
As-Robust-As-Possible Test Generation in the
Presence of Small Delay Defects using

Pseudo-Boolean Optimization
Stephan Eggersglüß∗†, Rolf Drechsler∗

∗Institute of Computer Science, University of Bremen,
28359 Bremen, Germany

{segg, drechsle}@informatik.uni-bremen.de
†German Research Center for Artificial Intelligence (DFKI)

Abstract—Delay testing is performed to guarantee that a man-
ufactured chip is free of delay defects and meets its performance
specification. However, only few delay faults are robustly testable.
For robustly untestable faults, non-robust tests which are of
lesser quality are typically generated. Due to significantly relaxed
conditions, there is a large quality gap between non-robust and
robust tests. This paper presents a test generation procedure
for As-Robust-As-Possible (ARAP) tests to increase the overall
quality of the test set. Instead of generating a non-robust test for
a robustly untestable fault, an ARAP test is generated which max-
imizes the number of satisfiable conditions required for robust
test generation by pseudo-Boolean optimization. Additionally, the
problem formulation is extended to incorporate the increased
significance of small delay defects. By this, the likeliness that
small delay defects invalidate the test is reduced. Experimental
results on large industrial circuits confirm the quality gap and
show that the generated ARAP tests satisfy a large percentage of
all robustness conditions on average which signifies a very high
quality.

I. INTRODUCTION

The significance of delay defects increases with the shrink-
ing features sizes of today’s designs. Therefore, delay testing is
a major issue in the post-production test to filter out defective
devices. Delay tests are widely used to check whether a manu-
factured chip is free of delay faults and meets its performance
specification. The most accurate delay fault model is the Path
Delay Fault Model (PDFM) [1], [2]. The PDFM captures small
as well as large delay defects along one path in the circuit.
However, the PDFM suffers from the large number of paths
in a circuit. For that reason, typically only tests for critical
paths are generated to ensure the correct timing behavior.
Additionally, tests for the PDFM are used for diagnostic
reasons. Here, high-quality tests are required.

Delay tests can be of different quality [2], [3]. These tests
can be roughly classified into two categories. Robust tests
guarantee the detection of the fault independently from the
presence of other delay faults in the circuit. On the other hand,
non-robust tests guarantee the detection of the fault only if no
other delay fault is present in the circuit. Non-robust and robust
tests differ in the sensitization conditions on the side inputs of
the path under test. Robust test generation requires stringent
conditions on the side inputs of the path. Static values on
certain signals are required in order to guarantee the absence

978-3-9810801-7-9/DATE11 c©2011 EDAA

of activity which might invalidate the test. Nowadays, the
quality of tests is of high concern in the industry. Obviously,
robust tests are more desirable to obtain. However, only a
small percentage of all paths can be tested robustly [4] due
to the stringent conditions. For robustly untestable faults, non-
robust tests are typically generated. These tests can generally
be invalidated by other delay faults at the side inputs of the
path under test.

Several approaches were developed in order to increase the
quality of tests for robustly untestable paths. The approach in
[5] orders all signals which require static values for a robust
test in a static manner taking timing information into account.
Then, static values are assigned successively to those signals if
possible. However, the result is significantly influenced by the
static order since no backtracking is performed. As a result,
the solution with highest quality might be missed. The work
presented in [6] describes a test generation approach which
targets untestable critical paths by robustly testing their longest
segment only. In [7], the As-Late-As-Possible Transition Fault
(ALAPTF) model is proposed. In order to accumulate small
delay defects, the transition is launched as late as possible via
the longest robust segment. The computational effort using this
method is very high.

In this paper, As-Robust-As-Possible (ARAP) test generation
is proposed. If a Path Delay Fault (PDF) is robustly untestable,
a test is generated with the maximal number of static side
inputs possible instead of a non-robust test. As a result, the
test is guaranteed to be as robust as possible and provides
increased quality. To achieve this, the problem is formulated
as a Pseudo-Boolean Optimization (PBO) problem which can
be solved by a pseudo-Boolean SAT solver, e.g. [8]–[11]. In
contrast to a static order (as used in [5] for a different aim),
the PBO solver works in a dynamical manner and performs
backtracking automatically to avoid local maximums in an
efficient way.

