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Abstract—In latest CMOS technologies, Random Telegraph Noise (RTN)
has emerged as an important challenge for SRAM design. Due to rapidly
shrinking device sizes and heightened variability, analytical approaches are no
longer applicable for characterising the circuit-level impact of non-stationary

RTN. Accordingly, this paper presents SAMURAI, a computational method
for accurate, trap-level, non-stationary analysis of RTN in SRAMs. The
core of SAMURAI is a technique called Markov Uniformisation, which
extends stochastic simulation ideas from the biological community and applies

them to generate realistic traces of non-stationary RTN in SRAM cells. To
the best of our knowledge, SAMURAI is the first computational approach
that employs detailed trap-level stochastic RTN generation models to obtain
accurate traces of non-stationary RTN at the circuit level. We have also

developed a methodology that integrates SAMURAI and SPICE to achieve
a simulation-driven approach to RTN characterisation in SRAM cells under
(a) arbitrary trap populations, and (b) arbitrarily time-varying bias conditions.
Our implementation of this methodology demonstrates that SAMURAI is

capable of accurately predicting non-stationary RTN effects such as write
errors in SRAM cells.

I. INTRODUCTION AND MOTIVATION

SRAMs1 find application in several domains including CPU caches, LCD

screens and on-chip memories for both ASICs and FPGAs. This is

because SRAMs offer several advantages over their dynamic counterparts:

they are much faster, they consume less power and they do not need

complex circuitry to periodically refresh their states.
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Fig. 1. A 6T SRAM cell.

Fig. 1 (left) shows the schematic for an SRAM cell that stores one bit

(Q). The core of this SRAM cell is a cross-coupled pair of inverters

formed by the four transistors M3-M6 (Fig. 1 right). The external circuit

can read and write Q by controlling the pass transistors M1 and M2.

A. RTN as an emerging SRAM design challenge

In deeply scaled technologies, several non-idealities limit the minimum

supply voltage (Vdd) under which an SRAM cell can be operated. Fig. 2

depicts the increase in Vdd necessitated by different non-idealities, as a

function of CMOS technology [1]. Each CMOS technology is represented

by a stacked bar, to which the effects of different non-idealities such

as (a) VT shifts due to global and local parameter variations, (b) Neg-

ative Bias Temperature Instability (NBTI), and (c) Random Telegraph

Noise (RTN) are successively added (on top of the nominal supply voltage

1Static Random Access Memories

Fig. 2. Impact of non-idealities (quantified inVdd terms) on SRAM design margins
under different CMOS technologies. Data courtesy: Y. Tsukamoto, Renesas
Electronics Corp., Japan.

that overcomes static noise). Also included is a plot (the downward

sloping dashed line) depicting the scaling of Vdd at different technologies.

As seen from the figure, the impact (in Vdd terms) of RTN on SRAMs

has been steadily increasing under continued CMOS scaling. Moreover,

coming on top of the other non-idealities, it is the incremental contribution

made by RTN that is poised to push the minimum supply voltage over the

dashed line that represents Vdd scaling. If this happens, RTN would reduce

the SRAM design margin to zero and also render any further voltage

scaling impossible. Therefore, to ensure continued CMOS scaling, RTN

is of enormous significance even though its magnitude is small compared

to other non-idealities.

B. Towards overcoming RTN

Although RTN is a severe limiting factor (as seen from Fig. 2), the

following three observations suggest strategies for coping with it:

Correlation between RTN and NBTI: Recent evidence [1] suggests that

RTN and NBTI are positively correlated. As a result, the total design

margin impact of RTN and NBTI, taken together, is likely to be smaller

than the sum of their individual design margin impacts [1]. In Fig. 2, this

corresponds to an overlap between the top two boxes of each stack, which,

if accurately taken into account, would enable more design choices.

