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Abstract—Anticipating silicon response in the presence or pro-
cess variability is essential to avoid costly silicon re-spins. EDA
industry is trying to provide the right set of tools to designers
for statistical characterization of SRAM and logic. Yet design
teams (also in foundries) are still using classical corner based
characterization approaches. On the one hand the EDA industry
fails to meet the demands on the appropriate functionality of the
tools. On the other hand, design teams are not yet fully aware
of the trade-offs involved when designing under extreme process
variability. This paper summarizes the challenges for statistical
characterization of SRAM and logic. It describes the key features
of a set of prototype tools addressing that required functional-
ity together with their application to a number of case studies
aiming at enhancing yield at product level.

I. INTRODUCTION

Advances in CMOS VLSI circuit design has primarily relied
on technology improvements derived from technology scaling.
However, process variability and especially its intra-die un-
correlated portion has significantly increased the uncertainty
in the response of sub-45nm CMOS circuits. Today, intra-die
(also known as local random) process variations are main con-
tributors to statistical circuit responses (e.g., delay and power).
Such increase of process variability at every technology node
has imposed new challenges to the design and characterization
of SRAM and logic cells.

By placing a constraint either on a system level metric (like
cycle time, power) in case of logic and/or on stability met-
rics (as pass/fail checkpoints) in case of SRAM, we focus on
the yield loss component caused by parametric deviations in
the electrical device parameters. Defect related yield is not
addressed in this paper. Its treatment requires well known sepa-
rate analysis techniques [1] and it can be considered orthogonal
to parametric and functional yield analysis. This way the most
likely reasons for statistical failure can be anticipated at de-
sign time so as to correct weak design spots before tape-out,
hence avoiding costly silicon spin iterations.

For logic, approaches based on sensitivity analysis for statis-
tical library characterization have been adopted by several EDA
companies. These are essential tools to feed Statistical Static
Timing Analysis (SSTA) [2], [3] and other parametric yield
prediction flows. They are simple to implement by assuming
linear dependencies between the process parameter variations
and the timing related metrics of the cells. Yet they usually
ignore the underlying correlation among device variation pa-
rameters, hence many times leading to inaccurate response
prediction.

As a consequence, these sensitivity analysis techniques have
not been yet widely adopted by the design industry because
of their lack of accuracy.

In the lack of statistical characterization tools providing
sufficient accuracy, CPU time expensive Monte Carlo (MC)
loops embedded on existing circuit simulators [4] are the most
pragmatic alternative for the characterization of standard cell
libraries. However such approaches require a large number of
simulation runs. Indeed, thousands of simulations are needed
for accurately capturing the tails of the distribution of the af-
fected metrics, typically at a 3σ distance from the average
value, hence discouraging designers from their use and becom-
ing a showstopper for the wide adoption of SSTA and other
yield prediction analysis flows. Approaches achieving near MC
accuracy with a speedup improvements of orders of magnitude
are therefore urgently demanded for efficient statistical library
characterization.

For SRAM the situation is even worse. Virtually no com-
mercially available solution exists yet. Several issues make
memories especially challenging:

1 Usually the nominal simulation of a full memory is re-
duced to the access path netlist, assuming every other
path behaves the same. However this approach particu-
larly fails under local process variations where device
to device uncorrelated variability makes every bitcell ac-
cess operation to behave differently. Since a memory is as
good as its worst path, the memory statistics for instance
of the read margin or access time is the distribution of
the worst of all its cells. As a result, simulating the ac-
cess path netlist under variability does not model the full
memory statistics correctly.

2 Approaches considering the bitcell and sense amplifier
together only without its periphery [5] manage to reduce
the sample sizes and transistor counts effectively, but also
entails incomplete analysis. We exemplify this in Figure 1,
which shows how the different components influencing the
read operation of the cell can affect its read margin. Indeed,
variations can affect the sense amplifier offset and the
timing circuit that controls its activation, the row decoder
that enables the word line activation, and especially the
cell’s capability to discharge the bitline. Accounting for
the worst case situation of each of these effects would lead
to pessimistic estimations of the read margin’s probability.
As a consequence, the entire equivalent circuit’s operation
must be simulated under variability to obtain realistic
results.
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3 On top of that, attention must be paid to architectural
correlations of bitcells and sense amplifiers, row drivers
and other memory parts. A worst case cell instance is not
necessarily in the same path with the worst case sense
amplifier or the worst case row driver logic so that a blind
worst case combination would lead to over-pessimistic
results again.

