
SHARC: A Streaming Model for FPGA
Accelerators and its Application to Saliency

Srinidhi Kestur, Dharav Dantara and Vijaykrishnan Narayanan
Microsystems Design Laboratory (MDL), Department of Computer Science and Engineering,

The Pennsylvania State University, University Park, PA - 16802
{kesturvy, djd300, vijay}@cse.psu.edu

Abstract—Reconfigurable hardware such as FPGAs are being
increasingly employed for accelerating compute-intensive appli-
cations. While recent advances in technology have increased the
capacity of FPGAs, lack of standard models for developing cus-
tom accelerators creates issues with scalability and compatibility.

We present SHARC - Streaming Hardware Accelerator with
Run-time Configurability, for an FPGA-based accelerator. This
model is at a lower-level compared to existing stream processing
models and provides the hardware designer with a flexible
platform for developing custom accelerators. The SHARC model
provides a generic interface for each hardware module and a
hierarchical structure for parallelism at multiple levels in an
accelerator. It also includes a parameterization and hierarchical
run-time reconfiguration framework to enable hardware reuse
for flexible yet high throughput design.

This model is very well suited for compute-intensive appli-
cations in areas such as real-time vision and signal processing,
where stream processing provides enormous performance ben-
efits. We present a case-study by implementing a bio-inspired
Saliency-based visual attention system using the proposed model
and demonstrate the benefits of run-time reconfiguration. Ex-
perimental results show about 5X speedup over an existing CPU
implementation and up to 14X higher Performance-per-Watt over
a relevant GPU implementation.

I. INTRODUCTION

Many signal processing and synthetic vision applications
require high-performance processing of incoming signal or
image data streams. This I/O stream processing often includes
filtering, convolution, decimation and interpolation operations.
In addition to demanding processing requirements, stream
processing applications frequently need to address system-
level issues including size, weight and power (SWAP), time
to deployment, field upgradeability and dynamic, on-the-fly
reconfigurability. Modern FPGAs with their reconfigurability,
large gate counts, embedded DSP units and built-in high-speed
I/O ports have emerged as a credible alternative to custom
ASICs or DSPs.

While FPGAs have been used extensively in application
acceleration [1], there is a no general model for building cus-
tom accelerators. The design techniques, HDL coding styles,
signaling specifications and data representations used by hard-
ware designers are completely customized to achieve their end
goal of speeding up the application. This lack of standard-
ization creates compatibility issues while reusing/migrating
accelerator cores from one application to another. Further, the
parameterization strategy adopted by one designer may vary
from others and hence a standard reconfiguration framework
for hardware accelerators does not exist.

Most of the existing stream processing architectures are at
a system-level [2] [3] [4]. As far as we know, there is no
published resource at the hardware-module level which assists
a hardware designer in developing flexible and compatible
accelerators.

In a typical stream processing application some feedback
information may pass from later to earlier stages, but the
majority of data movement is in a unidirectional stream [5].
Further, with shrinking of transistor sizes, the amount of logic

and memory resources on a single FPGA is increasing with
every new generation of FPGAs and a lot more computation
can be accomplished in a single FPGA with minimal accesses
to external memory. Hence, a streaming FPGA accelerator
would receive data from external memory or I/O, process it
in a sequence of streaming operations and do a single final
write to external memory or I/O. Most of the intermediate
buffering would be handled by the huge amounts of local
BRAMs on the FPGA and intermediate accesses to external
memory would be minimal if not absent. This assumption
is reasonable in the domain of DSP and vision applications.
Hence, existing stream processing models would be an over-
kill in terms of the resource overhead for memory I/O or intra-
FPGA communication I/O.

In this paper, we propose SHARC - Streaming Hardware
Accelerators with Run-time Configurability, which is a general
framework for developing hardware accelerators. SHARC
employs a simple signaling interface for each hardware module
and a hierarchical structure to support parallelism at each level
along-with a run-time configuration strategy. The vision for
SHARC is to standardize hardware accelerators to enable plug-
and-play hardware accelerators and a GNU-style sharing for
accelerator cores as utilities/apps.