Pessimism of stationary RTN analysis (hence the need for non-stationary

analysis): From measurement data, it is well-known that stationary

RTN analysis harbours considerable pessimism (the difference between

predicted and observed noise power is sometimes as high as 15dB) [2],

[3]. Hence it is likely that non-stationary RTN analysis techniques (such

as the one we propose in this paper) would open up more design choices,

by virtue of being more accurate in real-world (non-stationary) operating

environments.

The case for computational RTN characterisation: RTN is caused by

the random capture and release of charge carriers by traps located in

a MOS transistor’s oxide layer [4], [5]. Analytical approaches to RTN

characterisation are based on the assumption that a large number of active

traps exist in the dielectric. Under this assumption, statistical averaging978-3-9810801-7-9/DATE11/ c©2011 EDAA



Fig. 3. Spectral density plots for 25 randomly sampled devices in two CMOS
technologies.

shows that RTN obeys 1/ f characteristics [4], [5]. However, with

increasingly small device sizes, this assumption is no longer valid [6]–

[8]. Indeed, detailed models for trap profiling (corroborated by measured

data) suggest that in deeply scaled CMOS technologies, only about 5-10

traps are active at any given bias point [6], [7]. As a result, the analytical

1/ f fit is often a poor model for highly scaled devices.

Fig. 3 illustrates this point using spectral density plots for 25 device

instances (randomly sampled using the trap profiling model of [6], and

held at constant bias) from two CMOS technologies. While the analytical

solution is clearly a good fit for the older technology (left), it completely

fails to capture the trap profiles of devices in the newer technology (right).

Although Fig. 3 shows that analytical approaches are no longer applicable,

the encouraging observation is that this represents a clear case for

computational approaches based on stochastic simulation [9] of trap

activities. These approaches (such as the one proposed in this paper)

are ideally suited to handle the small trap populations in today’s highly

scaled devices. Indeed, computational approaches actually take advantage

of the small trap populations to achieve greater efficiency.

C. What does accurate RTN characterisation entail?

The design of RTN-tolerant future generation SRAMs depends critically

on our ability to leverage the above three observations. For this we need:

An accurate model for RTN: It is known that both RTN and NBTI

originate due to traps in the MOS oxide layer. The correlation between

RTN and NBTI is most likely due to this common root cause [1].

Therefore, an RTN model based on first principles (i.e., the capture and

emission of electrons by traps in the oxide layer) is likely to succeed

in accurately capturing the NBTI correlation. Whereas detailed equations

describing RTN generation from first principles at the device level are

already available [5], [6], this paper, to the best of our knowledge, is the

first attempt at incorporating such sophisticated models into a tool for

RTN characterisation at the circuit level.

A computational method for predicting the circuit-level impact of non-

stationary RTN: Today, the most advanced computational approach for

RTN is that of Ye et. al. [10], which works by generating RTN-like

waveforms starting from ideal white-noise sources. The main advantage

of this method is that it integrates RTN simulation with SPICE-level

circuit simulation. However, a key drawback of this method is that it

is incapable of taking into account the bias-dependent, non-stationary

statistics of RTN, which play a crucial role during SRAM operation (see

next subsection). Moreover, the white noise sources drastically reduce the

efficiency of this method from a simulation perspective. Indeed, to date,

the only reported SRAM application of this method has been to analyse

the simplest case of a single trap in an entire SRAM cell, and that too

operating under constant bias assumptions.

By contrast, we develop a technique (§III) for generating genuinely non-

stationary RTN. This technique, based on uniformisation [11]–[13] of a

trap-level Markov chain model (§II), provably generates RTN traces that

are (stochastically) exactly identical to the RTN physically measured on

fabricated SRAMs. Hence the title of this paper, SAMURAI, which stands

for SRAM Analysis by Markov Uniformisation with RTN Awareness

Incorporated. While being a computational method based on trap-level

first principles, SAMURAI is capable of accurately simulating non-

stationary RTN at the circuit level under (a) arbitrary trap populations,

and (b) arbitrarily time-varying bias conditions. Moreover, we are able

to integrate SAMURAI with SPICE, without encountering efficiency

issues, to conduct full-fledged RTN analysis of SRAMs with varying

trap populations under realistic, non-stationary operating environments.