Fig. 1. Read voltage variability (bitline voltage difference at sense amplifier
activation time) originates from variations in the timing circuit (precharge
and sense amplifier enable times), the bitcell drive strength, the wordline and
driver, sense amplifier, and column multiplexers.

In this paper we summarize a set of existing state-fo-the-art
automated techniques addressing the required functionality for
logic and SRAM. For logic we show how preserving the un-
derlying correlation among process variation parameters leads
to overcoming the accuracy limitations of sensitivity based
analysis approaches. For SRAM, we present several case stud-
ies showing how to capture non-trivial statistical interactions
between the cells and the periphery, which remain uncovered
when only using statistical electrical simulations of the access
path or applying a corner analysis approach.

The automated techniques provide the designer with valu-
able information on what performance metrics to expect after
manufacturing. Since this feedback takes place at design time,
a significant reduction in development time and costly silicon
iterations is achieved.

II. VARIABILITY AWARE MODELING

Our flow starts with extracting information about process
variability from statistical device compact models and/or silicon
measurement data. It uses a complementary set of variability
scaling rules such as area dependent mismatch model [6] for
scaling local random variations from a reference device size
to the actual size as found in the transistor level netlist. In this
way we can model most of the known variability effects, either
systematic or random. Instead of considering the process vari-
ations parameters present in the given statistical device model
we prefer to extract a set of compact model card indepen-
dent parameters in the form of device variations in V t and β
and inject them in the circuit netlist. This is done by inserting
one voltage source in series with the transistor gate (model-
ing ∆V t) and one current source in parallel with the transistor

(modeling ∆β/β, where β is related to the source-drain current
gain).

At this stage, we simulate the circuit for selected combina-
tions of ∆V t and ∆β/β variations, and based on its response,
we build a regression model of the circuit that predicts its re-
sponse to any other combination of the variation parameters
without involving the use of massive analog simulations. Cir-
cuits under consideration range from standard cell descriptions
to SRAM access path netlist.

A. Statistical Circuit Response Prediction

For transistor level circuits the challenge is to achieve near
MC accuracy with a very limited set of simulations. This is
equivalent to building a regression model of the circuit that
could predict its response to any change on its input variation
parameters. This is achieved by our Variability Aware Statistical
Design of Experiments approach, hereafter called s-DoE. Using
s-DoE, about two orders of magnitude of better accuracy in the
tail response can be achieved compared to sensitivity analysis.
Yet it features an electrical simulation effort linear to the cell
complexity, hence comparable to sensitivity analysis and being
about 10-100 times less CPU time intensive than MC.

Fig. 2. Possible DoE selection strategies for process variability modeling:
a) DoE selection for sensitivity analysis; b) based on full factorial design,
c) improvement of full factorial design to avoid pessimistic corners, and d)
s-DoE

The concept behind the s-DoE gets illustrated in Figure 2,
also in comparison to existing DoE alternatives, from the most
simple to more elaborated ones. Sensitivity analysis (see Fig-
ure 2.a) is a very simple yet powerful form of DoE where
points are positioned along the parameters axes. The drawback



is that the selected points ignore the existing correlations be-
tween variation parameters. Therefore it becomes impossible
to build response models predicting cross term interactions
between them.

Full factorial design (see Figure 2.b) is an improvement
over sensitivity analysis since the existing correlations between
parameters (p1 and p2) are now captured by the selected DoE
points. Still full factorial design may lead to selected DoE
points which lie outside the area of relevance of the statistical
parameter domain (e.g., see the upper right and lower left
points of the box in the Figure) which in statistical terms not
as relevant. Improvements over full factorial design exist to
eliminate over-pessimism (see Figure 2.c), but still the risk of
selecting statistically non-relevant points remains.

The s-DoE detects the statistical correlations present in the
parameter domain and places the DoE points along their main
correlation axes so that all selected points have an equal weight
regarding heir representativeness for the statistical population
(see inner points in Figure 2.d). In addition, the s-DoE also
allows for defining the scope of validity of the fitted response
model at any given distance from the nominal point. Such
distance is representative area of the distribution in which the
model is intended to provide accuracy (see outer points in
Figure 2.d).