Pseudo-Boolean SAT solvers benefit significantly from the
recent advances in SAT solving techniques [12] and have al-
ready shown their feasibility in other domains like for instance
the maximum circuit activity estimation [13], [14]. Another
optimization problem is the test generation with maximal
crosstalk-induced delay. In [15], this problem is targeted with
an Integer Linear Programming (ILP) formulation which is
generally similar to the PBO problem formulation. In [16],

the problem of critical path selection considering coupling
noise was formulated as a weighted partial Max-SAT problem.
Here, the formulation distinguishes between hard and relaxable
constraints.

A further issue in the field of delay testing is the increased
distribution of Small Delay Defects (SDDs) caused by the
shrinking manufacturing technologies. SDDs are distributed
delay defects which are not able to cause a delay defect by
its own, but only if accumulated. Delay defects caused by
SDDs are more likely to manifest on long paths [17], [18].
Due to the flexibility of the proposed PBO formulation, it
is easily possible to incorporate additional information into
the PBO problem which decreases the likeliness that the test
is invalidated by distributed delay defects. This is done by
prioritizing static values on side inputs with fanin cones with
large depth containing long paths.

The proposed approach for ARAP test generation was
experimentally evaluated on large industrial circuits with up to
3.3 million elements. The results show that ARAP tests typi-
cally contain a high percentage of static side inputs resulting in
a very high test quality compared to conventional non-robust
tests.

The remainder of the paper is structured as follows. Sec-
tion II presents the preliminaries of this work. ARAP tests are
introduced in Section III. Section IV presents the proposed
test generation methodology for generating ARAP tests using
PBO. Section V shows the extension of the PBO formulation
in order to decrease the likeliness that the test is invalidated
by SDDs and Section VI provides experimental results on
large industrial circuits. Finally, conclusions are drawn in
Section VII.

II. PRELIMINARIES

This section presents the preliminaries of this work. Sec-
tion II-A describes the different sensitization criteria for PDFs.
Section II-B introduces basic information about PBO and
its application to circuit-oriented problems, and Section II-C
provides the necessary information about robust test generation
using Boolean Satisfiability (SAT).

A. Sensitization Criteria

A Path Delay Fault (PDF) models a distributed delay on a
structural path P from an input to an output of a circuit. A
structural path P is defined as the sequence of gates g1, . . . , go,
where g1 is an input and go is an output. The path P must
be complete. That means, each gate gi on P with 0 < i < k
must be an input of gi+1. If a gate gi is located on path P ,
it is denoted by gi ∈ P . According to the direction of the
transition at the beginning of path P , there is rising PDF as
well as a falling PDF for each structural path.

A test for a PDF has to consider two time frames t1, t2.
In order to generate a test for a PDF on path P , the desired
transition has to be launched at the input and P has to be
sensitized to propagate the transition. For this, the side inputs
of P have to be constrained to specific values according to the
desired sensitization criterion. A side input of P is an input
of gate gi ∈ P with 1 < i ≤ o which is not on P . The set of
side inputs of P is denoted by SP . The sensitization criteria
is responsible for the test quality.

TABLE I
SENSITIZATION CRITERIA FOR ROBUST AND NON-ROBUST TESTS

Robust Non-robust
Gate type rising falling

AND/NAND X1 S1 X1
OR/NOR S0 X0 X0

Table I shows the criteria for non-robust as well as robust
sensitization. For a non-robust test, it is sufficient that all side
inputs of P have to assume the non-controlling value of the
gate in t2 only (denoted by X0/X1). In order to avoid that
other delay faults mask the fault on P , static values have to be
guaranteed for a robust test if the transition goes from a non-
controlling value to a controlling value (denoted by S0/S1).
The set of side inputs on which a static value is required is
denoted by SPs in the following. A robust test is only possible
when all side inputs s ∈ SPs are able to assume a static value.

