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Abstract— This contribution proposes syntax extensions to
SystemC-A that support mixed-technology system modelling
where components might exhibit distributed behaviour modelled
by partial differential equations. The important need for such
extensions arises from the well known modelling difficulties in
hardware description languages where complex electronics in a
mixed-technology system interfaces with distributed components
from different physical domains, e.g. mechanical, magnetic or
thermal. A digital MEMS accelerometer with distributed me-
chanical sensing element is used as a case study to illustrate
modelling capabilities offered by the proposed extended syntax
of SystemC-A.

I. INTRODUCTION

SystemC-A [1] is a superset of SystemC intended to extend
the modelling capabilities of SystemC [2] to the analogue
domain. It provides constructs to support user defined ordinary
differential and algebraic equations(ODAEs), and analogue
components to enable modelling of analogue, mixed-signal
and mixed-domain systems from high level of abstraction
down to the circuit level. Most powerful features of VHDL-
AMS [3] and Verilog-AMS [4] are provided in SystemC-A
in addition to a number of extra advantages such as high
simulation speed, support for hardware-software co-design and
high levels of modeling [1]. SystemC-A is used to model
mixed-signal and mixed-physical domain systems such as
automotive seating vibration isolation system [1] and ferro-
magnetic hysteresis [5].

Although major AMS HDLs such as SystemC-A and
VHDL-AMS are very powerful and flexible mixed physical
domain modeling tools, they face a challenge in modelling
mixed-technology microsystem applications such as energy
harvesting systems and MEMS sensors. This is because current
HDLs only support ODAEs modelling. This limits accurate
modelling of systems with distributed effects (mechanical [6],
electromagnetic(EM) [7], thermal [8], [9], etc.) which can
not be neglected and may even play vital roles. Thus an
implementation of PDEs in major HDLs is in demand. Some
attempts have already been made to implement PDEs within
the existing limits of major AMS-HDLs [10], [11], [8]. Among
them, a proposal for syntax extension for VHDL-AMS(named
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VHDL-AMSP) has been presented [10]. Pending the develop-
ment of a new standard, a preprocessor has been developed to
convert VHDL-AMSP into the existing VHDL-AMS 1076.1
standard automatically which can be simulated using currently
available simulators. In this paper, we propose the first full
implementation of the PDE extension to SystemC-A where
no preprocessor is required.

The proposed extension has particular advantages in mixed
physical technology systems that exhibit distributed physical
effects. For example, electromechanical Sigma-Delta MEMS
sensor designs, e.g. accelerometers and gyroscopes, which
are based on incorporation of mechanical sensing elements
into XA modulator control loops, have attracted great re-
search interest [12]. The mechanical sensing element, which is
usually modeled by the lumped mass-spring-damper model(a
second order ODE), is also a part of the loop filter in these
systems. However, the lumped model only can capture the
first resonant mode which is not accurate enough as higher
order mechanical resonant modes may significantly affect
the performance and stability of the XA control loop [6].
Consequently, it is necessary to improve the accuracy of
the mechanical model and use partial rather than ordinary
differential equations. In section III the case study of a MEMS
accelerometer embdedded in a XA control loop is modelled
in the extended SystemC-A to demonstrate the efficiency of
the new syntax. The accelerometer uses distributed sensing
elements.

II. SYSTEMC-A SYNTAX EXTENSION AND
IMPLEMENTATION

This section describes the new syntax of SystemC-A with
which users can define PDEs.

The abstract base class for PDEs is derived from the
existing SystemC-A abstract base class sc_a_component. Both
PDEs and their boundary conditions are generated from the
new abstract base classes sc.a_PDFE _base in the proposed
extension. This new abstract base class also inherits the virtual
build method which is invoked by the SystemC-A analogue
kernel at each time step to build the system matrix from
contributions of all the components. A sample component
class hierarchy with PDE extension is shown in Fig.1. The
mechanical component in this example includes user defined
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Fig. 1. SystemC-A component hierarchy with PDE extensions.

PDEs and associated boundary conditions which are derived
from the PDE base class.

A finite difference approach is used to discretize the PDEs
with respect to spatial variables and leave the time derivatives
unchanged. Consequently, PDEs are converted to a series
of ODEs which can be handled by the existing SystemC-A
analogue solver. The modelling flow in SystemC-A with PDE
extensions is shown in the Fig.2.