Based on such a selection of representative design points,
the method runs electrical simulations on these and based on
their response then builds a non-linear regression model to
represent the statistical circuit response. This is done in two
steps:

1 The first step consists on performing a careful Design of
Experiments (DoE) selection. The goal of this stage is
to find Ndoe points which are representative for the n-
dimensional input space. The points need to be selected in
such a way that they cover as much as possible the volume
contained within the statistical input parameter distribu-
tion. This is done by first building an n-dimensional PDF
representing the multivariate statistic followed by identi-
fying the appropriate set of 2n+ 1 minimum amount of
s-DoE points (being n the number of variation parameters,
hence 2×no.devices). Moreover, the selected DoE should
be positioned in the parameter space in such way that
they capture the existing correlations among all statistical
variables of such PDF. Figure 3 illustrates the selected
s-DoE points for an inverter illustrating the strong corre-
lation between the ∆V t and ∆β/β variation parameters
for an n-FET device in a 32nm technology node.

2 After selecting the s-DoE points and performing an elec-
trical circuit simulation on them, the second step derives a
surface model predicting all remaining statistical responses.
For that purpose, we use an algorithm for searching the
space of possible approximations and, without manual in-
tervention or any previous knowledge about the circuit
response (delay, power, etc) it provides the best non-linear
function to approximate that response.

In this paper, we focus on use cases and quantitative results
for industrial circuits and we only provide a summary of our

s-DoE selection approach. Details are left out for a follow-up
publication.

Fig. 3. Pair wise 2-D scatter plots of all possible δVt and δβ combinations
for the two MOSFET of an inverter. s-DoE points are the red dots

B. Statistical SRAM Analysis

For SRAM, the challenge is to capture all (non-trivial)
memory-wide statistical interactions between the SRAM cell
and the periphery, not addressed when using statistical electrical
simulations of the access path alone.

For that purpose we have developed a method for statistical
memory analysis [8] that relies on a mix of sensitivity analysis
of the memory access path to variability in ’islands’. An ’island’
is formally defined as a unique and exclusive set of transistor
of the path. Islands, such as the timing block, bitcells, IO
blocks or word lines, are typically instantiated once in the 1
path netlist, but differ in the number of instantiations in a full
memory.

The method of quantitatively predicting memory perfor-
mance and yield under transistor variability comprises two
main steps (see Figure 4:

1 Characterizing Memory Islands (step 1): to derive the
sensitivities of one path to variations in certain memory
islands, by injecting variability into the island transistors
and simulating the modified memory path netlists as de-
scribed in Section II. We record the resulting sensitivity
populations, one for each island. During this step, statisti-
cally correlated parametric data and pass/fail information
obtained from the access path simulations is collected via
inserted measurement and check point statements in the
netlist.

2 Architecture Aware Scaling (step 2): to recover the full
memory statistics from the island statistics and a specifi-
cation of the topology of these islands. It populates the



statistics of all paths of the memory by combining the re-
sults of 1), under awareness of the memory architecture
(topology, organization and redundancy mechanisms), and
selects the worst path to represent a memory observation.
To build the memory population, also this step comprises
a (plain) MC loop. This way, statistical information on
the access path percolates to the complete SRAM organi-
zation level, resulting in a realistic prediction of the yield
as perceived by the memory tester and/or equivalent BIST
(built-in-self-testing) technique.

Fig. 4. Overview of the MemoryVAM approach

Key in this strategy is the ability to complement the analysis
of a nominal memory model under test with statistically sam-
pled variants of the devices. For that purpose the use of either
classical statistical sampling techniques (e.g., importance sam-
pling [9], [10]), or more novel ones such as our Exponent MC
enhancement [11]. Also, the most recent regression estimation
based techniques (e.g., s-DoE II-A) are best used to signifi-
cantly reduce the number of statistical simulations needed to
achieve a particular level of confidence.

III. RELATED WORK

For logic, the use of RSM techniques in VLSI design for
standard cell characterization is not new and its use was origi-
nally proposed in the late 80’s by [12], [13]. Recently, the use
of these regression modeling techniques raised interest again
as an effective technique to cope with the explosion on the
required process corners to capture the combined impact of
local and global process variations [14].