D. Non-stationarity of RTN in SRAMs: A closer look

We have already mentioned that non-stationary analysis, being less

pessimistic, often enables more design choices. We now illustrate the

critical importance of non-stationary RTN, in the context of SRAMs.

In an SRAM cell, RTN can produce two adverse effects [14], [15]: (1) it

can slow down write operations, and (2) it can cause write errors2.

RTN
RTN
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Fig. 4. RTN in pass transistor M1 modelled as a glitch IRTN while a 1 is being
written to the SRAM cell.

Consider the pass transistor M1, whose RTN can be modelled as a current

source IRTN that opposes the nominal transistor current, as illustrated in

Fig. 4 (right). The top three waveforms in Fig. 4 (left) are the signals

applied to write a 1 to the SRAM cell, while the bottom two waveforms

(numbered 1 and 2) represent two possible IRTN “glitches”.

Fig. 5. RTN in the pass transistor can either (i) slow down the write operation,
or (ii) result in a write error. X-axis: Time (ns). Y-axis: Voltage (V). The solid
line represents Q while the dotted line represents Q.

Fig. 5 shows BSIM-4 SPICE simulations for the different IRTN scenarios.

The top portion shows that in the absence of IRTN glitches, the signals

2RTN-induced SRAM read failures have also been reported [16]. SAMURAI
is capable of predicting these too; however, due to space constraints, we do not
discuss read failures in this paper.



Q (the solid line) and Q (the dotted line) settle to their correct values

by the time WL is de-asserted. The middle portion shows that if a glitch

starts after WL is asserted, but ends before WL is de-asserted, it can slow

down the write operation, i.e., Q does not assume its correct value until

long after WL is reset (hence a read operation initiated in the interim can

upset the stored value). The bottom portion shows that if a glitch starts

just before WL is de-asserted, and continues until WL is de-asserted, it

can result in a write error.

From the above discussion, it is clear that the timing of RTN glitches

plays a crucial role in deciding whether an SRAM cell is compromised

or not. In other words, there are certain critical moments (e.g., during

switching) when an SRAM cell is extremely sensitive to RTN spikes [15].

At other times, even a reasonably large RTN spike would not produce

any observable effect. Thus, the key to successful SRAM design lies in

understanding the RTN patterns during such critical moments.

Moreover, during such critical moments in an SRAM cell’s duty cycle,

all 6 transistors experience large and rapid bias swings. Under such fast

bias variations, the traditional stationarity assumptions that simplify RTN

analysis are no longer valid. Therefore, especially in the SRAM context, a

non-stationary RTN analysis technique (such as SAMURAI) is the need

of the hour. In §IV, we show that SAMURAI can indeed predict non-

stationary effects such as SRAM write errors.

E. SAMURAI: Structure, capabilities and summary of results

In previous subsections, we highlighted the need for an accurate, trap-

level, non-stationary, computational RTN characterisation technique, with

application to SRAM design. Against this background, in this paper,

we develop SAMURAI, a computational tool for accurate modelling

and simulation of non-stationary RTN. Starting from first principles (the

capture/release of electrons by MOS oxide traps), SAMURAI generates

accurate RTN traces for entire circuits (such as SRAMs) under arbitrary

trap populations and arbitrarily time-varying bias conditions.

SAMURAI is a computational approach based on Markov Uniformisation

[11]–[13], which is an extension of Gillespie’s stochastic simulation

algorithm [9] to handle non-stationarity. Such computational approaches

are well-known in the biological community, where they are used for

accurate simulation of biochemical reactions involving a small num-

ber of molecules [9], [17], [18]. Analogously, we use SAMURAI for

accurate simulation of RTN in SRAMs involving a small number of

traps. Specifically, we have developed a simulation-driven methodology

(illustrated in Fig. 8 (left)) that integrates SAMURAI and SPICE to enable

accurate RTN analysis of SRAMs. We have implemented each step of this

methodology and obtained results showing that SAMURAI does indeed

accurately predict non-stationary RTN effects in SRAMs. We have also

validated SAMURAI against analytical results known for stationary RTN.

