
Reducing the Cost of Redundant Execution in
Safety-Critical Systems using Relaxed Dedication

Brett H. Meyer∗, Nishant George†, Benton Calhoun†, John Lach†, and Kevin Skadron∗
Computer Science Department∗ and Electrical and Computer Engineering Department†

University of Virginia
Charlottesville, VA 22904 USA

{bhm, skadron}@cs.virginia.edu, {niche, bcalhoun, jlach}@virginia.edu

Abstract—We introduce on-demand redundancy, a set of ar-
chitectural techniques that leverage the tightly-coupled nature of
components in systems-on-chip to reduce the cost of safety-critical
systems. On-demand redundancy eases the assumptions that
traditionally segregate the execution of critical and non-critical
tasks (NCTs), making resources available for critical tasks at
potentially arbitrary points in both space and time, and otherwise
freeing resources to execute non-critical tasks when critical tasks
are not executing. Relaxed dedication is one such technique that
allows non-critical tasks to execute on critical task resources.
Our results demonstrate that for a wide variety of applications
and architectures, relaxed dedication is more cost-effective than a
traditional approach that employs dedicated resources executing
in lockstep. Applied to dual-modular redundancy (DMR), relaxed
dedication exposes 73% more NCT cycles than traditional DMR
on average, across a wide variety of usage scenarios.

I. INTRODUCTION

The use of safety-critical computer systems is expanding
rapidly in a variety of market segments, such as medical
equipment and automobiles. To ensure that no harm comes
to human users when transient errors occur, faults must be
quickly detected. However, fast error detection is expensive.
For example, dual-modular redundancy (DMR) [1], a special
case of n-modular redundancy (nMR), duplicates resources
so that divergent architectural state (resulting from a fault) is
quickly detected. While DMR significantly improves reliabil-
ity, it does so at great cost.

However, when safety-critical systems execute a mix of
safety-critical and non-critical tasks, there is ample opportunity
for cost reduction without sacrificing reliability. In practice,
such systems are typically logically divided into two sub-
systems. The critical task (CT) subsystem is implemented
using dual-modular redundancy (DMR) and executes CTs in
lockstep. Under lockstep execution, processors perform the
same calculations on the same inputs in the same clock cycle,
the results of which are compared regularly to detect when
a failure, whether transient, intermittent, or permanent, has
occurred [2]. The CT subsystem is functionally isolated from
the non-critical task (NCT) subsystem (though in practice
they may share a communication medium) to prevent NCTs
from disrupting the execution of CTs. However, when CTs
do not execute continuously—as when retry reservations are
scheduled so CTs can be re-executed in the event of a fault—
such an architecture is wasteful.

To reduce the cost of such systems, we propose a set of
techniques that provide what we call on-demand redundancy.
Cost concerns already provide significant incentives for de-
signers to integrate critical and non-critical functionality on the
same chip. Rather than replace explicit hardware redundancy,
which remains in use because of its superior fault coverage
and detection latency, the goal of on-demand redundancy is to
take advantage of increased integration and expose redundant
resources for the execution of non-critical tasks in novel ways.

We present one form of on-demand redundancy, relaxed
dedication, in which NCTs in a statically scheduled system
are scheduled to opportunistically execute on critical task
resources (CTRs) when CTs are not scheduled. Since NCTs
need not execute in lockstep, each processor in a CTR pair
can be used to execute independent NCTs during idle time
and retry reservations, effectively multiplying the resources
available for NCTs. Performing static scheduling using worst-
case execution times (WCETs) prevents NCTs from interfering
with CTs also executing on CTRs. This creates significant
opportunity relative to traditional DMR to either (a) increase
the NCT workload or (b) reduce the cost of non-critical task
resources (NCTRs), all without compromising the reliability
of the system.

In this paper, we estimate the potential performance and cost
advantages of relaxed dedication. To quantify the performance
advantage of relaxed dedication we first develop analytical
models to evaluate the opportunity to increase the NCT
workload under a variety of usage scenarios. We subsequently
validate our models with extensive experimentation using a
novel static scheduling technique that iteratively determines
the largest set of NCTs that can be scheduled. When compar-
ing cost-equivalent architectures (where area is equated with
cost), that which successfully schedules the most NCTs in the
same hyperperiod presents the best performance-cost trade-off.