However, all these works are based use of conventional DoE
methods like Central-Composite-Design, full factorial and/or
Box-Behenken Design [7] that do not consider the statistical
nature of the underlying process variation parameters, hence
fail to capture their statistical correlations, especially at the
tails of the distributions as illustrated in Figure 2.d. Using
a minimum of 2n + 1 points we guarantee a model with
cross-terms providing much better accuracy than the arbitrary
selection of points used in the majority of these works.

Indeed, unlike conventional DoE approaches, s-DoE selects
only design points that are statistically relevant to the parameter
domain distribution (see Section I, Figure 2.d). By properly

capturing the existing correlation between input parameters, it
allows the simulator model to carry their effect to the outputs,
otherwise leading to inaccuracies in the statistical properties
of response model that is build upon these outputs.

For SRAM, the problem of verifying the interactions between
the cell and all possible combinations of connecting blocks
along all the paths in a memory has not yet been properly
addressed in the literature. Chen et al. [15] pointed out the
influence of row driver and sense amplifier variability on certain
stability metrics and provided a hardware detection of new fault
types. Failure mechanisms of the (isolated) cell under local
random process fluctuations have been studied extensively [16],
[9], [17], [18], [19], [20]. Aitken et al. applied a branch of
Gumbel’s extreme value theory to derive estimates for the
variability related yield of SRAMs [21] and to place proper
margins. It is the only known prior work that discovers and
describes the PDF shift towards worse values analytically.

We have combined the considerations above and reported a
method [22] and its implementation in a prototype tool hereafter
called Memory Variability Aware Modeling - or MemoryVAM
in short. It is based on a technique that predicts the correct
memory wide statistics of any parameter that can be measured
in a SPICE/SPECTRE test bench, such as access time, power,
stability checks such as read voltage, and so on.

IV. APPLICATION, RESULTS AND BENCHMARKING

This section describes different applications of our Variability
Aware Modeling flow to industrially relevant logic and SRAM
vehicles and describe few case studies in which the approach
is used to improve the yield of the product at the design time,
hence before manufacturing.

A. Standard Cell Statistical Characterization

We use a subset of cells from a production level 32nm
standard cell library and statistical compact model card. The
library generated is compatible with Cadence Liberty library
format.

For performing the most comprehensive benchmark we per-
formed statistical library characterization by three means:

1) Monte Carlo: reference method based on 1000 SPICE
simulations;

2) Sensitivity Analysis: using a commercially available sta-
tistical library characterization tool which requires n+1
runs and performs sensitivity analysis;

3) s-DoE: response model approach requiring only 2n+1
SPICE simulations. Being n the total number of variation
parameters of the circuit.

We use the statistical extension of Encounter Library Char-
acterizer (ELC) from Cadence as the commercial tool to set
up an experimental framework for benchmarking sensitivity
analysis against s-DoE. The statistical inputs for ELC are the
standard deviations of the variation parameters (σV ti and σβi
of each transistor i). The tool then gives as outputs: the nomi-
nal simulation s; and the sensitivities of each response (i.e.,
delay, transition time) to each input variation parameter (e.g.
sV ti, sβi of each transistor). Sensitivity analysis is based on



the assumption that the statistical circuit response to variations
in the process parameters is approximately by a linear super-
position of input sensitivities. Thus, if the variation parameters
follow a Normal distribution, the output will also follow a
Normal distribution with mean and variance given by:{

µ ≈ s
σ2 ≈

∑n
i=1

[
(sV tiσV ti)2 + (sβiσβi)2

] (1)

Fig. 5. Histogram showing the distribution of DFFQ Clock-Q delay comparing
true response computed using 1000 MC electrical simulations against the 97
(2× (2× 24) + 1) s-DoE points.

1) Benchmark against Monte Carlo: Figure 5 presents the
good agreement observed in the frequency distribution of Clk-
Q delay of the flip-flop cell (DFFQ, one of the most complex
library cells). This is obtained using s-DoE analysis against
MC simulations. Also, Figure 6 plots the agreement observed
in the individual response of the simulated points againts those
predicted by the regression model for a NAND2 gate. Circles
corresponds to the results from 1000 MC HSPICE simulations.
Triangles corresponds to the results from 1000 MC responses
obtained from the RSM model built using only 17 s-DoE
(2× (2× 4) + 1) HSPICE simulations.