II. SHARC MODEL

A. Hardware Module
Each hardware module in the SHARC model has the inter-

face description as shown in Figure 1. We utilize the simplest
form of the Xilinx LocalLink interface [6] for inter-module
signaling. LocalLink is a high-performance, synchronous
Xilinx standard interface for point-to-point connections and
includes simple handshake signals and frame delimiter signals.
Each hardware module in SHARC has 3 independent LocalL-
ink (LL) ports/interfaces namely - input, output and control.
The input LL port is a LL destination interface to receive
data from the previous module in the pipeline and the output
LL port is a LL source interface to transmit data to the next
module in the pipeline. The control LL port is a LL destination
interface to receive control data at run-time. Every hardware
module has an input buffer, output buffer and configuration
registers to provide temporary buffering of input data, output
data and run-time parameters respectively.

The input LL port and output LL port can be of any width,
so that the module can operate on multiple I/O streams at a
time. For multiple streams, the module can either share the
same, or have independent, frame delimiter signals for each
stream. The module is independent of the source of the the
input streams and the destination of the output streams, as long
as they follow the LL specification. The control LL port also
has frame delimiter signals to incorporate the notion of frame
on the run-time parameters. Each hardware module must have
a specific number and sequence of configuration parameters
that need to be loaded at run-time, and must internally
handle initialization of the configuration registers each time
the parameters are loaded. This way, the SHARC interface978-3-9810801-7-9/DATE11/ c⃝ 2011 EDAA

abstracts a streaming hardware module with a reasonable
degree of complexity.

Example: A 4 × 4 switch has 4 input data streams and
4 output data streams and this can be supported by having
4-wide LL ports for the input and output. The run-time
parameters could be the entries of the switching table which
can be input back-to-back into the control LL port to create a
control stream.

Fig. 1. The interfaces for each hardware module

B. The Accelerator hierarchy
An FPGA accelerator derives its throughput from the paral-

lelism it provides. In order to provide a generic structure with
massive parallelism in the design, the hardware modules in the
accelerator are classified based on their position in the design
hierarchy.

• At the bottom of the hierarchy are the utilities, which are
basic arithmetic or logic functions such as - multiply-
accumulator, adder tree, comparator, dynamic shifter,
divider and resources such as FIFO buffers. These utilities
can be custom implementations or from an IP library and
are oblivious to the frame-level details.

• At the next level are the user-IPs, which are hardware
realizations for frame-level operations and are mostly
custom implementations. Example of such operations are
- 2D convolution, down-sampler, image up-sampler. A
user-IP itself can include instances of utilities, other user-
IPs and custom logic.

• At the next level are the cores, which are frame-level
operations at a higher scale. A core can include multiple
instances of a single user-IP or different user-IPs along
with custom logic.

• At the next level are the wrappers, which are basically
composed of multiple cores. The additional function of a
wrapper is to parse the configuration stream during run-
time configuration and route the data to the appropriate
cores in it.

• Finally, the top-most level in the hierarchy is a stream-
pipe which is the streaming pipeline composed of wrap-
pers and custom logic. During, run-time configuration,
a stream-pipe broadcasts the configuration stream to all
the wrappers instantiated and does not handle parsing the
stream. This is explained in detail in later sections.

All hardware modules from the user-IPs to the stream-pipes
have the LocalLink interface ports as shown in Figure 1.
However, the utilities do not have the LocalLink interfaces,
but have simple data and valid signals. A target application
might include a suite of algorithms and each algorithm would
have an associated hardware realization as a stream-pipe.

This hierarchical structure allows parallelism at every stage
- i.e both fine-grain and coarse-grain parallelism are incor-
porated. Since each hardware module from utility to the
stream-pipe is pipelined, temporal parallelism is inherent in
the accelerator. Each user-IP and core can be designed with

any degree of parallelism - example: a 1D FIR filter user-
IP can be implemented by performing all the multiplications
in parallel - and this is invisible to the higher-level wrapper.
The wrapper however provides coarse-grain parallelism by
allowing multiple instances of a core to operate in parallel.