We observed in our analysis and experiments that relaxed
dedication significantly increases the cycles available to ex-
ecute NCTs. DMR with relaxed dedication exposes 73%
more NCT cycles on average than DMR with dedicated re-
sources, across a wide variety of system sizes and applications.
Relaxed dedication can also be applied to another redun-
dancy technique in the literature and industry, mission-monitor
(MM) pairs; we observe that MM with relaxed dedication
increases NCT utilization by 54% on average, and in some

978-3-9810801-7-9/DATE11/ c©2011 EDAA

circumstances outperforms DMR with relaxed dedication. By
enabling large increases in NCT utilization, relaxed dedication
enables designers to significantly reduce costs or increase the
functionality of safety-critical systems.

II. RELATED WORK

The reader is referred to the literature for surveys of the
fundamental structures of fault-tolerant computing [2]–[4] and
transient errors and architectures to mitigate them [5].

A multiplicity of techniques have been developed to address
the cost of hardware redundancy. Baleani, et al. have inves-
tigated the trade-offs of lockstep and more loosely coupled
redundant execution [1]. Sloan and Kumar have developed a
framework which distributes voting logic to support efficient
nMR in chip multiprocessors (CMPs) [6]. Subramanyan, et
al. reduce throughput losses in a CMP when a redundant
thread lags the leading thread by forwarding loaded values
and branch outcomes [7]. When cost limits redundancy to
duplicated hardware or less, reliability can be categorized
by their recovery mechanism: limited hardware or software
replication [8], [9], re-execution [10], checkpointing [11], or
some combination [12]. These efforts all reclaim or reduce
the cost of explicit hardware redundancy, either working with
it or replacing it; unlike any of these efforts, our research
specifically focuses on the interaction of critical and non-
critical tasks, reducing the overhead of redundancy by increas-
ing NCT execution. To our knowledge, ours is the first research
to explore the performance implications of allowing CTs and
NCTs on the same resources in a fault-tolerant system.

Several reliability techniques use sets of static schedules
to dynamically respond to failure [10], [13], [14]. Another
approach adjusts a static schedule at runtime to enhance reli-
ability, allowing tasks to re-execute by moving the execution
of other tasks [15]. Alternatively, our approach performs static
scheduling to opportunistically schedule non-critical tasks in
the retry slots of CTs. The NCTs are pre-empted when a CT
must retry.

Izosimov, et al. presents a fault-tolerant scheduling tech-
nique that enforces hard deadlines and selectively enforces
soft deadlines in the presence of failures on a single processing
node [16]. To our knowledge, ours is also the first research to
explore how scheduling influences the extent to which under-
utilized resources in a multi-core fault-tolerant system may be
leveraged to increase non-critical task workload.

III. ON-DEMAND REDUNDANCY

Traditional DMR architectures achieve reliability by (1)
dedicating resources to the execution of critical tasks, therefore
limiting interference with non-critical tasks, and (2) executing
critical tasks in lockstep, therefore ensuring that failures are
detected immediately. However, this reliability is achieved
only at great cost: critical task resources must be duplicated
and are underutilized when critical tasks aren’t executing.

If we weaken requirements (1) and (2) above, a design
space emerges with a number of opportunities to reduce the
cost or increase the workload of such a system. On-demand
redundancy captures a set of techniques which, opposed to

the baseline (dedicated resources in lockstep), makes resources
available for CTs at potentially arbitrary points in both space
and time, and frees resources in the system to execute NCTs
when CTs are not executing.

We define two classes of techniques for on-demand re-
dundancy. The first relaxes dedication, the assumption that
only CTs may execute on critical-task resources. Examples
of relaxed dedication include allowing NCTs to execute on
CTRs, or allowing arbitrary processing resources (rather than
just CTRs) to perform redundant execution. This has clear
implications for system cost, as it enables a system to make
more efficient use of its available resources.