B. Pseudo-Boolean Optimization
The Pseudo Boolean Optimization (PBO) problem consists

of a pseudo-Boolean formula Ψ and an objective function F .
A pseudo-Boolean formula is a conjunction of pseudo-Boolean
constraints. A pseudo-Boolean constraint ψ over Boolean
variables x0, . . . , xn−1 is an inequality of the form:

n−1∑
i=0

ciẋi ≥ cn,

where c0, . . . , cn ∈ Z and ẋi ∈ {0, 1} (corresponding to the
assignment of xi). A pseudo-Boolean constraint ψ is satisfied
if and only if the sum of the coefficients ci with 0 ≤ i < n for
which the associated variable xi is activated, that is xi = 1,
is greater or equal than cn. A pseudo-Boolean formula Ψ is
satisfied if and only if each constraint ψ ∈ Ψ is satisfied.

The formula F is to minimize a given objective function of
the form:

F(x0, . . . , xn−1) =
n−1∑
i=0

miẋi,

where m0, . . . ,mn−1 ∈ Z. Therefore, the PBO problem is to
determine the solution which satisfies Ψ (also known as the
Pseudo-Boolean Satisfiability (PB-SAT) problem) and, at the
same time, minimizes the given objective function F .

The solving process of a PBO solver can be regarded
as an iterative application of a PB-SAT solver. At first, an
initial solution is calculated and improved in the following
search process until no further solution is possible. Due to
the desired optimization, the search space which has to be
explored is huge. However, PBO solvers use efficient conflict-
based learning techniques during the search. As a result, the
search space can typically be traversed very quickly, since a
large part can be pruned by learned information.

The application of PB-SAT is related to the application of
SAT. In order to transform a circuit-oriented problem into a
PBO problem, the circuit has to be modeled in PB constraints.
Each signal sj in a circuit is assigned a Boolean variable xj .
Similar to the transformation into a SAT problem [19], the
functionality of each gate g can be represented by a set of
constraints ψg . In fact, each SAT constraint, i.e. a CNF clause,
can be easily converted into a PB constraint. Table II shows
the representation of an AND gate in PB constraints as well

TABLE II
PSEUDO-BOOLEAN AND CNF REPRESENTATION FOR AND GATE a · b = c

PB CNF
((1− a) + (1− b) + c ≥ 1)· (a + b + c)·

(a + (1− c) ≥ 1)· (a + c)·
(b + (1− c) ≥ 1) (b + c)

as in CNF. Note that a negative literal xi is represented by the
term (1 − xi). The PB representation ΨC for circuit C with
gates g1, . . . , gk is given by the following formula:

ΨC =
k∏

j=0

ψgj

After the problem has been formulated as a PB-SAT instance
Ψ and an objective function F has been created, the PBO
problem is solved by a dedicated PBO solver. However, there
are two different types of solvers. Solvers like Pueblo [10]
directly supports PB constraints, while solvers like MiniSat+
[9] translate the PB-SAT problem into a SAT instance and
apply conventional SAT algorithms to find a solution. Ob-
viously, the latter type of solvers are particularly suited for
problems, which are modeled with many clauses and a few
pseudo-Boolean constraints [20].

C. SAT-based ATPG for Robust Tests
The proposed PB-SAT formulation is based on the SAT

formulation for robust PDF test generation. Therefore, the
SAT formulation is briefly introduced in the following. The
advantage of SAT-based ATPG algorithms is the high ro-
bustness of modern SAT solvers, which make the application
particularly suitable for hard problems such as robust test
generation. SAT-based test generation for robust tests was first
introduced in [21] for combinational circuits. The approach
MONSOON [22] presented a SAT formulation for sequential
circuits considering tri-state elements and unknown values and
shows the efficient application in industrial practice. In order to
apply a SAT solver to a circuit-oriented problem, the problem
has to be converted into a Boolean formula in Conjunctive
Normal Form (CNF).

As described above, robust tests require the modeling of
static values which cannot directly be represented by Boolean
logic. Therefore, both approaches use a multiple-valued logic
L to represent the sequential behavior of the circuit guaran-
teeing static values. In order to apply a Boolean SAT solver, a
Boolean encoding is used. Here, several Boolean variables are
used to represent one value of L. Assume that a set of Boolean
variables X is used to represent all values of L.1 The Boolean
encoding is chosen such that one variable xS ∈ X determines
whether the signal is guaranteed to be static or not.