C. Parameterization
A unique feature of an FPGA accelerator is the ability

to be reconfigured to suit the needs of the application. This
reconfiguration can be at several stages -

1) Compile-time reconfiguration - this is the simplest form
of reconfiguration and is realized by modifying the
HDL parameters in the design - which would require
synthesizing the design to re-generate the bitstream.

2) Run-time reconfiguration - this is realized by modifying
the run-time parameters in the design online. This would
however require the hardware to support the entire range
of the run-time parameter hence requiring the hardware
to be designed for the worst-case value.

3) Partial reconfiguration - this is a complicated form
of reconfiguration and is realized by regenerating the
bitstream for only a portion of the design - which
requires specific guidelines to be followed for the static
and the reconfigurable portions of the design [7].

The SHARC framework currently supports compile-time
and run-time reconfiguration (1 and 2 above). In order to
utilize this ability completely, the hardware design needs to
be completely parameterized so that nothing is hard-wired at
design-time.

The bit-widths of the data bus and registers, latency of the
primitives such as multipliers and adders, the depths of the
buffers, number of fraction bits in the fixed-point represen-
tation, the fields in a control packet and further algorithm-
specific parameters which determine the type of hardware,
are all declared as HDL parameters (compile-time). As such,
the type, size and functionality of the synthesized design is
highly dependent on these parameters. Generate statements in
Verilog or VHDL are used to instantiate the desired number of
instances of a utility/user-IP/core/wrapper in a pipeline which
are HDL parameters as well. The other variables in the design
which do not need modification of the underlying hardware
are all run-time parameters. These may include the data size,
select lines for multiplexers, constants for data manipulation,
initial values for registers etc.

Example: A filter of size W which performs the all multi-
plications in parallel can have W as a HDL parameter since it
determines the number of multipliers to be synthesized. How-
ever, the actual filter coefficients can be run-time parameters.

D. Run-time Reconfiguration
Run-time reconfiguration is achieved by allowing hardware

modules at all levels of the hierarchy to receive parameters at
run-time to modify their functionality. Since the complexity
and functionality of each hardware module increases as we
go up the hierarchy, the number and type of control param-
eters required for each module also varies. SHARC however
provides a generic interface to each module irrespective of
the position in the hierarchy, so that the modules can serve
as plug-and-play logic and also make system integration an
easier task.

Each hardware module - user-IP/core/wrapper - is provided
with a control port which follows the LocalLink interface.
This control port is used to receive run-time parameters from
a higher module in the hierarchy. A global packet format for
the configuration data is determined as shown in Figure 2(b)

- which consists of the control data along with the following
headers -

• pipe-ID - an identifier for the stream-pipeline.
• core-ID - identifies the type of core
• instance-ID - identifies the specific instance of the core,

since each instance can have a different set of parameters
While, the width of each field can be changed by the user, the
baseline SHARC control packet is 64-bits wide with 32-bits of
control data and 8-bits each for pipe-ID, core-ID and instance-
ID. The most significant 8 bits are reserved for application
specific flags. This allows up to 256 pipelines each having
up to 256 different cores with each core having up to 256
instances. Hence, this packet format is sufficient to support a
fairly complex application with massive parallelism.

(a)

(b)
Fig. 2. (a) Hierarchical run-time configuration and (b) packet format

A configuration stream is formed by concatenating the run-
time parameters for each hardware module in the design. This
configuration structure is streamed into the control port of the
top-most module in the hierarchy namely the stream-pipe. The
stream-pipe broadcasts the control packets on a configuration
bus to all the wrappers in the design. The wrappers parse the
configuration packets to determine if the pipe-ID and core-
ID correspond to the cores in itself. If it does, it extracts
the control data from the packets and passes it to each core
corresponding to the instance-ID as shown in Figure 2(a). The
core handles the forwarding of the control data to the user-IPs.
Thus the configuration parameters trickle down from one large
structure into every hardware module in the hierarchy.

Every hardware module must have a pre-determined set
of run-time parameters to be included as part of the design
specification. A software script can be written in C++ /
MATLAB, to build the configuration stream for a particular
accelerator. This stream has to be loaded into the design once
the bistream has been downloaded on to the FPGA and also if
parameters need to be changed during run-time. One advantage
of the SHARC framework is that it allows the hardware design
to scale to a bigger or smaller structure. Additional cores or
wrappers can be inserted or existing modules can be removed
in hardware and the configuration structure updated to realize
a different functionality with minimal effort.