The second relaxes lockstep, the assumption that the reliabil-
ity of CT can only be ensured when they execute concurrently
on homogeneous pairs. Examples of how lockstep can be
relaxed include executing redundant tasks at different times,
using heterogeneous software, or on heterogeneous resources.
This too increases the flexibility with which the system is
utilized, creating opportunity to reduce costs or improve
reliability.

A. Relaxed Dedication
Relaxing the assumption that CTs execute on resources

dedicated to CTs principally reduces cost (or makes workload
increases possible) by allowing NCTs to execute on CTRs.
Dedication has been historically employed to prevent NCTs
from interfering with CTs. Today, however, cost considerations
are driving designers to find new approaches to reduce the
hardware required for reliable execution. By exposing idle
time and retry reservations on CTRs, relaxed dedication is
one promising technique for reducing the cost of redundancy.
The focus of this paper is on evaluating the extent to which
relaxed dedication supports increases in NCT workload.

When applied to a system that executes CTs in lockstep, re-
laxed dedication requires very few design changes. We assume
our systems are synchronous and statically scheduled; static
scheduling ensures that NCTs don’t interfere with CTs, and
aperiodic tasks (not included in this paper), can be executed in
a periodically recurring slot reserved for that purpose. In this
case, the only additional architectural state that is required is
a single status bit that indicates whether or not the (existing)
comparison logic should be used. When a processor performs
a context switch to begin a CT, this status register is set, and
the processor begins executing in lockstep with its redundant
pair; synchronization is naturally enforced by the scheduler.

Relaxed dedication has implications for instruction and data
caches: divergent cache behavior. For example, if a NCT evicts
data used by a CT on one processor, but the data remains
resident in the pair’s cache, future accesses of that data will
produce a hit in one cache and a miss in another. A number of
potential solutions exist, but evaluating their performance im-
pact and cost is beyond the scope of this paper. One brute force
technique would be to invalidate caches prior to executing
CTs. Another approach would be to use mission-monitor pairs,
detailed in Section IV. Other techniques could be employed
to resolve, if not eliminate divergence: considering divergence
when evaluating CT WCET, required by static scheduling;

using write-through to push dirty data out of caches; or,
extending hardware support for delayed lockstep (where one
processor is n cycles ahead of its pair) to adaptively stall the
lockstep pair when divergent cache behavior occurs.

B. Analytical Model

We have developed an analytical model of the potential
performance gains supported by relaxed dedication. When
CTRs execute only CTs, the number of cycles available for
executing NCTs is limited to the capacity of the NCTRs. Given
a hyperperiod t, the number of cycles available for non-critical
tasks on a dual-modular redundancy (DMR) system with N
NCTRs is

WDMR =
N∑

i=1

fit (1)

where fi is the clock frequency of NCTRi.
In DMR systems, critical tasks are often scheduled with

reserved retry slots [10], [14], [17] such that when a transient
failure occurs, there is sufficient time before the task’s deadline
to re-execute the task.Because transient failures are generally
rare events, these retry slots are often unutilized. However,
if dedication is relaxed and NCTs are allowed to execute on
CTRs, either during idle time or in retry slots (where they
will be safely preempted in the event of a transient failure),
significant opportunities to reduce system cost or increase
system workload emerge. In general, relaxed dedication (RD)
increases the cycles available for NCTs on DMR systems with
M DMR pairs to

WDMR+RD =
M∑
i=1

2fit(1− ci) +WDMR (2)

where ci is the fraction of time DMR pair CTRi executes CTs
(not including retry slots). When retry slots are scheduled for
each CT, 0 ≤ ci ≤ 0.5.

The advantage of RD is obvious when considering a simple
example. Suppose a homogeneous system consists of M CTR
pairs and N NCTRs. Each CTR pair executes CTs for the
same fraction of time c. In this case, DMR exposes WDMR =
Nft cycles to NCTs. DMR+RD, however, has the potential
to expose substantially more:

WDMR+RD

WDMR
=

2Mft(1− c) +Nft

Nft
= 1+

2M(1− c)
N

. (3)

As expected, we observe in Eq. (3) that relaxed dedication
always exposes more cycles to NCTs than DMR alone. For
example, when c = 0.5, M = 1 and N = 1, the cycles
exposed to NCTs doubles compared to DMR. As c shrinks or
M grows, this already large advantage continues to grow.