The following example of a simple one dimensional PDE
demonstrates the new syntax:
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where Q(z,t) is the partial quantity of interest, A is the
parameter, B is the excitation, C' is the right hand side value
of the boundary condition equation, z is a spatial variable and
t is time. The boundary condition is defined in Eq.2.

The extended SystemC-A code for this example is:

sc_.a_PDE_example :: sc_a_.PDE_example {
sc_a_PDE _base ("PDE_example"){
PDE_Coordinate_Declaration("Q","x" ,R,
N_node ,dx);
}

}

void sc_a_PDE _example :: Build{
Pdxdt_Boundary (M,N,"Q", x, C);
for (x=1;x<=N_node;x++)

{
PDE(x,—Pdx (1,"Q" ,x)—A%Pdt(1,"Q" ,x)+B);

}

A. Spatial Coordinate and Partial Quantity

Currently, in SystemC-A, three types of analogue system
variables ( node, flow, quantity), which are derived from an
abstract base class called sc_a_system_variable, are defined. In
the proposed PDEs extension, a new type of system variable
(Partial Quantity), which is also derived from the abstract base
class, is defined as illustrated in Fig.3.

The method PDFE_coordinate_Declaration() is used for
partial quantity definition and spatial coordinate declaration.
Multiple coordinate declarations will form a hypercube in the
multi-dimensional space. As shown in the example code, the
spatial coordinate ”x” with the range R is divided into N _node
segments and the partial quantity ”Q” is discretized and
defined inside the function in array format and discretization
step size dz(R/N_node) is returned.

The method PDE_Quantity() is used to
read a value of a particular partial quantity. For
example,PDE_Quantity("Q”,z) returns the value of
Partial Quantity ) at node x. This function’s counterpart
in SystemC-A is X() which reads the value of a quantity.
Similar to the differentiator (Xdot()) and integrator
(INTEG()) operators which can be performed on ordinary
quantities, the new methods (PDE_Quantity_dot() and
PDE _Quantity INTEG()) allow performing these two
operators on partial quantities.

B. Partial Derivatives

If ”Q” is a partial quantity, the function Pdx(N,”Q”,x) repre-
sents the derivative of ”Q” with respect to spatial coordinative
at position x. N is an integral number which represents the
derivative order. For example, Pdx(4,”Q”,x) represents the 4th
order partial derivative %A;g. A partial quantity can also have a
derivative with respect to time, lésing the attribute dt, so item

Pdxdt(3,2,7Q”,x) represents %'
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C. Boundary Conditions

Boundary  condition  are
Pdxdt_Boundary(). As shown

declared by  method
in the example code

above, M and N determine the order of derivative with
respect to coordinate x and time t, x is the specified position
where the conditions should apply and C' is the right hand
side value of the boundary condition equation. As an example,
Pdxdt_Boundary(1,0,”@Q”,100.0,0.0) represents the first
order derivative of Q at the user specified spatial boundary
(x=100.0) is equal to 0.0.

D. PDE Formulation Method

Function PDE() realizes the automatic equation formulation
of the PDEs to be modelled. This function is required to be
implemented in a “for” loop and the number of loops deter-
mined by the number of segments(/N_node). After providing
the RHS vector will be provided in the 2nd term of the PDE()
function, Jacobian matrix will be automated generated using
a secant finite difference approximation which is defined in
terms of system RHS(fi(xj)) and a scalar Ax:

_ Ofi _ filz; + Awy) — fi(z;) 3)
I Ax;

J J

Finally, the function matrix is solved in the embedded
SystemC-A analog solver.

Jij

III. EXAMPLE: DISTRIBUTED MEMS ACCELEROMETER
WITH XA CONTROL LOOP

A single axis lateral capacitive MEMS accelerometer with
a XA control loop is used as an example to illustrate the
SystemC-A syntax extension. Fig.4 shows the block diagram
of this system.
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Fig. 4. 2nd order electromechanical Sigma-Delta accelerometer

Conventionally, the mechanical sensing element is used as
a loop filter to form the 2nd order electromechanical A
accelerometer. The mechanical part of a lateral capacitive
MEMS accelerometer(Fig.5) is composed of a proof mass,
springs and comb fingers. In the lateral capacitive structure,
the proof mass is suspended by springs and it is equipped with
sense and force comb fingers which are placed between fixed
fingers to form a capacitive bridge. The sense fingers moves
with the proof mass resulting in a differential imbalance in
capacitance which is measured. The electrostatic force acting
on the force fingers is used as the feedback signal to pull the
proof mass in the desired direction.