E. System Integration
An FPGA accelerator usually consists of communication

interfaces for both intra-chip and inter-chip communication.
Intra-chip communication is usually achieved using local
routers or system-buses such as PLB and inter-chip communi-
cation is achieved by interfaces such as PCI express, Gigabit

Ethernet or inter-FPGA links. In order to realize an end-to-
end system using a SHARC-based accelerator, the SHARC
pipeline requires interface modules to DDR memory, a system
bus such as PLB and external I/O such as PCI express or inter-
FPGA links. These interface modules need to be implemented
once and can be reused for any application. An end-to-end
system using a SHARC-based accelerator is shown in Fig 3.

Fig. 3. A SHARC based system

III. RELATED WORK AND DISCUSSION

There has been considerable interest in developing FPGA-
based accelerators and stream processors. FPGA accelerators
can be realized by complete hardware [1] or as embedded
MPSoCs [8].

In addition to application accelerators, a stream processor
for convolutional networks is described in [3] [9], which has
a regular array of stream operators and an interconnection
network composed of local and global routers for on-chip
and off-chip communication. A streaming library composed of
multi-port memory controllers was presented in [2]. A similar
multi-FPGA system for composing accelerators was presented
in [4]. Virtual interfaces for FPGAs [10] have been studied
before.

These stream processing models are at a system-level and
are generic enough to be extended to various applications,
but they impose huge resource overheads in terms of the
communication framework. In comparison, SHARC uses a
simple point-to-point communication using a generic signaling
interface without the use of routers for each core and hence
has very low resource overhead. Further, SHARC-based sys-
tem includes interfaces to standard off-chip communication
interfaces such as PCIe links or inter-FPGA links to realize a
multi-FPGA system. Also, the communication interfaces can
be customized based on the target board and device.

Run-time parameterization has been explored recently [7],
however existing schemes require the use of the embedded
CPU and the system bus. Instead, the SHARC accelerator is
still a full-hardware solution with minimal overhead for run-
time configuration.

Further, the SHARC model is independent of the target
device or the target application. It is a generic model that
can be used across the spectrum for hardware accelerators.
This model can be extended based on the needs of the
application and might allow application developers, who are
not hardware experts, to plug-and-play accelerators if they
have the necessary interfaces.

IV. CASE STUDY: SALIENCY-BASED VISUAL ATTENTION

Attention models are being used in various applications such
as object recognition, image/video compression and robotic

control. Among the various bio-inspired visual attention mod-
els, the bottom-up saliency model proposed by Itti et al. [11]
and extended by Walther et al. [12] is widely used.

A. Saliency Algorithm
As shown in Figure 4, input is provided in the form of

static color images which are pre-processed to obtain the
intensity map (I) and the red-green (RG) and blue-yellow
(BY) color opponency maps. Nine spatial scales are created
using dyadic Gaussian pyramids, which progressively low-
pass filter and subsample the input image, yielding horizontal
and vertical image-reduction factors ranging from 1:1 (scale
0) to 1:256 (scale 8), to obtain 3 pyramids I(σ), RG(σ)
and BY (σ), where σ ϵ {0..8}. Local orientation information
is obtained from I using oriented Gabor pyramids O(σ, θ)
where θϵ{00, 450, 900, 1350} is the preferred orientation and
σ ϵ {0..8}.