IV. MISSION-MONITOR PAIRS

An alternative to dual-modular redundancy is to employ a
mission-monitor (MM) pair to achieve reliability. The mission
core executes the critical task, while a tightly-coupled monitor
core replicates just enough of the execution of the mission core
to ensure that important failures are detected. This approach

has been previously proposed in the literature [18], and has
recently appeared in industry [19].

The principal advantage of MM pairs is that system cost
is reduced by replicating in the monitor core only that func-
tionality which is needed to ensure the safe operation of the
mission core. Toshiba reports that in its implementation, the
monitor core is 58% smaller than the mission core. It should
also be noted that MM systems are unlikely to experience any
difficulty related to divergent cache behavior, as monitor cores
are unlikely to internally cache instructions or data.

The disadvantage of MM is that the tightly coupled monitor
core cannot be used to execute non-critical tasks. At first
glance, the number cycles available for NCTs on a MM system
is the same as a DMR system (see Eq. (1)). The cost (area)
advantage of MM systems however, suggests that any NCTs
in a MM system will be larger or more numerous than the
corresponding NCTs in a cost-equivalent DMR system.

Consider a MM system of equivalent cost with the ho-
mogeneous DMR systems discussed above. To account for
the decreased area of the monitor core, we assume that for
each MM pair a MM system has a half-area, half-performance
NCTR1. In this case,

WMM =
Mft

2
+Nft. (4)

When resource dedication is relaxed, the mission core is
also available to execute NCTs. This increases the number of
available cycles for NCTs on MM systems to

WMM+RD =
Mft

2
+Mft(1− c) +Nft. (5)

MM systems clearly expose more NCT cycles than DMR
systems, and relaxed dedication further extends their advan-
tage. Once again comparing cost-equivalent systems, whether
DMR+RD or MM+RD prevails is a function of c:

WDMR+RD

WMM+RD
=
M(2− 2c) +N

M(3
2 − c) +N

. (6)

When c ≤ 0.5, 2 − 2c > 3
2 − c, and DMR+RD exposes

more cycles to NCTs than MM+RD. For example, when M =
1, N = 1, and c = 0.25, DMR+RD exposes 11% more cycles
than MM+RD. When systems schedule retry slots or are not
fully utilized by critical tasks, it is theoretically more cost-
effective to apply relaxed dedication to DMR than MM pairs.

V. SCHEDULING FOR PERFORMANCE ESTIMATION

In order to compare the different safety-critical architec-
tures described above, we have developed a static scheduling
technique to determine the extent to which each may take
advantage of opportunity to execute non-critical tasks. While
the analytical models presented in Sections III and IV establish
the upper bound on the number of cycles available for non-
critical task execution, whether a sets of tasks can be executed
will be determined by the distribution of sizes and periods of
tasks, leaving unutilized gaps in the schedule.

1This is a conservative assumption. For example, the ARM946E-S runs at
70% the rate of the ARM1156T2(F)-S while requiring 35% of the area.

cP1
cP0

ncP0

 0 20 40 60 80 100 120

(a) Critical tasks (solid red) and retry reservations (hatched red).

cP1
cP0

ncP0

 0 20 40 60 80 100 120

(b) Dedication limits NCT (blue outline) scheduling opportunity.

cP1
cP0

ncP0

 0 20 40 60 80 100 120

(c) Relaxed dedication significantly increases NCT utilization.

Fig. 1. NCT execution is increased by utilizing idle time and retry slots.

Our approach first schedules all critical tasks, ensuring that
CT pairs are able to execute in lockstep. Next, our approach
schedules as many NCTs as possible, taking advantage of idle
time and retry slots on critical task resources in the case of
relaxed dedication. Each system under comparison executes
the same schedule of CTs; however, as the different systems
present different opportunities to execute NCTs, they may be
distinguished by the resulting NCT utilization.