Fig. 6. Comparison of the good agreement of the statistical scatter plots
corresponding to a cell delay versus transition time correlation for a NAND2:
(a) rise edge; (b) fall edge

2) Benchmark against Sensitivity Analysis: When comparing
to Sensitivity Analysis, we are interested on the accuracy of
the models when predicting particular circuit responses and

not only their statistical properties, especially at the tails of
the distribution, which is critical for accurate yield analysis.

One of the advantages of the s-DoE is the ability to choose
the region where the model must have high accuracy. The user-
defined boundary of interest for the positioning of the s-DoE
points allows the designer to focus on the selected region of
interest. The consequence is that the error of s-DoE remain
small even in the tails of the distribution.

Figure 7 shows the errors of the sensitivity model and s-
DoE at the tails of the distributions of hold time and setup
time of a DFFQ. These points are distributed at a 3σ distance
from the mean. For setup time, ELC shows errors as high as
400%, while s-DoE presents a maximum error of 5%. For the
case of hold time violations, commercial tool has errors of
280%, while s-DoE has maximum error of 50%. This proves
the ability of s-DoE to accurately predict parametric yield.

Fig. 7. Error of hold time and setup time of a DFFQ at the tails of the
distribution.

B. SRAM Application Case Studies

1) Critical Voltage Analysis in View of Yield: Global Voltage
Scaling (GVS) is a useful technique for a dynamic reduction
of the memory voltage for minimum power under a timing
constraint. Designers use a critical path replica in silicon to
report near-failure warnings of all paths, forming a closed loop
with the voltage regulator. For GVS one is initially interested
in predicting the global variability.

This technique cannot adjust local variability, which it there-
fore models as a margin. The amount of margin is essential.
Is it too small, the risk of timing failures increases. Too high
a margin, and the efforts of GVS don’t pay off. Again, the
GVS engineer must consider the nominal shift of timing due
to the many parallel paths existing in the memory. Also the
increased timing spread at lower voltages, and the minimum
tolerable read-margin require a carefully selected lower bound
for VDD. After analysis, our statistical memory analysis tool
reveals in Figure 8 that it becomes prohibitive to go below
0.72V. The Sense Amp offset requirements needed to maintain
a reasonable yield (¿ 50%) would simply become prohibitive



(e.g., below 30mV). Also that to maintain the same 95% yield
when lowering the power supply from 1.16V to 1.02V it is
required a Sense Amp with an offset no bigger than 68mV.

Fig. 8. To maintain yield the Sense Amplifier offset requirements need to
become tighter as voltage decreases

2) Yield recovery using circuit knobs: As shown in Figure 1
there is a strong influence of the sense-amplifier activation
time to the read-voltage. It has become common in advanced
memory design to implement test-time knobs to trade mem-
ory speed for robustness in terms of read-voltage. This is done
for example with a programmable delay in the sense-amplifier
activation signal, which allows more read-voltage to develop.
Of course, this artificial delay is subject to variability itself.
We have performed an statistical analysis on one of our in-
dustry grade memories with this margin control knob in the
two extremes of four settings (MCK=00, MCK=11) and com-
pared it to a nave approach that simulates the one-path netlist
using regular Importance-sampling. Figure 9 shows the re-
sults. As expected, with the aggressive setting, the read-voltage
decreases.

Fig. 9. Setting the margin control knob MCK to 11 causes later sense-amplifier
activation time and thus increased read-voltage

One can observe another less intuitive effect. While the nom-
inal point of the read-voltage improves from approximately
170 to 250mV, the median of the memory’s read-voltage im-
proves from about 80 to only 105mV. This difference (+70mV
vs. +25mV) must result from the fact that the knob is less ef-
fective for increasing small read-margins than for increasing

high read-margins. There is still a noticeable effect of about
25mV of this knob in the memory, albeit less than predicted
by nominal and even traditional statistical SPICE simulation.
Of course, this comes at the cost of extra delay, one nanosec-
ond in this case and it also entails a significant short-circuit
power overhead. Thus the goal is an economic as possible
use of this knob and accurate statistical quantification of its
response becomes mandatory.

V. CONCLUSIONS

We have summarized two methods featuring accuracy in
predicting parametric yield for logic and SRAM circuits and
presented their results from benchmarking against standard
characterization flows on a set of application case studies.
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