II. THE RTN GENERATION MECHANISM: FROM TRAPS TO

MARKOV CHAINS

A. Origins of RTN: Traps in the dielectric

As mentioned before, RTN is caused by the random capture and release

of electrons by traps located in the MOS oxide layer (as shown in Fig. 6).

At any given moment, an oxide trap can be in one of two possible

states, (a) filled (i.e., the trap has captured an electron from the inversion

layer), or (b) empty (i.e., the trap has released any previously captured

electron back into the inversion layer). For a given trap, the evolution

of its state over time (between filled and empty) is inherently random,

i.e., it is a stochastic process. The parameters of this stochastic process

depend on three factors: (a) the vertical distance ytr of the trap from the

oxide-semiconductor interface, (b) the trap energy level Etr, and (c) the

instantaneous gate bias Vgs(t) of the device [6]. It is this dependence on

Vgs(t) that makes the trap statistics, and hence the induced RTN, non-

stationary.

Fig. 6. Left: Traps in a MOS transistor’s oxide layer. Right: A time-
inhomogeneous two-state Markov chain model for a single trap.

B. Traps as time-inhomogeneous two-state Markov chains

Given that a trap is empty (filled) at time t, the probability that it will

become filled (empty) by time t+dt (i.e., it will capture (emit) an electron

in the small time interval dt) is given by λc(t)dt (λe(t)dt), where λc(t)
(λe(t)) is a time-varying function called the capture (emission) propensity

of the trap.

The above stochastic model governing the activity of a single trap can be

described by a two-state time-inhomogeneous Markov chain, as shown

in Fig. 6 (right). The two states in this Markov chain are designated 0

(empty) and 1 (filled), while transitions between states are labelled by

the corresponding propensity functions.

The functions λc(t) and λe(t) depend on the instantaneous bias Vgs(t), and
also on the trap characteristics ytr and Etr. Detailed equations describing

these dependencies can be found in [6], from which we obtain:

λc(t)+λe(t) =
1

τ0eγytr
(1)

β (t) = λe(t)/λc(t) = g e
ET−EF

kT (2)

[where (ET −EF )|t = function(Etr,ytr,Vgs|t ,device parms)]

From the above equations, it is seen that the sum λc+λe is constant with

time, depending only on ytr, the time constant τ0 for traps at the silicon

interface and the tunnelling coefficient γ . However, the ratio β = λe/λc

at time t is a complex function (whose exact form is given in [6]) of

the instantaneous bias Vgs|t . Because the ratio β is time-varying, the trap

statistics are non-stationary. (Here g is the trap degeneracy factor, k is

the Boltzmann constant and T is the temperature.)

C. From trap occupancies to RTN currents

The evolution of the state of a single trap is governed by the stochastic

model above. In a MOS transistor, there may exist multiple such traps.

Given a trap occupancy function for the device, i.e., a description of

how the state of each trap evolves over time, detailed models exist for

predicting the noise current IRTN(t) in the device. For example, one model

(currently used by SAMURAI) is the following equation [19]:

IRTN(t) =
Id(t)

WLN(t)
N f illed(t) (3)

where Id is the nominal drain current (without RTN), W and L are

the device dimensions, N is the number density of charge carriers and

N f illed(t) is the number of device traps filled at time t (which can be

calculated from the trap occupancy function). More complex models have

also been suggested (e.g., [20]) which, if needed, can be incorporated into

SAMURAI just as easily.