Fig. 4. The Saliency-based bottom-up attention model [11]
Each feature is computed by a set of linear center-surround

operations. Center-surround is implemented as the difference
between fine (center) and coarse (surround) scales: The center
is a pixel at scale c ϵ {2, 3, 4} - and the surround is the corre-
sponding pixel at scale s = c+ δ, with δ ϵ {3, 4}. The across-
scale difference between two maps, denoted by Θ, is obtained
by interpolation to the finer scale and point-by-point sub-
traction. I(c, s) = |I(c)ΘI(s)| RG(c, s) = |RG(c)ΘRG(s)|
BY (c, s) = |BY (c)ΘBY (s)| O(c, s, θ) = |O(c, θ)ΘO(s, θ)|

Each feature map is now normalized by an operator N(.)
which consists of - (i) finding the map’s global maximum M
and computing the average of all its other local maxima u and
(ii) globally multiplying the map by (M−u)2

M .
The feature maps are then combined into three conspicuity

maps I for intensity, C for color and O for orientation at
the scale σ = 4 of the saliency map. They are obtained
through across-scale addition (denoted by

⊕
), which con-

sists of resampling each map to scale 4 and then point-
by-point addition. For orientation, four intermediary maps
are first created by combination of the six feature maps
for a given θ and are then combined into a single ori-
entation conspicuity map. I =

⊕3
c=1

⊕c+4
s=c+3 N{I(c, s)}

C =
⊕3

c=1

⊕c+4
s=c+3[N{RG(c, s)} + N{RG(c, s)}] O =∑

θ N [
⊕3

c=1

⊕c+4
s=c+3 N{O(c, s, θ)}]

The three conspicuity maps are normalized and summed
into the final saliency map - S = 1

3 [N(I) +N(C) +N(O)]

B. SHARC Library for Saliency
As described above, the Saliency algorithm is highly com-

plex and very compute-intensive. However, it has several
common operations across all the channels including 2D
convolution, image re-sampling, normalization etc and also has
inherent parallelism. We follow a bottom-up design method-
ology by first implementing the building blocks and then
composing them to realize the full Saliency algorithm.

The functional elements are classified based on hierarchy
as in Table I. The building blocks for the Saliency algorithm
such as 2D convolution are classified as user-IPs and bigger
modules such as pyramid generator as cores. Each core has
a wrapper to support multiple instances and then a Saliency
pipeline to compute the conspicuity map of a channel for Ncs
center-surround scales is the stream-pipe (If Nc and Ns are the
number of center and surround levels per channel, then Ncs =
Nc ×Ns is the total number of center-surround scales).

TABLE I
SHARC HIERARCHY FOR SALIENCY PIPELINE

Stream pipe Wrapper Core User-Ip
Saliency Pyramid wrapper Pyramid generator 2D convolution

CSD wrapper CSD down-sampler
MaxNorm wrapper MaxNorm up-sampler
Resampler wrapper Gabor filter global-max

Gabor wrapper Resampler local-max
Across-scale Adder steerable filter

scaling
We utilize the SHARC model to implement a hardware

library of functional elements which can be used to realize
Saliency or similar computer vision algorithms. The library in-
cludes all the cores and user-IPs listed in Table I and are highly
optimized and fully parallel implementations. Implementing
this library provided several case studies of using SHARC
model for hardware accelerators. The 2D convolution/filter
module includes window buffers and 1D filter user-IPs to
realize a separable 2D filter. The Gabor filter core is realized
by a steerable filter approximation which includes a sinusoidal
modulation of the Laplacian filter response followed by a
separable 2D filter [13]. Here, the Laplacian filter and the 2D
filter are user-IPs. The pyramid generator module is a core and
consists of multiple instances of the 2D convolution and down-
sampler user-IPs to generate a multi-resolution dyadic pyramid
from an input image. It can generate either a Gaussian or a
Laplacian pyramid, which can be specified using a run-time
parameter.

The CSD module is a core which computes the difference
between a high resolution center image and a low-resolution
surround image, by up-sampling the surround to the same
size as the center before performing a subtraction. The local-
max and global-max user-IPs compute a 2D local maxima and
global maximum over an image respectively. The MaxNorm
core includes global-max and local-max user-IPs to compute
the normalization factor and a scaling module to perform
the actual scaling of the image with the norm factor. The
Resampler core includes multiple instances of the up-sampler
or down-sampler user-IPs to realize multi-level image re-
scaling.

C. Saliency Pipeline and Run-time Reconfiguration
The basic operations common to all channels - intensity(I),

color(C) and orientation(O) - are pyramid generation, center-
surround difference(CSD), normalization, across-scale addi-
tion by re-sampling to output scale. However, each channel
may require a different set of parameters. Example: the
intensity and color channels require a Gaussian pyramid while
the orientation channel requires a Gabor pyramid.