Like most conventional modelling approached, the sensing
element dynamics in the sense-direction is normally modeled
to reflect only one resonant mode by a lumped mass, spring,
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and damper. which is represented by a simple 2nd order
ordinary differential equation:

2
d y(t) + DdLm + Ky(ﬁ) = Mam(t) + Ffeedback(t) “)

M
dt? dt

where M is the total mass of the structure, D and M are
damping and spring coefficients. a;,(t) is the input accelera-
tion and Feedpack(t) is the feedback force.

Distributed mechanical modeling is important in such
MEMS designs with digital control because the dynamics
of mechanical components may severely affect the system’s
performance. It has been well documented that sense fingers in
lateral capacitive accelerometers may vibrate due to their own
dynamics, thus rendering the feedback excitation ineffective,
causing an incorrect output and a failure of the system [6]. This
failure scenario cannot be modeled by the conventional mass-
damper-spring model 2nd order ordinary differential equation.

The motion of the sense beam can be modeled by the
following partial differential equation (PDE):

%y, t)
Oxdot

2 t y(x
Pula.i) %(; ) 4+ prdy@:t) %;4’ D_ Fat) o)
where y(x,t) , a function of time and position, represents
the beam deflection, F, I, Cy4, p, S are physical properties of
the beam: p is the material density, S is the cross sectional
area (Wy*T'), where Wy and T' are width and thickness of the
beam), E is Young’s modulus and [ is the second moment of
area which could be calculated as I = TW;’ /12 and Cp is the
internal damping modulus. The product E'1 is usually regarded
as the stiffness . Feedback force is acting on the proof mass, so
the sense finger is only deformed by distributed electrostatic
force and input acceleration. F.(x,t) in the equation is the
electrostatic force per unit length:

pS +Cpl

2 2
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where ¢ is the permittivity of the gap, dy is the initial gap
between the sense finger and the electrode and V,, () is the
high frequency carrier voltage.

The boundary conditions at the clamped end and the free
end are shown in the following equations:

At the clamped end (x=0):

y(0,t) = 2(t) (7
6= 8yé()(l, D_y ®)
At free end (x=1):
a=-2UD ©)
Q= —% =0 (10)

where 6, M and () denote the slope angle, the bending
moment and the shear force respectively, [ is the length of the
finger.

The clamped end of the sense fingers moves with the
lumped proof mass whose deflection z(t) could be modelled
by a 2nd order differential equation Eq.(4).

The total distributed sense capacitance between the sense
fingers and electrodes is:

L.f 1

Where N is the number of sense fingers. The output voltage
can be calculated as:

C1—Cs
=—=V,(t
Ci+C, ®)

Where V,,,(t) is high frequency carrier voltage applied on
the fixed electrode in comb fingers unit.

Vout (t) (13)

A. SystemC-A Code for mechanical sensing element

The SystemC-A model of the mechanical sensing element
present below provides an example of how the PDEs discussed
above are implemented.

PDE_sensing :: PDE_sensing (char nameC[5],
sc_signal <double >*Output , sc_signal <double >xinput ,
sc_signal <double >xfeedback , sc_signal <double >*Vm){

sc_a_PDE_base ("sensing"){
PDE_Coordinate_Declaration("Y","x",100e—6,10,dx);
Deflection=Output;
ain_sig=input;
feedback_sig=feedback;
Vm_sig=Vm;

// Quantities for lumped mass—damper—spring model
z[1] = new Quantity ("z1");
z[2] = new Quantity ("z2");
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}

void PDE_sensing:: build (void){
// Parameters of sensing element
mass=3.57e—10;
spring =0.2855;
damper=1.62e—35;
d0=1.5e—6;

// Get input acceleration
ain=ain_sig—>read ();
fin=massx*ain ;

/1 Get feedback force;
Ffeedback=feedback_sig—>read ();

// Get modulation voltage Vm;
Vm=Vm_sig—>read ();

// Deflection of proof mass(2n order ODE)
Zn[1]=X(z[1]);