Example 1: Assume that a signal x is represented by three
Boolean variable x1, x2, xS . The variable x1 denotes the value
of x in the initial time frame t1 and x2 denotes the value of x
in the final time frame t2. Additionally, xS determines whether
x is guaranteed to be static or not. If x1 6= x2, a transition
occurs and xS = 0 holds. If x1 = x2, then xS = 1 determines
that x is guaranteed to be static. This is ensured by additional
constraints as described in [22].

1The number of variables contained in this set differs according to the logic
used. This is described in more detail in [22].

III. AS-ROBUST-AS-POSSIBLE TESTS

The quality of a delay test for path P is determined by the
sensitization criterion applied to the side inputs of P . However,
in order to generate a robust test, the stringent conditions on
the side inputs must hold for each gate g ∈ P . Crucial is that
all side inputs s ∈ SPS have to assume a static value in order
to avoid that a test is invalidated by another delay fault. If at
least one side input is not able to assume the required value,
a robust test is not possible anymore. Then, a non-robust test
has to be generated.

Typically, robust test generation fails because a subset of
the side inputs (and not all) cannot be set to static values at
the same time. For a non-robust test, the conditions on the
side inputs are significantly relaxed for all side inputs on P .
Here, none of the side inputs of P requires a static value.
As a result, an invalidation of the test is possible at any side
input s ∈ SPS . Therefore, there is a large quality gap between
non-robust and robust tests.

Instead of a non-robust test, we propose to generate an As-
Robust-As-Possible (ARAP) test for a robustly untestable fault.
In contrast to a non-robust test, the number of side inputs
s ∈ SPS which can be set to a static value is maximized. By
this, the quality of the test is increased, since each side input
set to a static value cannot be invalidated by other delay faults
anymore.

Example 2: Figure 1 shows a small example circuit (includ-
ing one flipflop FF) with tests for a PDF with falling transition
on path a−d−g−j−m. This PDF is robustly untestable due
to the sequential behavior. A non-robust test requires that the
side inputs of the gates d, g,m are set to the non-controlling
value of the gate in t2, i.e. line b and g are set to X1, while
line l assumes the value X0. This is shown in Figure 1(a).

Although the PDF is robustly untestable, some of the inputs
can be set to a static value. Figure 1(b) shows an ARAP test
in which the number of static side inputs is maximized. Here,
two of all three side inputs, i.e. b and c, are set to a static
value and prevent that other delay faults invalidate the test at
the corresponding gates. A static value at side input l is not
possible, because of the assignment of side input b and the
sequential behavior (flipflop e).

IV. TEST GENERATION FOR ARAP TESTS

The following procedure is proposed to efficiently generate
ARAP tests. In order to generate an ARAP test with a
maximized number of static side inputs, we formulate the
problem as a Pseudo-Boolean Optimization (PBO) problem
and solve it by a dedicated PBO solver. For a circuit C and
a PDF F on path P , the problem is formulated as follows:
First, the circuit C is transformed into PB constraints ΨC
as described in Section II. Here, a circuit representation is
used which is able to model static values (see Section II-C).
Then, ΨC is extended with PB constraints ΨNR for non-robust
sensitization along the side inputs SP . This results in a PB-
SAT instance

ΨF
C = ΨC ·ΨNR

suitable for non-robust test generation. Note that this can still
be modeled as a Boolean SAT instance.

a

b

c

d
g

i

FF
e f h

XX
X1 X0

X1
j

k l

m

XX

X1

X0

XX

(a) Non-robust test

a

b

c

d
g

i

FF
e f h

X0
X1 X0

S1
j

k l

m

X1

S1

X0

X1

(b) ARAP test

Fig. 1. Tests for path a – d – g – j – m

Next, the set of side inputs SPS which have to assume a static
value for a robust test is identified and the objective function
F is formulated. The objective function F is formulated over
the variables of the side inputs SPS . However, not all variables
of the signals contained in SPS have to be included in F .
For signal x, it is sufficient to include the variable xS in F ,
since the assignment of xS determines whether the signal is
guaranteed to be static. The number of static side inputs have
to be maximized. Therefore, the objective function F is the
sum of all variables xS of all signals si ∈ SPS multiplied by
the constant (−1):