Fig. 5. Streaming pipeline for Saliency based on SHARC

The center-surround computations must be completed for
4 orientations, 2 color and 1 intensity channels (totally 7
channels), where each channel comprises of Ncs center-
surround scales. If resources permit, each channel can be
computed in parallel using independent pipelines. In effect,
we would need 7 parallel pipelines to compute the Saliency
map in single-pass.

However, this would need a huge amount of FPGA re-
sources and might not fit on a single device. In this regard,
we have developed a novel streaming saliency pipeline based
on SHARC. Instead of having separate pipelines to implement
each channel, we can instantiate a single SHARC-based
saliency pipeline which can be configured at run-time as to
which channel to implement. This would require instantiating
all the cores and wrappers required to compute each channel at
compile-time and running the pipeline for multiple iterations
while configuring it to compute a particular channel each time
around. Hence, run-time reconfiguration needs to be performed
7 times for each input image (once after each iteration). This
provides a highly parallel and flexible design which scales
with resource availability.

The Saliency pipeline as shown in Figure 5 can compute
the conspicuity map for a single channel from all the center-
surround scales in parallel. Hence, each wrapper would have
Ncs instances of cores to handle the Ncs center-surround
scales.

The input image img pre-processed to generate the intensity
channel I and color channels RG and BY. The I input is
selected for all orientations and the intensity channel while

RG and BY are chosen one at a time for the 2 color channels.
For the intensity and color channels, the pyramid generator

is configured to generate a Gaussian pyramid and the Gabor fil-
ter wrapper is disabled/bypassed. For the orientation channels,
the pyramid generator is configured to generate a Laplacian
pyramid and the Gabor filter wrapper is enabled.

The center-surround difference for all scales is computed
by running Ncs instances of the CSD module in parallel. The
Normalization block for each channel includes Ncs instances
of the MaxNorm module. Next, the Resampler is used to
resample each center-surround map to output scale. This is
followed by an across-scale adder to accumulate the center-
surround maps to obtain the conspicuity map. Further, the
conspicuity normalizer and accumulator are enabled for the
orientation and color channels to combine orientation/color
maps over multiple iterations.

Finally, the conspicuity maps for the intensity, color and
orientation channels are normalized and added to obtain the
final Saliency map.

While, the Saliency pipeline is designed for processing all
the Ncs center-surround scales in parallel, the Switch allows
dynamic selection of the center and surround levels. If this
design does not fit on the target FPGA, a subset of the center-
surround scales can be computed in parallel which would
require multiple iterations of the pipeline for just one channel.
Thus, the SHARC framework allows the degree of parallelism
to vary when resources available are different.

V. EXPERIMENTAL SETUP AND RESULTS

Our target FPGA platform is the Xilinx ML605 board [14]
which consists of a Virtex6 LX240T FPGA along with 512
MB of DDR3 memory and Compact Flash. Our test platform
includes the Micro-blaze processor for software-based con-
trol, the PLB bus for on-chip communication, the Multi-port
memory controller (MPMC) for accessing the external DDR3
memory and the SysAce Compact Flash card for external
I/O. The Saliency pipeline is imported into this platform by
implementing the PLB-LocalLink interface. Xilinx EDK is
used to generate the bitstream, which is then downloaded on
to the FPGA.

The configuration stream with run-time parameters is gen-
erated by executing a MATLAB script. The Compact Flash
(CF) card is used for off-line transfer of the input images
and the config file from a host to the DDR3 memory on
the ML605 and output saliency map back to the host. The
Saliency pipeline reads the config parameters from memory
and initializes all the hardware modules in a hierarchical
fashion. The input images are then loaded back-to-back into
the Saliency core which computes the saliency map.

