrp
′

ij +

∆p
ij · Rpij + βrc

′

ij + ∆c
ij · Rcij

(10)

∀eij ∈ E : δ′(eij) ≥ 0 (11)

∀eij ∈ Ep : (θpij − 1) ≥ Rpij ≥
βrpij −β

p
ij

∆p
ij

(12)

∀eij ∈ Ec : (θcij − 1) ≥ Rcij ≥
βcij−β

rc
ij

∆c
ij

(13)

∀eij ∈ E\Ep : Rpij = 0 (14)
∀eij ∈ E\Ec : Rcij = 0 (15)∑

eij∈E
(δ′(eij) + 1) · ζ(eij) ≤M (16)

Algorithm 1 computes the maximum amount of resynchro-
nization given a memory constraint M . The solution of the
algorithm can be controlled by the weight factors a(eij),
bp(eij) and bc(eij). Equation 8 constraints the start times of
actors as defined in (7). It ensures that it is possible to find start
times for the actors guaranteeing the throughput constraint and
also filters the resynchronization solutions leading to deadlock.
For edges that may contain initial tokens, (10) specifies the
needed number of initial tokens such that given the start times
and resynchronization, p̌ij(t) ≥ ĉij(t) holds for these edges.

BF

In

Out

100

A

D

A

C

D
C

B

B

B
A

f13
f1

f4

f6

f7 f9

f10 f11 f12

x[k]

f2 f3

f5

f8

y[k]

C
C

φ[n− 1]

A = 100× 1 B = 10× 1 C = 10× 10
The missing ratios within the CMA frame are all 10× 1.

d

Figure 7. Task graph of the Extended Constant Modulus Algorithm

By using the token size, this number of initial tokens can be
transformed to the needed buffer capacity. The sum of these
buffer capacities needs to be bounded by M , which is enforced
by (16). The number of initial tokens is increased by one
to conservatively take the effect of ceiling this number after
the algorithm into account. With (12) and (13) we bound the
variables containing the resynchronization factor such that they
do not exceed their maximum value and that for each edge eij ,
βp
′

ij and βc
′

ij are determined by the resynchronization bounds
as explained for the derivation of (4).

The LP algorithm calculates with real numbers. We however
need a integer value for each of the resynchronization factors
such that they correspond with a number of phases that a
production or consumption may be shifted and thus can be as-
signed again to an actual firing. This is done by flooring these
values. The resulting resynchronization factors are now bRpijc
and bRcijc. Flooring the resynchronization factors means that
productions / consumptions are shifted less phases than was
determined as the maximum shift thus this is allowed.

The determined number of initial tokens δ(eij) needs be a
integer value too. Due to the monotonic behavior of a CSDF
graph, the number of initial tokens may be increased without
violating the throughput constraint and can therefore be ceiled.
Using the floored resynchronization factors we can specify
the number of sufficient initial tokens δs(eij) as the smallest
integer satisfying (10):

δs(eij) =
⌈
αij · (s(vi)− s(vj))−
βrp

′

ij + ∆p
ij · bRpijc+ βrc

′

ij + ∆c
ij · bRcijc

⌉ (17)

The resynchronization factors can also be used to modify
the CSDF graph and a corresponding application such that the
synchronization granularity increases. This can be done in a
similar way as shown in Section III.

VI. CASE-STUDY

In this section the resynchronization technique is demon-
strated on a CMA algorithm of which the task graph is shown
in Figure 7. All functions (fi) in the figure, are fine-grained
parallel tasks. Together they form a task graph for which we
can construct a CSDF model in a similar way as in Section III.
We apply the presented resynchronization technique on this
CSDF model in order to increase the synchronization granular-
ity. The total number of synchronization statements considered

0%

10%

20%

30%

40%

50%

60%

70%

0 100 200 300 400 500

Pe
rc

en
ta

ge
 o

f r
em

ov
ed

sy

nc
hr

on
iz

at
io

n
st

at
em

en
ts

Memory size constraint

d = 30
d = 15
d = 10

Figure 8. Trade-off between memory size and resynchronization

for resynchronization in this application equals 650. The goal
is to decrease this number of synchronization statements. The
possible reduction is limited because of the cycles containing
edge (f13, BF). The number of initial data items on this edge
(d items in the task graph) specifies the maximum amount
of tokens at any time on each edge in these cycles. The
maximum number of tokens that can be consumed is thus
equal to this value d. This limits the amount of phases that
a consumption may be advanced and a production may be
postponed. However resynchronizing the synchronization calls
that regard space (not data) of the buffer (acquireSpace and
releaseSpace in Section III) is allowed if the buffer sizes are
large enough. Resynchronization of these calls does not add
delay to the critical cycles while, as illustrated in Figure 3,
these edges have an opposite direction and a variable number
of initial tokens.