F(x0
S , . . . , x

n
S) =

n∑
i=0

(−1) · xi
S ,

where xi
S is the variable xS of signal xi and n = |SPS |. As

a result, the constants associated with each variable xi
S are

accumulated, if xi
S is active, i.e. xi

S = 1, which means that
the corresponding side input is guaranteed to be static.2

Finally, the resulting PBO problem, i.e. the PB-SAT instance
ΨF
C and the objective function F , is given to a PBO solver

in order to calculate a solution. The solution directly provides
the test with the maximum number of static side inputs. That
is, if the test is robustly testable, a robust test is generated.
Otherwise, an ARAP test is generated or the fault is proven
untestable. Both test problems are integrated into one problem
instance and the generated test is automatically of highest
quality possible.

The following example demonstrates the procedure.
Example 3: Again, consider the circuit C shown in Figure 1

and the given falling PDF on path a − d − g − j −m. Each
signal line x in C is represented by three Boolean variables
x1, x2 and xS . Here, x1 (x2) represents the value of x in the
initial (final) time frame. The variable xS determines whether
the value at x is guaranteed to be static. In order to generate
an ARAP test, the circuit is transformed into PB constraints
gate by gate:

ΨC = ψd · ψe · ψf · ψg · ψh · ψi · ψj · ψk · ψl · ψm

2Note that state-of-the-art PBO solver try to minimize F . Therefore, the
negative constant is necessary to maximize the number of static side inputs.

The constraints for generating a non-robust test are added
(b=X1,c=X1,l=X0):

ΨNR = (b ≥ 1) · (c ≥ 1) · ((1− l) ≥ 1)

Finally, the objective function is formulated:

F(bS , cS , lS) = (−1) · bS + (−1) · cS + (−1) · lS
A solution for ΨC · ΨNR with respect to F determined by a
PBO solver provides the ARAP test with maximized number
of static side inputs:

Test = {a = 10, b = S1, c = S1, e = X1}

V. CONSIDERING THE PRESENCE OF SMALL DELAY
DEFECTS

The distribution of Small Delay Defects (SDDs) has sig-
nificantly increased in the last years due to the shrinking
feature sizes. The growing distribution of SDDs results in an
increased likeliness of delay defects on long paths [7], [23] due
to their possible accumulation. The test generation procedure
described in the previous section considers all side inputs in
the same manner. No side input is prioritized. However, this is
not optimal if SDDs are considered. This section shows how
the presence of SDDs can be incorporated into the proposed
test generation procedure. Note that the aim of the proposed
method is not to detect SDDs but to avoid that tests are
invalidated by SDDs.

Crucial in this incorporation is the consideration of path
lengths. When the maximum number of static side inputs is
the only objective of the generation of ARAP tests, some
longer paths ending at side inputs can be ignored in favor
of short paths ending at side inputs. Since shorter paths are
typically easier to justify than longer paths, the test generation
procedure is more likely to set static values on side inputs with
short paths than on side inputs with long paths. However, the
likeliness that a test is invalidated by a delay defect caused
by SDDs is higher if a longer path ends at a side input.
Therefore, side inputs with longer paths should be prioritized.
Consequently, it is desired that static values should be set to
side inputs with longer paths.

Example 4: Figure 2 gives the example circuit which is also
shown in Figure 1 and used in Example 2. A test is shown
which also sets a static value to two of the three side inputs.
However, this test avoids its possible invalidation at the side
input l which is set to a static value. In the presence of SDDs,
this test is to be preferred since the side input with longer paths
is covered by a static value. The test of Example 2 sets the
same number of static side inputs. However, primary inputs are
chosen only. The likeliness that SDDs cause delay defects on
inputs is very low due to the short path length. Unfortunately,
test generation algorithms are more likely to generate tests
with static values on side inputs with short paths since their
justification is typically easier.

In order to prioritize side inputs with longer paths, the PBO
formulation is modified. The PBO instance ΨF

C for fault F in C
is built in the same way as described in Section IV. However,
the objective function F is formulated differently, since F is
responsible for the maximization criterion. In the procedure
described above, the constant (−1) used for each variable in

a

b

c

d
g

i

FF
e f h

S0 S1
S1 S0

S1
j

k l

m

S0

X1

S0

Fig. 2. ARAP test for path a – d – g – j – m considering SDDs

F was responsible for the equal treatment of each side input.
This constant is substituted by a value indicating the likeliness
of the invalidation by SDDs. In this paper, the length of the
longest path ending at side input s ∈ SPS was chosen as an
indicator. A static value on a long paths avoid that the test can
be invalidated via this path. The length is denoted by cx for
signal x in the following. The objective function is therefore
formulated as follows.