We use a nominal operating frequency of 200 MHz for
the FPGA. For a 256 × 256 image, the Saliency system
gives a throughput of 371 frames per sec which satisfies real-
time requirements. We provide a performance comparison of
our system with existing Saliency implementations in Table
II. The CPU and GPU implementations are the closest to
our implementation since they follow the bottom-up saliency
model as proposed by Itti [11]. The CPU implementation is by
Peters et al. [15] and the GPU implementation is by Xu et al.
[16] on a multi-GPU system. The table shows that our FPGA
implementation provides close to 5X speedup when compared
to the CPU version and almost identical throughput for the
GPU when normalized to a single-GPU performance.

The Table II also provides a comparison of Performance-
per-Watt in terms of Frames-per-sec-per-Watt. The GPU per-
formance is normalized to a single GPU for this calculation.

TABLE II
PERFORMANCE OF SALIENCY IMPLEMENTATIONS FOR 640× 480 IMAGES

CPU impl [15] GPU impl [16] Our FPGA impl
Hardware Intel Xeon 4 Nvidia GeForce Virtex6 LX240T

processor 8800(GTX)
Frequency 2.8 GHz 1.35 GHz 200 MHz
Precision floating-point floating-point fixed-point

Frame rate 19.48 fps 313 fps 89.6 fps
Power(TDP) 80 W [17] 155 W [18] 10 W [19]

FPS-per-Watt 0.2435 0.608 8.96

Fig. 6. Saliency map and the most salient location for 256x256 image

We use the Thermal Design Power (TDP) of the CPU and
GPU for approximate device power consumption. For the
FPGA, the power number is extracted from the data sheet [19].
The table shows that our FPGA implementation provides 37X
and 14X times higher Performance-per-Watt compared to the
CPU and GPU implementations respectively. Figure 6 shows
the saliency map for a sample image - the brighter regions
correspond to more salient locations in the image.

In order to demonstrate the scalability of the SHARC-based
Saliency implementation, we provide projected performance
for different FPGAs in the Virtex6 family. We choose SX475T
and LX760 as the other Virtex6 devices for comparison. The
Saliency system is synthesized on each of these FPGAs to
obtain resource utilization numbers, from which the number
of Saliency pipelines that can fit in parallel can be determined.
Table III provides the resource utilization numbers for the
SX475T FPGA for Ncs = 6.

Figure 7 provides a comparison of the throughput on the
ML605 with the projected throughput on the SX475T and
LX760 for a 256 × 256 image for 3 configurations of Ncs.
For smaller Ncs, the number of computations and resource
requirement is lower and so is the accuracy of the saliency
map. Hence, multiple pipelines can be fit on a single device,
which gives higher throughput. For higher Ncs, the Saliency
map is more accurate, but the resource requirement is huge.
Smaller FPGAs might not be able to process all center-
surround scales in parallel and will have to run multiple
iterations per channel. The SX475T and LX760 are both much
bigger devices and hence can provide more parallelism and
hence can speedup the application further.

Fig. 7. Projected throughput of SHARC-Saliency system for 256x256 image

TABLE III
RESOURCE UTILIZATION ON VIRTEX6 SX475T FOR Ncs = 6

Slice Regs Slice LUTs BRAMs/FIFOs DSP48E1
153832 (25%) 160253 (53%) 430 (40%) 590 (29%)

VI. CONCLUSION

In this paper, we have presented SHARC - a streaming
model for hardware accelerators with run-time configurability
- a simple yet powerful model for custom accelerator design.
It provides a simple signaling interface based on Xilinx
LocalLink interface with point-to-point communication along-
with a hierarchical structure to enable parallelism at every
stage in the pipeline. This work further presents a hierarchical
run-time reconfiguration framework to enable hardware reuse
and scalability. We apply this framework to implement an algo-
rithm for Saliency-based Visual attention. The SHARC-based
streaming architecture is highly parallel, completely pipelined
and scales well to different parameter sets. Experimental
results on Virtex6 FPGA platforms show about 5X speedup
over an existing CPU implementation and up to 14X higher
Performance-per-Watt over a relevant GPU implementation.
Future work includes implementing the interfaces for SHARC
to PCI express and supporting partial reconfiguration.

ACKNOWLEDGMENT

The authors acknowledge the valuable discussions with Dr.
Deepak Khosla (HRL Laboratories) during the course of this
work. This work was supported in part by NSF 0903432 and
DARPA Neovision2 programs.