The algorithm needs to find the edges at which resynchro-
nization is possible within the constraints of the cycles in the
task graph. If the memory size constraint is small, the produc-
tion on edge (f13, BF) is resynchronized. Relaxation of this
memory size constraint leads to the resynchronization of the
consumption of f1, f4 and f10 instead of the resynchronization
of edge (f13, BF) because for this option, three instead of one
buffer is increased in size. Further relaxation of this constraint
changes the resynchronization in this cycle to the consumption
resynchronization of f2, f6, f7 and f10. Because the algorithm
maximizes the resynchronization, it is able to choose between
above options of resynchronization in the critical cycles and
resynchronization of the synchronization calls regarding space
in the buffer depending on the cost in buffer sizes.

Figure 8 shows the trade-off between the memory size
constraint and the amount of resynchronization that is possible
given a throughput constraint of µ = 200 and equal firing
durations: ∀vi∈V : ρ(vi) = 1. The weight factors and token
sizes are also chosen to be equal. It is also shown that
increasing the number of initial data items in the task graph
(d) allows more resynchronization. The execution time of
the resynchronization algorithm for this problem is below
20 milliseconds (using GLPK). The reader may wonder why
we did not use a more accurate Integer Linear Programming
(ILP) formulation in the algorithm. Tests with such a more
accurate ILP formulation show that the results of the algorithm
indeed slightly improve but the execution time of the algorithm
rapidly increases for more relaxed memory constraints. For the
same application the algorithm did not return an answer, given
a memory constraint of 200 tokens, within one hour.

The method as used in this case-study is implemented in

a parallelization tool for stream processing applications. The
CSDF synchronization model generated by the tool is used to
compute a possible resynchronization which is used to modify
the original tasks.

VII. CONCLUSION

This paper presents a linear programming formulation for
resynchronization of a CSDF graph given a throughput and a
memory size constraint. It is shown that expressing advancing
consumptions and postponing productions as a shift of linear
bounds, enables the creation of an LP formulation that can
be solved in polynomial time. This paper focuses on the
resynchronization method self. Actual improvements depend
on the application, granularity, platform, etc. and is considered
as future work.

The case-study illustrates that especially cyclic dependen-
cies can make resynchronization within a memory size con-
straint challenging. Furthermore it is shown that relaxation of
the memory size constraint allows additional resynchroniza-
tion.

The presented resynchronization approach can be useful for
applications which are parallelized at a fine granularity. Our
method can decrease the synchronization overhead of these
applications by increasing the synchronization grain without
violation of the throughput constraint. The presented method is
suitable as an optimization step in a parallelization tool which
makes the fine-grain parallelism explicit.

REFERENCES

[1] P. Shaffer, “Minimization of Interprocessor Synchronization in Mul-
tiprocessors with Shared and Private Memory,” in 1989 International
Conference on Parallel Processing, University Park, PA, 1989.

[2] S. Bhattacharyya, S. Sriram, and E. Lee, “Minimizing Synchronization
Overhead in Statically Scheduled Multiprocessor Systems,” in Proceed-
ings of the IEEE International Conference on Application Specific Array
Processors. IEEE Computer Society, 1995, p. 298.

[3] ——, “Self-Timed Resynchronization: A Post-Optimization for Static
Multiprocessor Schedules,” in Proceedings of the 10th International
Parallel Processing Symposium. IEEE Computer Society, 1996, pp.
199–205.

[4] S. Sundararajan, S. Sriram, and E. Lee, “Latency-Constrained Resyn-
chronization for Multiprocessor DSP Implementation,” Laboratory, Uni-
versity of Maryland at College Park, 1996.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-Static
Dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp.
397–408, 1996.

[6] M. Wiggers, M. Bekooij, and G. Smit, “Efficient Computation of Buffer
Capacities for Cyclo-Static Dataflow Graphs,” in Proceedings of the 44th
annual Design Automation Conference. ACM, 2007, p. 663.

[7] S. Bhattacharyya, S. Sriram, and E. Lee, “Resynchronization for Multi-
processor DSP Systems,” IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 47, no. 11, pp. 1597–1609,
2000.

[8] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, “An Interactive
Environment for Data Partitioning and Distribution,” in Distributed
Memory Computing Conference, 1990., Proceedings of the Fifth, 1990,
pp. 1160–1170.

[9] C. Polychronopoulos, “Loop Coalescing: A Compiler Transformation for
Parallel Machines,” in Proceedings of the 1987 International Conference
on Parallel Processing, 1987, pp. 235–242.

[10] M. O’Keefe and H. Dietz, “Loop Coalescing and Scheduling for Barrier
MIMD Architectures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 9, pp. 1060–1064, 1993.

[11] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and N. Shenoy,
“A Global Communication Optimization Technique Based on Data-
Flow Analysis and Linear Algebra,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 21, no. 6, pp. 1251–1297, 1999.

[12] M. Wiggers, M. Bekooij, and G. Smit, “Monotonicity and Run-Time
Scheduling,” in Proceedings of the seventh ACM international confer-
ence on Embedded software. ACM, 2009, pp. 177–186.

[13] M. H. Wiggers, “Aperiodic multiprocessor scheduling for real-time
stream processing applications,” Ph.D. dissertation, University of
Twente, Enschede, The Netherlands, June 2009.