F(x0
S , . . . , x

n
S) =

n∑
i=0

(cxi) · xi
S

By this, longer paths are prioritized since static values at the
end of longer paths cause a higher maximum value in F . If
the PBO solver has to decide between two side inputs which
cannot be set to static values at the same time, the one with
the higher constant is chosen. The altered formulation of F is
shown in the following example.

Example 5: In Figure 2, the length of the longest path
(under the unit delay model) for side input b and c is 1. Both
side inputs are primary inputs. The length of side input l is 6
(path e − f − h − i − k − l). Therefore, F is formulated as
follows:

F(bS , cS , lS) = (−1) · bS + (−1) · cS + (−6) · lS

Note that this is a heuristic measurement. Incorporating infor-
mation about the path length leads to the possibility that a test
is found which does not have the maximum number of static
side inputs possible. However, experiments confirmed that the
decrease in the number of static side inputs is negligible.

An advantage of using a PBO formulation is the flexibility
of the objective function. Due to the objective function, the
side inputs are dynamically ordered. In this paper, we used the
path length as indicator for demonstrating the efficiency and
feasibility of the technique. This value can easily be replaced
by more technology-dependent parameters or Standard Delay
Format (SDF) information, respectively. Additionally, it is
easily possible to extend the formulation to generate high-
quality non-robust tests [5]. Here, the side inputs are statically
ordered according to the difference between the arrival time
of the on input of the path under test and the earliest arrival
time of the side input.

VI. EXPERIMENTAL RESULTS

This section provides experimental results of the proposed
approach. The experiments were conducted on ITC’99 bench-
mark circuits as well as on large industrial circuits provided
by NXP Semiconductors. The PBO solver used was clasp
[11]. This solver support both PB constraints as well as CNF

constraints.3 Therefore, clasp is also used as a SAT solver for
comparison.

Table III shows the detailed results of the test generation
which was performed using the launch-on-capture scheme.
Column Circ. gives the name of the circuit. The name of
the industrial circuits roughly denotes the size, i.e. p3327k
contains over 3.3 million elements. For each circuit, 40000
long critical paths with a path length of over 50 elements were
extracted (if exists). The total number of extracted paths is
given in column #Paths. The number of non-robustly testable
PDFs is presented in column #NR. Column %Rob. presents the
percentage of robustly testable PDFs among the non-robustly
testable PDFs.

Three different approaches were evaluated. The run time of
these approaches is given in column Run Time in CPU seconds.
Column CNF gives the run time of CNF-based test generation
for generating robust as well as non-robust tests. However, no
ARAP test is generated. Column ARAP gives the run time for
the proposed ARAP test generation (including robust tests).
The run time overhead for generating ARAP tests is in most
cases only about 2X and ranges between 1.1X (b15) and 2.3X
(b21) for the benchmark circuits and between 1.7X (p3327k)
and 2.8X (p1330k) for the industrial circuits. In contrast, the
quality of the tests significantly increases. Column %ARAP
reports the percentage of generated ARAP tests. In fact, each
of the robustly untestable faults could be tested by an ARAP
test since at least one input could be set to a static value.
The average percentage of side inputs which could be set to
a static value is given in column %St Inp. The results show
that the average percentage is very high ranging between 74%–
92%. Most of the side inputs can be set to static value. This
confirms the large quality gap between non-robust and robust
tests. The minimum percentage of static side inputs is also
given in column %Min Inp.

The run time for ARAP test generation considering SDDs
is presented in column SDD. Here, the run time overhead
is higher compared to ARAP test generation. The overhead
ranges between 1.1X (b15) and 3.6X (b21) for the benchmark
circuits and between 2.3X (p57k) and 6.9X (p1330k). This
is due to the fact, that more solutions have to be considered
because of the incorporation of different factors for each side
input. In order to measure the quality improvement of this
method, all side inputs set to a static value are considered in
each test and the average path length of longest paths ending
at these side inputs is calculated. On these paths, accumulated
SDDs are not able to invalidate the test. The improvement of
the average path length is presented in column Av.Imp. The
results show that the average path length with static values is
increased on average by up to 12%. Column Max.Imp. gives
the highest improvement which could be achieved for one test.
The highest factor of improvement can be obtained for p80k
with an increase of 887% for one test.