REFERENCES

[1] S. Hadjitheophanous, C. Ttofis, A. Georghiades, and T. Theocharides, “Towards
Hardware Stereoscopic 3D Reconstruction A Real-time FPGA Computation of the
Disparity Map,” in Design Automation and Test in Europe Conference (DATE),
2010, Mar. 2010, pp. 1743 –1748.

[2] A. D. C. Lucas, S. Heithecker, and R. Ernst, “FlexWAFE - A High-end Real-time
Stream Processing Library for FPGAs,” in DAC ’07: Proc. of the 44th annual
Design Automation Conference. New York, NY, USA: ACM, 2007, pp. 916–921.

[3] C. Farabet, C. Poulet, J. Han, and Y. LeCun, “CNP: An FPGA-based Processor
for Convolutional Networks,” in Intl. Conf. on Field Programmable Logic and
Applications. FPL 2009., aug. 2009, pp. 32 –37.

[4] K. M. Irick, M. DeBole, S. Park, A. Al Maashri, S. Kestur, C.-L. Yu, and
N. Vijaykrishnan, “A Scalable Multi-FPGA Framework for Real-time Digital
Signal Processing,” in Proc. of SPIE, Vol. 7444, 2009.

[5] “FPGAs for Stream Processing: A Natural Choice.” [Online]. Available:
http://www.cotsjournalonline.com/articles/view/100649

[6] “LocalLink User Interface.” [Online]. Available: http://www.xilinx.com/products/
ipcenter/LocalLink UserInterface.htm

[7] “FPGA Run-time Reconfiguration: Two Approaches,” Altera White Paper.
[8] A. Tumeo, F. Regazzoni, G. Palermo, F. Ferrandi, and D. Sciuto, “A Reconfigurable

Multiprocessor Architecture for a Reliable Face Recognition Implementation,” in
Design Automation and Test in Europe Conference (DATE), 2010, Mar. 2010.

[9] C. Farabet et. al., “Hardware Accelerated Convolutional Neural Networks for
Synthetic Vision Systems,” in Proc. of 2010 IEEE Intl. Symp. on Circuits and
Systems, ISCAS ’10, May. 2010.

[10] Y. Ha et. al., “Virtual Java/FPGA Interface for Networked Reconfiguration,” in
Asia and South Pacific Design Automation Conference, ASP-DAC ’01, 2001.

[11] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-based Visual Attention for
Rapid Scene Analysis,” IEEE Tran. on Pattern Analysis and Machine Intelligence
, vol. 20, no. 11, pp. 1254 –1259, Nov. 1998.

[12] D. Walther and C. Koch, “Modeling Attention to Salient Proto-objects,” Neural
Networks, vol. 19, no. 9, pp. 1395 – 1407, 2006.

[13] H. Greenspan, S. Belongie, R. Goodman, P. Perona, S. Rakshit, and C. Anderson,
“Overcomplete steerable pyramid filters and rotation invariance,” in IEEE Comp.
Soc. Conf. on Computer Vision and Pattern Recognition, CVPR ’94, jun. 1994.

[14] “ML605 Documentation.” [Online]. Available: http://www.xilinx.com/products/
boards/ml605/reference designs.htm

[15] R. J. Peters and L. Itti, “Applying Computational Tools to Predict Gaze Direction
in Interactive Visual Environments,” ACM Trans. Applied Perception, vol. 5, pp.
9:1–9:19, May 2008.

[16] T. Xu, T. Pototschnig, K. Kühnlenz, and M. Buss, “A High-speed Multi-GPU
Implementation of Bottom-up Attention using CUDA,” in ICRA’09: Proc. of the
IEEE intl. conf. on Robotics and Automation. NJ, USA, 2009.

[17] “Intel Xeon.” [Online]. Available: http://en.wikipedia.org/wiki/Xeon
[18] “GeForce 8 series.” [Online]. Available: http://www.nvidia.com/page/geforce8.html
[19] “Virtex6 Data sheet.” [Online]. Available: http://www.xilinx.com/support/

documentation/data sheets/ds152.pdf