A. Scheduling Safety-Critical Tasks

In this work, we consider only periodic singleton tasks;
this is consistent with the model of many safety-critical
embedded control systems, which read a sensor, perform a
simple calculation, and possibly write an actuator. In this
case, the only precedence relationships are between different
instances of the same periodic task (earlier instances must
complete before later instances arrive). We also assume that
communication costs are negligible.

Since safety-critical tasks must execute in lockstep, to sim-
plify the process of finding two perfectly aligned scheduling
slots on two resources, we schedule CTs first. We have adopted
a straightforward list scheduling algorithm [20]. All instances
of each CT are sorted in a single list by their schedule slack—
the difference between their latest and earliest finish time—
and arrival time. Tasks with little slack are scheduled first. Ties
are decided by arrival time; earlier arrivals are scheduled first.
CTs are scheduled in idle slots as early as possible after their
arrival, and retry slots are reserved immediately following each
critical task [14], [17]. We assume that transient faults are rare
enough that additional retry slots need not be allocated [14];
supporting additional retry slots would be trivial.

A simple example of a schedule of CTs and retry slots
is illustrated in Figure 1(a). Solid red blocks indicate critical
task reservations; the associated retry slots are indicated by
the hatched red blocks. Note that the schedule is the same for
the CTRs cP0 and cP1.

B. Scheduling Non-Critical Tasks

Once all CTs have been scheduled, NCTs are scheduled. As
with CTs, NCTs are sorted in a list according to their slack
and arrival time. When CTRs are dedicated, NCTs are only
scheduled in the available idle time on NCTRs, as indicated by
the empty blue blocks assigned to ncP0 in Figure 1(b). When
dedication is relaxed, NCTs may be scheduled in idle and
retry slots, and adjacent combinations thereof, as illustrated
in Figure 1(c). In this simple example, relaxing dedication
increases the number of NCT cycles that can be executed by
2.35×.

C. Performance Comparison Via Iterative Scheduling

We have employed the above critical and non-critical task
scheduler to compare the performance of various safety-critical
architectures. To do so, we have modified typical scheduling
assumptions. Instead of attempting to select the best among
feasible schedules given a fixed set of tasks, our objective
is to schedule as many tasks from the same (effectively
infinite) pool as possible. Whichever architecture is able to
schedule the most tasks is the architecture that achieves the
best performance-cost trade-off.

To achieve this, we perform iterative scheduling. After the
CTs have been scheduled, our scheduler performs a binary
search in an ordered set of task for the maximal set of schedu-
lable NCTs; set of task graphs determines the performance
point for the given architecture.

VI. EXPERIMENTAL SETUP

We use the static scheduling approach in Section V to
measure how effectively relaxed dedication exposes cycles for
NCT execution in a variety of usage scenarios, as compared
with the analytical models presented in Sections III and IV.
In our experiments, we select a mission-monitor implemen-
tation as the baseline (MM), and compare traditional dual-
modular redundancy (DMR), DMR with relaxed dedication
(DMR+RD), and MM with relaxed dedication (MM+RD). We
assumed a fixed system cost of eight NCT cores, and varied
(a) the number of CTR pairs M ∈ {1, 2, 3, 4}, (b) the ratio
of CT sizes to NCT sizes α ∈ {0.5, 1, 2}, and the fraction of
CTR execution dedicated to critical tasks c ∈ [0.1, 0.48]. As
M increases, the number of NCTRs N decreases accordingly,
N ∈ {6, 4, 2, 0}. A fair comparison between DMR and
MM systems is ensured by giving additional NCTRs to MM
systems to account for the cost advantage of this approach
over strict DMR (see Section IV).

A. Critical Task Sets

We randomly generated a number of benchmarks using Task
Graphs for Free (TGFF) [21] in order to determine how two
factors influence of c and α on the amount of NCTs that can
be scheduled on the different architectures in our evaluation.