In summary, the experiments confirm the large quality gap
between non-robust and robust tests which can be significantly
diminished by the proposed ARAP test generation. The results
show that the generation of ARAP tests causes moderate run

3The SAT solver clasp won the gold medal in two categories of the SAT
competition 2009 and in one category in the PB Evaluation 2009.

TABLE III
EXPERIMENTAL RESULTS - ARAP TEST GENERATION

Run time ARAP tests Length
Circ. #Paths #NR %Rob. CNF ARAP SDD %ARAP %St Inp. %Min Inp. Av.Imp. Max.Imp.
b14 1666 354 1.7 35.6 60.7 105.5 98.3 89.3 15.2 +0% +0%
b15 3696 346 0 83.4 91.6 94.7 100.0 83.5 8.6 +0% +0%
b17 11396 2427 3.0 365.9 503.2 692.5 97.0 85.7 5.7 +2% +11%
b18 29214 12198 2.5 2009.1 3577.2 4965.1 97.5 91.8 50.0 +8% +130%
b20 4646 1648 7.7 275.8 578.5 927.0 92.3 92.6 41.9 +1% +90%
b21 4510 1485 8.5 247.0 573.3 892.2 91.5 91.4 41.9 +1% +108%
b22 6716 2235 9.5 344.7 737.4 1158.9 90.5 91.9 30.2 +1% +7%
p57k 16042 4142 45.9 4646.1 9513.3 10625.0 54.1 87.0 1.0 +2% +249%
p80k 22062 15034 5.4 6521.4 13698.6 15936.0 94.6 86.9 11.5 +12% +887%
p99k 12710 7095 6.8 505.3 1393.5 1895.4 93.2 74.9 5.3 +5% +46%

p462k 40000 8855 19.0 361.0 838.5 2227.1 81.0 87.7 8.3 +6% +99%
p565k 40000 9909 14.2 951.2 1715.1 2166.7 85.8 81.8 31.3 +4% +92%
p1330k 40000 8473 80.2 69.4 192.0 482.1 19.8 83.5 39.3 +10% +70%
p3327k 40000 17851 22.0 2706.6 4631.1 7715.4 78.0 88.9 1.0 +4% +66%

time overhead compared to non-robust/robust test generation.
However, it is also shown that ARAP increases the quality
of the generated tests significantly since ARAP tests contain
a very high average number of static inputs. The extended
formulation considering the presence of SDDs is able to
increase the average path length of side inputs with static
values. This decreases the likeliness that the test is invalidated
by delay defects caused by SDDs.

VII. CONCLUSIONS

The quality of a delay test is determined by the sensitization
criterion applied to the side inputs of the path. Since the
same sensitization criterion is applied to each gate, there is
a large quality gap between non-robust and robust tests. In
the paper, we have proposed the generation of As-Robust-As-
Possible (ARAP) tests in order to diminish the quality gap
between non-robust and robust tests. An ARAP test is a test
which satisfies the maximum number of conditions needed for
a robust test. As a result, a robust test is generated if all robust-
ness conditions can be met or a high-quality non-robust test.
The problem is formulated as a Pseudo-Boolean Optimization
(PBO) problem and solved by a dedicated PBO solver. By this,
the test of highest quality possible is automatically generated
with one single problem instance.

Additionally, the presence of Small Delay Defects (SDDs)
can be easily incorporated due to the flexibility of the problem
formulation. The problem formulation is modified to prioritize
static values on long paths to avoid that SDDs are able to
invalidate the test. Experimental results on large industrial
circuits show the efficiency and feasibility of the proposed
approach. Future work is the application of this technique to
transition fault test generation and the evaluation of the impact
on the test set size and switching activity.

REFERENCES

[1] G. L. Smith, “Model for delay faults based upon paths,” in Proceedings
of the International Test Conference, 1985, pp. 342–349.