III. THE SAMURAI CORE: RTN TRACE GENERATION BY

MARKOV UNIFORMISATION

The previous section described how to compute the RTN current given the

trap occupancy function. This section describes a technique for computing

the trap occupancy function.

For a device with multiple traps, each trap can be thought of as a separate

two-state time-inhomogeneous Markov chain. In order to generate real-



istic RTN traces under time-varying bias conditions, SAMURAI carries

out non-stationary stochastic simulation (Algorithm 1) of each of these

Markov chains. The trap occupancy function thus computed is used to

generate a realistic RTN trace IRTN(t).

Algorithm 1: Non-stationary RTN generation in SAMURAI

Input: Trap profile, Bias {Vgs(t), Id(t) . . .}, t0, t f
Output: Realistic IRTN(t) trace in time interval [t0, t f ]
foreach trap tr in the device do1

compute λc(t), λe(t), t ∈ [t0, t f ], for tr (use Eq. (1), (2));2

λ ∗ = λc(t0)+λe(t0);3

curr time = t0; curr state = tr.init state;4

times = [curr time]; states = [curr state];5

while curr time< t f do6

next cand time = curr time + exprand(1/λ ∗);7

curr time = next cand time;8

if curr time> t f then break;9

if curr state == 1 then10

λnext = λe(curr time)11

else12

λnext = λc(curr time)13

end14

bool change the state = rand()< λnext/λ ∗;15

if change the state then16

times.append(curr time);17

states.append(curr state);18

curr state = (curr state == 1) ? 0 : 1;19

times.append(curr time);20

states.append(curr state);21

end22

end23

trap occupancy[tr] = [times, states];24

end25

compute IRTN(t) from trap occupancy[tr] (use Eq. (3))26

Algorithm 1 takes as input, (a) the trap profile of the device (i.e., the

position ytr and energy Etr of each trap), and (b) the time-varying

bias conditions. It produces as output an IRTN(t) trace whose statistics

are exactly identical to the time-varying RTN statistics under the non-

stationary model of the previous section.

Briefly, the algorithm works by generating more trap activity than

necessary, and then discarding some of the generated activity so that

the time-varying trap statistics are exactly preserved. Line 3 computes

λ ∗, which is an upper bound on the functions λc(t) and λe(t). In

each iteration of the while loop (line 6), a candidate event is generated

(line 7) corresponding to a stationary two-state Markov chain with both

propensities set to λ ∗. Thus, the original non-stationary Markov chain is

first uniformised into a stationary (but high rate) Markov chain. In line 15,

a probabilistic decision is made to either keep or discard the generated

event, which exactly restores the non-stationarity of the original Markov

chain. That this algorithm exactly preserves the original Markov chain’s

non-stationarity is proved in [11]–[13].

Although Algorithm 1 generates IRTN(t) traces only for a single device,

it can be straightforwardly extended to investigate the effect of RTN on

entire SRAM cells (as we do in the next section).

IV. RESULTS

In this section we present two kinds of results, (a) validation results

that demonstrate excellent agreement between SAMURAI’s predictions

and analytical expressions known for stationary RTN, and (b) simulation

results showing that SAMURAI can accurately predict the effects of non-

stationary RTN in SRAM cells.

A. Validation results

SAMURAI is primarily intended for non-stationary RTN analysis under

arbitrarily time-varying bias conditions. Although analytical expressions

are not available for such a general case, they are known for the restricted

constant bias case [3], [5]. Here we validate SAMURAI against these

expressions for a wide range of trap configurations.

◦ We run three validation experiments, using typical values for the 3

parameters that affect the trap capture/release statistics, namely, Vgs,

Etr, and ytr. In each experiment, we fix two of these parameters and

sweep the third over an appropriate range. Hence we generate a variety

of trap configurations, which are then simulated under constant gate

bias using Algorithm 1.

◦ Algorithm 1 returns a trace IRTN(t). From this trace, we numerically

estimate the autocorrelation function R(τ) = E[IRTN(t)IRTN(t+ τ)].