NCT utilization is naturally expected to increase under
lower values of c, not only because more idle time is available,
but because statistically speaking, blocks of idle time are
expected to be larger, facilitating the scheduling of larger
NCTs. To explore the effect of variable c, we generated 10,000

TABLE I
NORMALIZED CYCLES EXPOSED FOR NCT EXECUTION

CTRs (M) NCTRs (N) MM DMR MM+RD DMR+RD

1 6 1.00 0.92 1.11 1.14
2 4 1.00 0.80 1.28 1.37
3 2 1.00 0.57 1.61 1.79
4 0 1.00 0.00 2.42 2.84

sets of critical tasks, from which we selected 20 such that
c ∈ {0.1, 0.12, ..., 0.48}. These different sets of tasks capture
a range of reasonable applications, from those dominated by
NCTs where safety is periodically monitored (e.g., a tire-
pressure monitoring system), to those dominated by safety-
critical tasks (e.g., an anti-lock braking system). Each set of
CTs is composed of 20 tasks, each with an average task length
of 20± 10, period multipliers in {1, 2, 5, 10, 20, 50, 100}, and
task deadlines equal to task period. A retry slot is conserva-
tively scheduled immediately following each task; studying the
effect of less aggressive retry allocation on relaxed dedication
is the subject of future work.

B. Non-critical Task Sets

To explore the effect of the relationship between CT size
and NCT size, we created three pools of NCTs, each resulting
in a different ratio α of CT size to NCT size. When NCTs
are scheduled after CTs, the relative size of NCTs determines
which idle and retry reservations they may be scheduled in,
influencing the performance of systems employing relaxed
dedication. Each NCT set has the same set of possible period
multipliers as the CT sets. Average task lengths have been
selected so that the three pools of NCTs have α = {0.5, 1, 2}.
α = 0.5 is expected to result in lower NCT utilization, since
finding slots for large NCTs among smaller, and potentially
more tightly scheduled critical tasks may prove difficult.

C. CT-NCT Benchmarks

In order to account for the interaction of individual sets of
CTs and NCTs (where one ill-sized NCT can prevent further
NCTs from being scheduled during our iterative approach), we
match each CT set with 33 randomly generated sets of NCTs
from each pool. Each NCT set from the same pool has the
same parameters, but different sets can result in significantly
different scheduling outcomes. We derive the performance
of an architecture for a given value of c by averaging the
number of cycles utilized by NCTs across each of the 33
samples. In total, we performed static scheduling for over
30,000 combinations of architectures and task sets.

VII. RESULTS

The results of our scheduling experiments are summarized
in Tables I and II. For each architecture with M CTR pairs and
N additional NCTRs, Table I reports the average (across all c,
and independent of α), normalized maximum number of cycles
available for executing NCTs, and derived from the analytical
models in Sections III and IV. For the sake of easy comparison
with each other and Table II, all values are normalized to the

TABLE II
NORMALIZED CYCLES UTILIZED FOR NCT EXECUTION

α CTRs (M) NCTRs (N) MM DMR MM+RD DMR+RD

2 1 6 1.00 0.92 1.10 1.13
2 4 0.99 0.80 1.27 1.35
3 2 0.99 0.57 1.58 1.66
4 0 0.99 0.00 2.30 2.32

1 1 6 0.99 0.91 1.10 1.13
2 4 0.99 0.79 1.26 1.32
3 2 0.98 0.56 1.55 1.53
4 0 0.97 0.00 2.17 1.22

0.5 1 6 0.98 0.90 1.07 1.07
2 4 0.97 0.78 1.19 1.08
3 2 0.96 0.55 1.32 0.86
4 0 0.95 0.00 1.43 0.03

NCT cycles exposed by MM; some usage scenarios result in 0
potential NCT cycles for DMR. Recall that when N = 0, MM
retains some NCTRs due to its cost advantage over DMR.

For each architecture and α, Table II reports the average
(across all c), normalized number of NCT cycles success-
fully scheduled. We first observe that relaxed dedication, as
expected, always exposes more utilizable cycles for NCTs
than traditional approaches; for each benchmark, DMR+RD
and MM+RD outperform DMR and MM respectively, and at
times by sizable margins. For α = 2, MM+RD increases NCT
execution by 58% on average over MM; DMR+RD increases
NCT execution by 95% on average over DMR when M < 4
(when M = 4 DMR schedules no NCTs).