[2] C.-J. Lin and S. M. Reddy, “On delay fault testing in logic circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 6, no. 5, pp. 694–703, 1987.

[3] A. Krstić and K.-T. Cheng, Delay Fault Testing for VLSI Circuits.
Kluwer Academic Publishers, Boston, MA, 1998.

[4] K. Fuchs, M. Pabst, and T. Rössel, “RESIST: a recursive test pattern
generation algorithm for path delay faults considering various test
classes,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 12, pp. 1550–1562, 1994.

[5] K.-T. Cheng and H.-C. Chen, “Generation of high-quality non-robust
tests for path delay faults,” in Proceedings of the Design Automation
Conference, 1994, pp. 365–369.

[6] M. Sharma and J. H. Patel, “Testing of critical paths for delay faults,” in
Proceedings of the International Test Conference, 2001, pp. 634–641.

[7] P. Gupta and M. S. Hsiao, “ALAPTF: A new transition fault model
and the ATPG algorithm,” in Proceedings of the International Test
Conference, 2004, pp. 1053–1060.

[8] V. M. Manquinho and J. P. Marques-Silva, “Satisfiability-based algo-
rithms for pseudo-Boolean optimization using gomory cuts and search
restarts,” in Proceedings of the IEEE International Conference on Tools
with Artificial Intelligence, 2005, pp. 14–16.

[9] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” Journal of Satisfiability, Boolean Modeling and Computation,
vol. 2, no. 1–4, pp. 1–26, 2006.

[10] H. M. Sheini and K. A. Sakallah, “Pueblo: A hybrid pseudo-boolean
SAT solver,” Journal of Satisfiability, Boolean Modeling and Computa-
tion, vol. 2, no. 1–4, pp. 165–189, 2006.

[11] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in Proceedings of the International Joint Conference
on Artificial Intelligence, 2007, pp. 386–392.

[12] A. Biere, M. Heule, H. v. Maaren, and T. W. (Eds.), Handbook of
Satisfiability, ser. Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[13] H. Mangassarian, A. Veneris, S. Safarpour, F. N. Najm, and M. S.
Abadir, “Maximum circuit activity estimation using pseudo-boolean
satisfiability,” in Proceedings of Design, Automation and Test in Europe,
2007, pp. 1538–1543.

[14] S. Roy, P. P. Chakrabarti, and P. Dasgupta, “Satisfiability models
for maximum transition power,” IEEE Transactions on VLSI Systems,
vol. 16, no. 8, pp. 941–951, 2008.

[15] K. Ganeshpure and S. Kundu, “On ATPG for multiple aggressor
crosstalk faults,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 29, no. 5, pp. 774–787, 2010.

[16] R. Tayade and J. A. Abraham, “Critical path selection for delay test
considering coupling noise,” in Proceedings of the IEEE European Test
Symposium, 2008, pp. 119–124.

[17] R. Putman and R. Gawde, “Enhanced timing-based transition delay
testing for small delay defects,” in Proceedings of the VLSI Test
Symposium, 2006, pp. 336–342.

[18] M. Tehranipoor and N. Ahmed, Nanometer Technology Designs: High-
Quality Delay Tests. Springer, 2007.

[19] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, 1992.

[20] M. Anjos, “Pseudo-boolean forms,” in Handbook of Satisfiability, ser.
Frontiers in Artificial Intelligence and Applications, A. Biere, M. Heule,
H. v. Maaren, and T. Walsh, Eds. IOS Press, 2009, pp. 49–51.

[21] C. Chen and S. K. Gupta, “A satisfiability-based test generator for path
delay faults in combinational circuits,” in Proceedings of the Design
Automation Conference, 1996, pp. 209–214.

[22] S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and
R. Drechsler, “MONSOON: SAT-based ATPG for path delay faults
using multiple-valued logics,” Journal of Electronic Testing: Theory and
Applications, vol. 26, no. 3, pp. 307–322, 2010.

[23] B. Kruseman, A. K. Majhi, G. Gronthoud, and S. Eichenberger, “On
hazard-free patterns for fine-delay fault testing,” in Proceedings of the
International Test Conference, 2004, pp. 213–222.