◦ We also translate the above time-domain results into frequency domain

by computing the stationary power spectral density S( f ) numerically

from R(τ).

◦ We plot the above waveforms R(τ) and S( f ) alongside analytical

expressions obtained from [3], [5]. To get an idea of the relative

importance of RTN, we also plot the stationary power spectral density

of thermal noise in the device using the model Sthermal( f ) =
8
3kTgm

(where k is the Boltzmann constant, T is the temperature and gm is the

device transconductance at the applied bias).

The results are presented in Fig. 7 (a to f). In all these plots, τ is measured

in seconds, R(τ) in A2, all frequencies are in Hz and all spectral densities

are in A2/Hz. From Fig. 7, it is seen that the RTN traces predicted by

SAMURAI closely match analytical expressions in both the time domain

(autocorrelation plots (a)-(c)) and the frequency domain (spectral density

plots (d)-(f)).

B. SRAM simulation results

Fig. 8 (left) shows a flowchart illustrating our methodology for analysing

non-stationary RTN in SRAMs. This methodology combines SAMURAI

with SPICE, resulting in an accurate, trap-level, simulation-driven strategy

for SRAM design in the presence of RTN.

◦ First we simulate the SRAM cell (on a test pattern of reads and writes)

without RTN in SPICE. This enables the generation of time-varying

biasses (to be used as input to SAMURAI).

◦ Next, we use SAMURAI to generate RTN traces for each transistor in

the SRAM cell, under the biasses obtained from SPICE. In addition to

the biasses, this step requires a trap profile for each device, which is

either obtained from measurement data [7] or generated using statistical

trap profiling models proposed in the literature [6].

◦ We model the RTN traces generated above as current sources between

the drain and source of each device (similar to Fig. 4 (right)). We

again carry out SPICE simulation of the SRAM cell (on the same test

pattern), this time including the IRTN of each transistor.

◦ If the second SPICE simulation predicts write errors or unacceptable

slowdown in SRAM operation, it is immediately clear that the SRAM

cell is compromised due to RTN (either Vdd must be increased or the

SRAM cell must be re-designed). Otherwise, the analysis is repeated

with a new test pattern (or a conclusion is reached that the SRAM cell

is indeed robust to RTN).

In Fig. 8 (right), we have implemented each step of the above methodol-

ogy (in 90nm technology using BSIM-4 device models and SpiceOPUS

[21] for circuit simulation) and presented the results in 5 plots (labelled

(a)-(e)) alongside the flowchart, with arrows pointing from the flowchart

stages to the relevant plots. We have illustrated the entire methodology

using the bit pattern [1,1,0,1,0,1,0,0,1] written to the SRAM cell. As seen

from plot (a), this bit pattern is successfully written to the SRAM cell if



Fig. 7. Plots showing that the RTN traces generated by SAMURAI closely match analytical predictions in both the time domain (autocorrelation plots (a)-(c)) and
the frequency domain (spectral density plots (d)-(f)).

there is no RTN.

Plots (b) and (c) show the trap occupancy functions returned by SAMU-

RAI for transistors M5 and M6 respectively (here we have used the

statistical trap profiling model proposed in [6]). As is to be expected

[3], the transistor M5 (whose gate voltage is Q) exhibits a high degree of

trap activity when Q is high, but very little trap activity when Q is low.

The opposite is true for transistor M6, whose gate voltage is Q. Thus,

SAMURAI is able to accurately predict the time-varying (non-stationary)

statistics of trap activity under rapidly switching bias conditions. (For

illustrative purposes, an exploded view of the trap activity during a small

time interval from each of these plots is also shown.)