Zdotn[1]= Xdot(z[1]);
Zn[2]=X(z[2]);
Zdotn[2]= Xdot(z[2]);

Equation(z[1],—Zdotn[1] + Zn[2]);
Equation (z[2], —mass*Zdotn[2] —(damper)*Zn[2]
—(spring)*Zn[1]+ fin+Ffeedback);

// Boundary conditions
Pdxdt_-Boundary (0,0,0,Zn[1]);
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(b) Distributed model (L=190um)

Failure of the Sigma-Delta control is captured by the distributed model

Pdxdt_-Boundary (1,0,0,0);
Pdxdt_Boundary(2,0,100e—6,0);
Pdxdt_Boundary (3,0,100e —6,0);

//PDE function
for(x=1;x<N_node+1;x++)

Yn[x]=PDE_quantity ("Y" ,x);

}

for (x=1;x<N_node;x++)

{
PDE(x, —l*ro*xAxPdxdt(0,2,"Y" ,x)—
ckPdxdt(4,1,"Y" ,x)—ExI*«Pdx(4,"Y",x)
+((epxA2)/(2))* (VmxVm/((d0—-Yn[x])
*(d0—Yn[x])) —Vm«xVm/ ((dO+Yn[x])*(dO
+Yn[x1)));

}

/] Average deflection of the sense finger

Y=0.0;

for (x=1;x<N_node+1;x++){
Y=Y+Yn[x];

Y=Y/N_node;

// Write output
Deflection —>write (Y);
}

0.03



B. Simulation results

In this section, simulation results of the distributed model
illustrate the distributed effects of the finger dynamics. The
conventional model only contains the dynamics of the lumped
proof mass as shown in Eq.(4). This means that the sense
fingers and lumped mass move together and the sense fingers
do not bend. The frequency is approximately:

wn — ] E
o=V

In reality, the sense fingers bend to the extent that the per-
formance of the Sigma-Delta control loop might be seriously
affected. The first two resonant frequencies of a sense finger
could be calculated as those of the cantilever beam [6]:

(14)

w | E
w; = a; z\ 125 i=1,2 (15)
ay = 1.875 ap =4.694 (16)

Where W and L is the width and length of the sense
fingers respectively. First and second resonant frequencies are
31KHz and 209KHz respectively if the finger dimensions are:
L =190pum, W = 1um, T = 2um. The effect of the sense
finger dynamics are illustrated in Fig.6 which shows the power
spectrum density (PSD) of the Sigma-Delta modulator output
bitstream and time-domain response when applying 200Hz
sine wave input acceleration with 1G(9.8m/s?) amplitude
and 2'7Hz oversampling frequency to both conventional and
proposed distributed system.

Here, the SystemC-A simulation carries out the time-domain
analysis and in the testbench performs a frequency domain
FFT analysis to obtain PSD of the output bitstream. As shown
in the Fig.6(b), the failure of the Sigma-Delta control system is
captured by the distributed model while the Sigma-Delta con-
trol loop still works in the conventional model (Fig6(a)). This
is because the lumped model only contains one resonant mode
caused by the spring-mass-damper system and its frequency
response has no relationship with the dimensions of fingers.
Thus, effects of the finger dynamics cannot be captured. In
other word, this performance degradation of the Sigma-Delta
control loop caused by finger dynamics cannot be modeled by
lumped model.

IV. CONCLUSION

This paper proposes a syntax extension to SystemC-A to
provide support for PDE modelling. This is the first full
implementation of PDE support in SystemC-A where no
preprocessor is required for conversion of user defined PDEs to
a series of ODAEs. The proposed PDE extension has particular
advantages in modelling of mixed physical-domain systems,
especially systems with mechanical parts which frequently
exhibit distributed behaviour. Typical systems of this kind are
MEMS sensors or kinetic energy harvesters. The distributed ef-
fects present in such systems usually can not be neglected, may
even play vital roles and be essential to predicting correctly the

system’s performance. The efficiency of the new syntax has
been verified by its application to an electromechanical Sigma-
Delta accelerometer with distributed mechanical sensing ele-
ment where the finger dynamics are modeled using a PDE.
The well-known failure of the Sigma-Delta control system
caused by the sense finger dynamics is correctly captured by
the extended SystemC-A model while the conventional lumped
model fails to reflect the true behaviour.
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