We also observe that when NCTs are relatively smaller
than CTs (e.g., when α = 2), and especially when systems
have more NCTRs than CTRs, that the observed NCT cycles
utilized approach the potential NCT cycles exposed by relaxed
dedication. For α = 2, DMR+RD and MM+RD execute NCTs
in 93% and 98% of the available cycles, respectively; this
figure increases to 97% for DMR+RD if we don’t consider
the architecture with no NCTRs (M = 4, N = 0).

However, we also observe that when NCTs are relatively
larger than CTs (e.g., when α = 0.5), and especially when
systems have more CTRs than NCTRs, that it is more difficult
for systems with relaxed dedication to take advantage of the
exposed cycles to schedule NCTs. For α = 0.5, DMR+RD
and MM+RD execute NCTs in 82% and 56% of the available
cycles, respectively; this figure decreases to 1% for DMR+RD
if we consider only the architecture with no NCTRs.

The effectiveness of DMR+RD and MM+RD when M =
2, N = 4 for α = {0.5, 2} is illustrated in Figure 2. Figure 2
plots how the normalized cycles scheduled for NCTs decreases
are c increases. The error bars indicate the maximum NCT
cycles available as predicted by our analytical models.

Figure 2(a) plots the scheduled NCT cycles when α = 2. In
this case, both DMR+RD and MM+RD achieve very close to
the optimal, taking advantage of 98% and 99% of the available
cycles on average. As a result, DMR+RD consistently outper-
forms MM+RD, scheduling 6% more NCT cycles on average.
DMR+RD’s advantage is in the extra CTRs with retry and idle
slots exposed for NCT scheduling; when NCTs are relatively
small, the gaps in CTR schedules are easily utilized.

0.8	

0.9	

1.0	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

0.1
0	
0.1

2	
0.1

4	
0.1

6	
0.1

8	
0.2

0	
0.2

2	
0.2

4	
0.2

6	
0.2

8	
0.3

0	
0.3

2	
0.3

4	
0.3

6	
0.3

8	
0.4

0	
0.4

2	
0.4

4	
0.4

6	
0.4

8	

Normalized	 NCT	 cycles	

Frac2on	 of	 CTR	 execu2on	 dedicated	 to	 cri2cal	 tasks,	 c	

dmr+rd	
mm+rd	

(a) Two CT pairs, four NCTRs; CTs twice as large as NCTs (α = 2).

0.8	

0.9	

1.0	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

0.1
0	
0.1

2	
0.1

4	
0.1

6	
0.1

8	
0.2

0	
0.2

2	
0.2

4	
0.2

6	
0.2

8	
0.3

0	
0.3

2	
0.3

4	
0.3

6	
0.3

8	
0.4

0	
0.4

2	
0.4

4	
0.4

6	
0.4

8	

Normalized	 NCT	 cycles	

Frac2on	 of	 CTR	 execu2on	 dedicated	 to	 cri2cal	 tasks,	 c	

dmr+rd	
mm+rd	

(b) Two CT pairs, four NCTRs; CTs half as large as NCTs (α = 0.5).

Fig. 2. When NCTs are small relative to CTs ((a) α > 1), retry and idle slots are more easily utilized by relaxed dedication.

Figure 2(b) plots the scheduled NCT cycles when α = 0.5.
In this case, MM+RD schedules NCTs in 93% of the available
cycles; DMR+RD, on the other hand, schedules NCTs in
79% of the available cycles, and is consistently outperformed
by MM+RD, scheduling 9% fewer NCT cycles on average.
MM+RD’s advantage is MM’s area advantage over DMR.
MM’s extra NCTRs, though half-performance, make it easier
to schedule the large NCTs that DMR+RD fails to schedule
in retry and idle slots.

VIII. CONCLUSIONS

Cost concerns are driving designers of safety-critical sys-
tems to integrate more and more functionality on a single
chip. We have proposed a novel approach, relaxed dedication,
to reduce the cost of redundant execution by utilizing the
retry reservations and idle on critical task resource to execute
non-critical tasks. Our analytical models predict that when
relaxed dedication is applied to dual-modular redundancy,
these systems expose more cycles for NCT scheduling than
equivalent-cost mission-monitor systems.