Plot (d) shows the RTN trace generated by SAMURAI for the transistor

M2. Plot (e) shows a SPICE simulation of the SRAM cell (on the same bit

pattern) after including the IRTN current sources for each transistor. Here

we wanted to demonstrate that SAMURAI is indeed capable of predicting

non-stationary effects such as write errors in SRAM cells. However, such

failures are extremely rare events. Therefore, for illustrative purposes,

we have scaled the IRTN trace of each transistor by a factor of 30,

which immediately produced a write error (as seen from plot (e)). In

more deeply scaled CMOS technologies (e.g., 22nm), such artificial

RTN scaling would not be necessary. Moreover, if other sources of

variability (e.g., local/global parameter variations, NBTI etc.) are taken

into account, the incremental effect of RTN would be sufficient to produce

a bit error (without artificial scaling). Also, instead of scaling IRTN , we

note that a similar effect can be achieved by adopting accelerated RTN

testing techniques for SRAMs (such as the one outlined in [14]). That

is, SAMURAI should be run on the SPICE response predicted for the

SRAM cell under the biasses suggested by accelerated testing techniques.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented SAMURAI, a computational tech-

nique that enables accurate, trap-level, non-stationary analysis of RTN

in SRAMs. The core of SAMURAI is a procedure called Markov

Uniformisation, which extends stochastic simulation ideas from the

biological community to the RTN characterisation problem in SRAMs.

Starting from a two-state time-inhomogeneous Markov chain model for

each device trap, we have demonstrated that SAMURAI is capable of

generating non-stationary RTN traces for entire circuits under (a) arbitrary

trap populations, and (b) arbitrarily time-varying bias conditions. To

the best of our knowledge, SAMURAI is the first computational tool

that incorporates sophisticated, trap-level, stochastic RTN models into

a methodology for circuit level RTN characterisation. Where analytical

expressions are available, SAMURAI closely matches their predictions.

And where analytical expressions are not available, SAMURAI still

enables accurate RTN characterisation by generating realistic RTN traces.

We have also evolved a methodology that integrates SAMURAI and

SPICE to conduct RTN analysis of SRAMs. Our implementation of

this methodology demonstrates that SAMURAI can indeed predict non-

stationary effects such as RTN-induced SRAM write errors.

Against the above accomplishments, we now identify four directions for

future research:

1. Bi-directionally coupled RTN simulation. Throughout this paper, we

have assumed that the biasses for RTN trace generation can be pre-

computed by a SPICE simulation. However, in reality, RTN cannot be

isolated from the rest of the circuit, i.e., both RTN and the circuit states

evolve together, with RTN modulating the circuit voltages/currents

and the circuit simultaneously modulating the stochastic processes

governing RTN generation, thereby forming a bi-directionally coupled

system. For the future, our aim is to accurately simulate such “higher

order” effects associated with RTN.

2. Accounting for other sources of variability. In this paper, we have

discussed the stand-alone impact of RTN on SRAMs. In reality, RTN

occurs on top of other non-idealities such as static noise, local/global

parameter variations, NBTI etc. In future, we would like to properly

account for all these variabilities within our simulation tool.

3. Statistical analysis of RTN for entire SRAM arrays. In this paper, we



Fig. 8. Left: Flowchart illustrating our methodology for non-stationary RTN analysis of SRAMs. Right: Plots showing our implementation of this methodology. All
plots have the same X-axis (time in ns). On the Y-axis, plots (a,e) show voltages (in V), plots (b,c) show the number of filled traps and plot (d) shows current in µA.

have considered the effect of RTN on a single SRAM cell. We view

this as the first step towards predicting the bit-error impact of RTN on

entire SRAM arrays, which are made up of thousands of SRAM cells

that are subject to local and global parameter variations.

4. Applications beyond SRAMs. RTN has been shown to adversely affect

many circuits other than SRAMs. For instance, RTN is thought to be

responsible for Variable Retention Time (VRT) in DRAMs [22], [23].

RTN is also known to impact ring oscillators [3]. We also conjecture

that RTN causes cycle slipping in Phase Locked Loops (PLLs). In

future, we would like to extend SAMURAI to conduct RTN analysis

for all these different circuits.
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