We developed an iterative static scheduling technique to
validate our analytical models and investigate the effects
of scheduling (e.g., task length and period distributions) on
relaxed dedication. By finding the maximum set of schedulable
non-critical tasks, our technique is able to compare safety-
critical architectures by comparing the number of cycles
scheduled by each for use by NCTs.

We observed that DMR with relaxed dedication and MM
with relaxed dedication expose 73% and 54% more NCT
cycles on average, respectively, than DMR and MM with
dedicated resources, respectively, across a wide variety of sys-
tem configurations and benchmarks. By making all processing
elements available for executing NCTs, relaxed dedication
consistently exposes substantial opportunity to increase the
workload or reduce system cost. Furthermore, we observed
that the realities of scheduling may limit the benefit of relaxed
dedication on some systems. Depending on the ratio of the size
of NCTs relative to CTs (α), either DMR or MM make the
best use of relaxed dedication: when α > 1, DMR+RD has
the advantage; when α < 1, MM+RD has the advantage.

ACKNOWLEDGEMENTS

This work is supported by the Semiconductor Research
Corporation through contract 2009-HJ-2042.

REFERENCES

[1] M. Baleani, et al., “Fault-tolerant platforms for automotive safety-critical
applications,” in CASES’03, 2003.

[2] V. Nelson, “Fault-tolerant computing: fundamental concepts,” Computer,
vol. 23, July 1990.

[3] V. Prasad, “Fault tolerant digital systems,” IEEE Potentials, vol. 8,
February 1989.

[4] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun.
ACM, vol. 34, no. 2, 1991.

[5] S. Mukherjee, Architecture Design for Soft Errors. Morgan-Kaufmann,
2008.

[6] J. Sloan and R. Kumar, “Towards scalable reliability frameworks for
error prone cmps,” in CASES’09, October 2009.

[7] P. Subramanyan, et al., “Multiplexed redundant execution: A technique
for efficient fault tolerance in chip multiprocessors,” in DATE’10, 2010.

[8] B. P. Dave and N. K. Jha, “COFTA: Hardware-software co-synthesis
of heterogeneous distributed embedded systems for low overhead fault
tolerance,” IEEE Transactions on Computer, vol. 48, April 1999.

[9] Y. Xie, et al., “Reliability-aware co-synthesis for embedded systems,”
in ASAP’04, 2004.

[10] N. Kandasamy, et al., “Transparent recovery from intermittent faults in
time-triggered distributed systems,” IEEE Trans. Comput., vol. 52, Feb.
2003.

[11] S. Punnekkat, et al., “Analysis of checkpointing for real-time systems,”
Real-Time Systems, vol. 20, no. 1, 2001.

[12] P. Eles, et al., “Synthesis of fault-tolerant embedded systems,” in
DATE’08, 2008.

[13] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel, “Off-line real-time
fault-tolerant scheduling,” in PDP’01, 2001.

[14] V. Izosimov, et al., “Synthesis of fault-tolerant schedules with trans-
parency/performance trade-offs for distributed embedded systems,” in
DATE’06, 2006.

[15] G. Fohler, “Adaptive fault-tolerance with statically scheduled real-time
systems,” in Euromicro Real-Time Systems Workshop, 1997.

[16] V. Izosimov, et al., “Scheduling of fault-tolerant embedded systems with
soft and hard timing constraints,” in DATE’08, 2006.

[17] Y. Liu, H. Liang, and K. Wu, “Scheduling for energy efficiency and
fault tolerance in hard real-time systems,” in DATE’10, 2010.

[18] T. M. Austin, “DIVA: A reliable substrate for deep submicron microar-
chitecture design,” in MICRO-32, November 1999.

[19] C. Holland, “Toshiba MCU gains SIL3 and ASILD safety approval.”
http://www.embedded.com/products/integratedcircuits/222400364, Jan-
uary 2010.

[20] R. P. Dick and N. K. Jha, “Mocsyn: multiobjective core-based single-
chip system synthesis,” in DATE’99, 1999.

[21] R. P. Dick et al., “TGFF: Task graphs for free,” in CODES, 1998.

